首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We use K '-band (2.1-μm) imaging to investigate the angular size and morphology of 10 6C radio galaxies, at redshifts 1≤ z ≤1.4. Two radio galaxies appear to be undergoing mergers, another contains, within a single envelope, two intensity peaks aligned with the radio jets, while the other seven appear consistent with being normal ellipticals in the K band.
Intrinsic half-light radii are estimated from the areas of each radio galaxy image above a series of thresholds. The 6C galaxy radii are found to be significantly smaller than those of the more radio-luminous 3CR galaxies at similar redshifts. This would indicate that the higher mean K -band luminosity of the 3CR galaxies reflects a difference in the size of the host galaxies, and not solely a difference in the power of the active nuclei.
The size–luminosity relation of the z ∼1.1 6C galaxies indicates a 1.0–1.6 mag enhancement of their rest frame R -band surface brightness relative to either local ellipticals of the same size or FRII radio galaxies at z <0.2. The 3CR galaxies at z ∼1.1 show a comparable enhancement in surface brightness. The mean radius of the 6C galaxies suggests that they evolve into ellipticals of L ∼ L * luminosity, and is consistent with their low-redshift counterparts being relatively small FRII galaxies ∼25 times lower in radio luminosity, or small FRI galaxies ∼1000 times lower in radio luminosity. Hence the 6C radio galaxies appear to undergo as much optical and radio evolution as the 3CR galaxies.  相似文献   

2.
In this paper, the third and final of a series, we present complete K -band imaging and some complementary I -band imaging of the filtered 6C* sample. We find no systematic differences between the K – z relation of 6C* radio galaxies and those from complete samples, so the near-infrared properties of luminous radio galaxies are not obviously biased by the additional 6C* radio selection criteria (steep spectral index and small angular size). The 6C* K – z data significantly improve delineation of the K – z relation for radio galaxies at high redshift ( z >2) . Accounting for non-stellar contamination, and for correlations between radio luminosity and stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity of radio galaxies increases significantly at z >2 . In a particular spatially flat universe with a cosmological constant (ΩM=0.3 and ΩΛ=0.7) , the most luminous radio sources appear to be associated with galaxies with a luminosity distribution with a high mean (≈5  L *), and a low dispersion ( σ ∼0.5 mag) which formed their stars at epochs corresponding to z ≳2.5 . This result is in line with recent submillimetre studies of high-redshift radio galaxies and the inferred ages of extremely red objects from faint radio samples.  相似文献   

3.
We have selected and analysed the properties of a sample of  2905 Ks < 21.5  galaxies in  ∼131 arcmin2  of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of Ks -selected galaxies with respect to the results already obtained in previous studies. We made use of the public deep multiwavelength imaging from the optical B through the infrared (IR) 4.5-μm bands, in conjunction with available spectroscopic and COMBO17 data in the CDFS, to construct an optimized redshift catalogue for our galaxy sample. We computed the Ks -band luminosity function and determined that its characteristic magnitude has a substantial brightening and a decreasing total density from   z = 0  to  〈 z 〉= 2.5  . We also analysed the colours and number density evolution of galaxies with different stellar masses. Within our sample, and in contrast to what is observed for less massive systems, the vast majority (∼85–90 per cent) of the most massive  ( M > 2.5 × 1011 M)  local galaxies appear to be in place before redshift   z ∼ 1  . Around 65–70 per cent of the total assemble between redshifts   z = 1  and 3 and most of them display extremely red colours, suggesting that plausible star formation in these very massive systems should mainly proceed in obscured, short-time-scale bursts. The remaining fraction (up to ∼20 per cent) could be in place at even higher redshifts   z = 3–4  , pushing the first epoch of formation of massive galaxies beyond the limits of current near-IR surveys.  相似文献   

4.
It has been claimed by Taylor et al. that the low-redshift end of the K – z relation for radio galaxies is too bright by about half a magnitude owing to contributions from the obscured quasar nuclei. Such a result has major implications for the use of the K -band Hubble diagram in understanding the cosmological evolution of radio galaxies. In this paper we present 1–5-μm imaging data of a nearly complete sample of low-redshift radio galaxies; this approach allows us to determine accurately the strengths of any unresolved nuclear components in the galaxies. We detect nuclear sources in five targets, whose broad-band colours are consistent with reddened quasar spectra. In all the five cases the ratio of the inferred intrinsic near-infrared luminosity to the narrow-line luminosity is typical of quasars. We find a correlation between the inferred nuclear extinction and core-to-lobe ratio, which places constraints on the geometry of the torus. We find evidence for a shift of the K – z relation to fainter magnitudes, but by a much smaller amount (∼0.1 mag) than determined by Taylor et al. Under the assumption that the nuclear sources in radio galaxies have the same intrinsic near-infrared spectra as quasars, our multiwavelength images allow us to limit any possible shift to less than 0.3 mag.  相似文献   

5.
We investigate the angular correlation function, ο(θ), of the galaxies detected in the 2.1-μm K ' band in 17 fields (101.5 arcmin2 in total), each containing a z ∼1.1 radio galaxy. There is a significant detection of galaxy clustering at a limit of K ∼20, with a ο(θ) amplitude similar to that estimated by Carlberg et al. at K =21.5. The ο(θ) amplitudes of these K -limited samples are higher than expected from the faint galaxy clustering in the blue and red passbands, but consistent with a pure luminosity evolution model if clustering is stable (ε=0) and the correlation function of early-type galaxies is steeper than that of spirals.
We do not detect a significant cross-correlation between the radio galaxies and the other galaxies in these fields. The upper limits on the cross-correlation are consistent with a mean clustering environment of Abell class 0 for z ∼1.1 radio galaxies, similar to that observed for radio galaxies at z ∼0.5, but would argue against an Abell class 1 or richer environment. As Abell 0 clustering around the radio galaxies would not significantly increase the ο(θ) amplitude of galaxies in these fields, stable clustering with a steep ξ( r ) for E/S0 galaxies appears to remain the most likely interpretation of the ο(θ) amplitude.
At K ≤20, the number of galaxy–galaxy pairs of 2–3 arcsec separation exceeds the random expectation by a factor of 2.15±0.26. The excess of close pairs is comparable to that previously reported for R -band data, and consistent with a ∼(1+ z )2 evolution of the galaxy merger rate.  相似文献   

6.
We perform a spectrophotometric analysis of galaxies at redshifts z = 4–6 in cosmological smoothed particle hydrodynamics simulations of a Λ cold dark matter universe. Our models include radiative cooling and heating by a uniform ultraviolet (UV) background, star formation, supernova feedback, and a phenomenological model for galactic winds. Analysing a series of simulations of varying box size and particle number allows us to isolate the impact of numerical resolution on our results. Specifically, we determine the luminosity functions in B , V , R , i ' and z ' filters, and compare the results with observational surveys of Lyman break galaxies (LBGs) performed with the Subaru telescope and the Hubble Space Telescope . We find that the simulated galaxies have UV colours consistent with observations and fall in the expected region of the colour–colour diagrams used by the Subaru group. The stellar masses of the most massive galaxies in our largest simulation increase their stellar mass from   M ∼ 1011 M  at z = 6 to   M ∼ 1011.7 M  at z = 3. Assuming a uniform extinction of E ( B − V ) = 0.15, we also find reasonable agreement between simulations and observations in the space density of UV bright galaxies at z = 3–6, down to the magnitude limit of each survey. For the same moderate extinction level of E ( B − V ) ∼ 0.15, the simulated luminosity functions match observational data, but have a steep faint-end slope with α∼−2.0. We discuss the implications of the steep faint-end slope found in the simulations. Our results confirm the generic conclusion from earlier numerical studies that UV bright LBGs at z ≥ 3 are the most massive galaxies with E ( B − V ) ∼ 0.15 at each epoch.  相似文献   

7.
We present high-quality long-slit spectra for three nearby powerful radio galaxies – 3C 293, 3C 305 and PKS 1345+12. These were taken with the aim of characterizing the young stellar populations (YSP), and thereby investigating the evolution of the host galaxies, as well as the events that triggered the activity. Isochrone spectral synthesis modelling of the wide wavelength coverage spectra of nuclear and off-nuclear continuum-emitting regions have been used to estimate the ages, masses and luminosities of the YSP component, taking full account of reddening effects and potential contamination by activity-related components. We find that the YSP make a substantial contribution to the continuum flux in the off-nuclear regions on a radial scale of 1–20 kpc in all three objects. Moreover, in two objects we find evidence for reddened post-starburst stellar populations in the near-nuclear regions of the host galaxies. The YSP are relatively old (0.1–2 Gyr), massive  (109 < M YSP < 2 × 1010 M)  and make up a large proportion (∼1–50 per cent) of the total stellar mass in the regions of the galaxies sampled by the observations. Overall, these results are consistent with the idea that the nuclear activity of active galactic nuclei in some radio galaxies is triggered by major gas-rich mergers. Therefore, these radio galaxies form part of the subset of early-type galaxies that is evolving most rapidly in the local Universe. Intriguingly, the results also suggest that the radio jets are triggered relatively late in the merger sequence, and that there is an evolutionary link between radio galaxies and luminous/ultraluminous infrared galaxies.  相似文献   

8.
We present the results of a comprehensive re-analysis of the images of a virtually complete sample of 28 powerful 3CR radio galaxies with redshifts 0.6< z <1.8 from the Hubble Space Telescope ( HST ) archive. Using a two-dimensional modelling technique we have derived scalelengths and absolute magnitudes for a total of 16 3CR galaxies with a median redshift of z =0.8. Our results confirm the basic conclusions of Best, Longair & Röttgering in that we also find z =1 3CR galaxies to be massive, well-evolved ellipticals, the infrared emission of which is dominated by starlight. However, we in fact find that the scalelength distribution of 3CR galaxies at z ≃1 is completely indistinguishable from that derived for their low-redshift counterparts from our own recently completed HST study of active galactic nuclei hosts at z ≃0.2. There is thus no evidence that 3CR radio galaxies at z ≃1 are dynamically different from 3CR galaxies at low redshift. Moreover, for a 10-object subsample we have determined the galaxy parameters with sufficient accuracy to demonstrate, for the first time, that the z ≃1 3CR galaxies follow a Kormendy relation that is indistinguishable from that displayed by low-redshift ellipticals if one allows for purely passive evolution. The implied rather modest level of passive evolution since z ≃1 is consistent with that predicted from spectrophotometric models provided one assumes a high formation redshift ( z ≥4) within a low-density universe. We conclude that there is no convincing evidence for significant dynamical evolution among 3CR galaxies in the redshift interval 0< z <1, and that simple passive evolution remains an acceptable interpretation of the K – z relation for powerful radio galaxies.  相似文献   

9.
Motivated by recent observational studies of the environment of   z ∼ 6  QSOs, we have used the Millennium Run (MR) simulations to construct a very large  (∼4°× 4°)  mock redshift survey of star-forming galaxies at   z ∼ 6  . We use this simulated survey to study the relation between density enhancements in the distribution of i 775-dropouts and Lyα emitters, and their relation to the most massive haloes and protocluster regions at   z ∼ 6  . Our simulation predicts significant variations in surface density across the sky with some voids and filaments extending over scales of 1°, much larger than probed by current surveys. Approximately one-third of all   z ∼ 6  haloes hosting i -dropouts brighter than   z = 26.5  mag  (≈ M *UV, z =6)  become part of   z = 0  galaxy clusters. i -dropouts associated with protocluster regions are found in regions where the surface density is enhanced on scales ranging from a few to several tens of arcminutes on the sky. We analyse two structures of i -dropouts and Lyα emitters observed with the Subaru Telescope and show that these structures must be the seeds of massive clusters in formation. In striking contrast, six   z ∼ 6  QSO fields observed with Hubble Space Telescope show no significant enhancements in their i 775-dropout number counts. With the present data, we cannot rule out the QSOs being hosted by the most massive haloes. However, neither can we confirm this widely used assumption. We conclude by giving detailed recommendations for the interpretation and planning of observations by current and future ground- and space-based instruments that will shed new light on questions related to the large-scale structure at   z ∼ 6  .  相似文献   

10.
We use a volume- and flux-limited sample of local  (0.03 ≤ z ≤ 0.1)  radio galaxies with optical counterparts to address the question of how long a typical galaxy spends in radio active and quiescent states. The length of the active phase has a strong dependence on the stellar mass of the host galaxy. Radio sources in the most massive hosts are also retriggered more frequently. The time spent in the active phase has the same dependence on stellar mass as does the gas cooling rate, suggesting the onset of the quiescent phase is due to fuel depletion. We find radio and emission-line active galactic nuclei (AGN) activity to be independent, consistent with these corresponding to different accretion states.  相似文献   

11.
We present Hubble Space Telescope Wide Field Planetary Camera 2 I -band imaging for a sample of nine hyperluminous infrared galaxies (HLIRGs) spanning a redshift range     . Three of the sample have morphologies showing evidence for interactions and six are quasi-stellar objects (QSOs). Host galaxies in the QSOs are detected reliably out to     . The detected QSO host galaxies have an elliptical morphology with scalelengths spanning     and absolute k -corrected magnitudes spanning     There is no clear correlation between the infrared (IR) power source and the optical morphology. None of the sources in the sample, including F15307+3252, shows any evidence for gravitational lensing. We infer that the IR luminosities are thus real. Based on these results, and previous studies of HLIRGs, we conclude that this class of object is broadly consistent with being a simple extrapolation of the ULIRG population to higher luminosities; ULIRGs being mainly violently interacting systems powered by starbursts and/or active galactic nuclei. Only a small number of sources, the infrared luminosities of which exceed 1013 L, are intrinsically less luminous objects that have been boosted by gravitational lensing.  相似文献   

12.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

13.
We use semi-analytic techniques to study the formation and evolution of brightest cluster galaxies (BCGs). We show the extreme hierarchical nature of these objects and discuss the limitations of simple ways to capture their evolution. In a model where cooling flows are suppressed at late times by active galactic nucleus (AGN) activity, the stars of BCGs are formed very early (50 per cent at z ∼ 5, 80 per cent at z ∼ 3) and in many small galaxies. The high star formation rates in these high- z progenitors are fuelled by rapid cooling, not by merger-triggered starbursts. We find that model BCGs assemble surprisingly late: half their final mass is typically locked up in a single galaxy after   z ∼ 0.5  . Because most of the galaxies accreted on to BCGs have little gas content and red colours, late mergers do not change the apparent age of BCGs. It is this accumulation of a large number of old stellar populations – driven mainly by the merging history of the dark matter halo itself – that yields the observed homogeneity of BCG properties. In the second part of the paper, we discuss the evolution of BCGs to high redshifts, from both observational and theoretical viewpoints. We show that our model BCGs are in qualitative agreement with high- z observations. We discuss the hierarchical link between high- z BCGs and their local counterparts. We show that high- z BCGs belong to the same population as the massive end of local BCG progenitors, although they are not in general the same galaxies. Similarly, high- z BCGs end up as massive galaxies in the local Universe, although only a fraction of them are actually BCGs of massive clusters.  相似文献   

14.
We present the results of fitting deep off-nuclear optical spectra of radio-quiet quasars, radio-loud quasars and radio galaxies at z ≃0.2 with evolutionary synthesis models of galaxy evolution. Our aim was to determine the age of the dynamically dominant stellar populations in the host galaxies of these three classes of powerful active galactic nuclei (AGN). Some of our spectra display residual nuclear contamination at the shortest wavelengths, but the detailed quality of the fits longward of the 4000-Å break provides unequivocal proof, if further proof were needed, that quasars lie in massive galaxies with (at least at z ≃0.2) evolved stellar populations. By fitting a two-component model we have separated the very blue (starburst and/or AGN contamination) from the redder underlying spectral energy distribution, and find that the hosts of all three classes of AGN are dominated by old stars of age 8–14 Gyr. If the blue component is attributed to young stars, we find that, at most, 1 per cent of the visible baryonic mass of these galaxies is involved in star formation activity at the epoch of observation, at least over the region sampled by our spectroscopic observations. These results strongly support the conclusion reached by McLure et al. that the host galaxies of luminous quasars are massive ellipticals which have formed by the epoch of peak quasar activity at z ≃2.5.  相似文献   

15.
We present a result of cross-correlating the Infrared Astronomical Satellite Faint Source Catalogue with the spectroscopic catalogues of galaxies in the Fourth Data Release of the Sloan Digital Sky Survey, the Final Data Release of the 2dF Galaxy Redshift Survey (2dFGRS) and the Second Data Release of the 6dF Galaxy Survey. We have identified 324 ultraluminous infrared galaxies (ULIRGs) including 190 newly discovered ULIRGs, and two hyperluminous infrared galaxies. Adding these new ULIRGs, we increase the number of known ULIRGs by about 30 per cent. The reliability of the cross-correlation is estimated using the likelihood ratio method. The incompleteness of our sample introduced by the identification procedure in this study is estimated to be about 5 per cent. Our sample covers the redshift range of   z = 0.037–0.517  with a median redshift of     , which is larger than that     of the sample of previously known ULIRGs.  相似文献   

16.
The evolution of number density, size and intrinsic colour is determined for a volume-limited sample of visually classified early-type galaxies selected from the Hubble Space Telescope /Advanced Camera for Surveys images of the Great Observatories Origins Deep Survey (GOODS) North and South fields (version 2). The sample comprises 457 galaxies over 320 arcmin2 with stellar masses above  3 × 1010 M  in the redshift range  0.4 < z < 1.2  . Our data allow a simultaneous study of number density, intrinsic colour distribution and size. We find that the most massive systems  (≳3 × 1011 M)  do not show any appreciable change in comoving number density or size in our data. Furthermore, when including the results from 2dF galaxy redshift survey, we find that the number density of massive early-type galaxies is consistent with no evolution between   z = 1.2  and 0, i.e. over an epoch spanning more than half of the current age of the Universe. We find large discrepancies between the predictions of semi-analytic models. Massive galaxies show very homogeneous intrinsic colour distributions, with nearly flat radial colour gradients, but with a significant negative correlation between stellar mass and colour gradient, such that red cores appear predominantly in massive galaxies. The distribution of half-light radii – when compared to   z ∼ 0  and   z > 1  samples – is compatible with the predictions of semi-analytic models relating size evolution to the amount of dissipation during major mergers.  相似文献   

17.
We present detailed observations of MRC 0116+111, revealing a luminous, miniradio halo of ∼240-kpc diameter located at the centre of a cluster of galaxies at redshift   z = 0.131  . Our optical and multiwavelength Giant Metrewave Radio Telescope and Very Large Array radio observations reveal a highly unusual radio source: showing a pair of giant (∼100-kpc diameter) bubble-like diffuse structures, that are about three times larger than the analogous extended radio emission observed in M87 – the dominant central radio galaxy in the Virgo cluster. However, in MRC 0116+111 we do not detect any ongoing active galactic nucleus (AGN) activity, such as a compact core or active radio jets feeding the plasma bubbles. The radio emitting relativistic particles and magnetic fields were probably seeded in the past by a pair of radio jets originating in the AGN of the central cD galaxy. The extremely steep high-frequency radio spectrum of the north-western bubble, located ∼100 kpc from cluster centre, indicates radiation losses, possibly because having detached, it is rising buoyantly and moving away into the putative hot intracluster medium. The other bubble, closer to the cluster centre, shows signs of ongoing particle re-acceleration. We estimate that the radio jets which inflated these two bubbles might have also fed enough energy into the intracluster medium to create an enormous system of cavities and shock fronts, and to drive a massive outflow from the AGN, which could counter-balance and even quench a cooling flow. Therefore, this source presents an excellent opportunity to understand the energetics and the dynamical evolution of radio jet inflated plasma bubbles in the hot cluster atmosphere.  相似文献   

18.
Using the combined capabilities of the large near-infrared Palomar/DEEP-2 survey, and the superb resolution of the Advanced Camera for Surveys HST camera, we explore the size evolution of 831 very massive galaxies  ( M ≥ 1011 h −270 M)  since   z ∼ 2  . We split our sample according to their light concentration using the Sérsic index n . At a given stellar mass, both low  ( n < 2.5)  and high  ( n > 2.5)  concentrated objects were much smaller in the past than their local massive counterparts. This evolution is particularly strong for the highly concentrated (spheroid like) objects. At   z ∼ 1.5  , massive spheroid-like objects were a factor of 4 (±0.4) smaller (i.e. almost two orders of magnitudes denser) than those we see today. These small sized, high-mass galaxies do not exist in the nearby Universe, suggesting that this population merged with other galaxies over several billion years to form the largest galaxies we see today.  相似文献   

19.
We present an analysis of the optical spectra of a volume-limited sample of 375 radio galaxies at redshift  0.4 < z < 0.7  from the 2dF-SDSS (Sloan Digital Sky Survey) Luminous Red Galaxy (LRG) and QSO (quasi-stellar object) (2SLAQ) redshift survey. We investigate the evolution of the stellar populations and emission-line properties of these galaxies. By constructing composite spectra and comparing with a matched sample of radio-quiet sources from the same survey, we also investigate the effect on the galaxy of the presence of an active nucleus.
The composite spectra, binned by redshift and radio luminosity, all require two components to describe them, which we interpret as an old and a younger population. We found no evolution with redshift of the age of the younger population in radio galaxies, nor were they different from the radio-quiet comparison sample. Similarly, there is no correlation with radio power, with the exception that the most powerful radio sources  ( P 1.4 > 1026  W Hz−1) have younger stars and stronger emission lines than the less powerful sources. This suggests that we have located the threshold in radio power where strong emission lines 'switch on', at radio powers of around 1026 W Hz−1. Except for the very powerful radio galaxies, the presence of a currently active radio active galactic nucleus (AGN) does not appear to be correlated with any change in the observed stellar population of a luminous red galaxy at   z ∼ 0.5  .  相似文献   

20.
We identify eight   z > 1  radio sources undetected at 850 μm but robustly detected at 70 μm, confirming that they represent ultraluminous infrared galaxies (ULIRGs) with hotter dust temperatures  (〈 T d〉= 52 ± 10 K)  than submillimetre galaxies (SMGs) at similar luminosities and redshifts. These galaxies share many properties with SMGs: ultraviolet spectra consistent with starbursts, high stellar masses and radio luminosities. We can attribute their radio emission to star formation since high-resolution Multi-Element Radio Linked Interferometer Network (MERLIN) radio maps show extended emission regions (with characteristic radii of 2–3 kpc), which are unlikely to be generated by active galactic nucleus (AGN) activity. These observations provide the first direct confirmation of hot, dusty ULIRGs which are missed by current submillimetre surveys. They have significant implications for future observations from the Herschel Space Observatory and Submillimetre Common-User Bolometer Array 2 (SCUBA2), which will select high-redshift luminous galaxies with less selection biases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号