首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic response of a tunnel buried in a two-dimensional poroelastic soil layer subjected to a moving point load was investigated theoretically. The tunnel was simplified as an infinite long Euler–Bernoulli beam, which was placed parallel to the traction-free ground surface. The saturated layer was governed by Biot’s theory. Combined with the specified boundary conditions along the beam and saturated poroelastic layer, the coupled equations of the system were solved analytically in the frequency–wavenumber domain based on Fourier transform. The time domain responses were obtained by the fast inverse Fourier transform. The critical velocity of the considered structure was determined from the dispersion curves. The different dynamic characteristics of the elastic soil medium and the saturated poroelastic medium subjected to the underground moving load were investigated. It is concluded that, for coarse materials or fine materials subjected to the high-velocity loading, models ignoring the coupling effects between the pore fluid and the soil skeleton may cause errors. The shear modulus and the permeability coefficients of the saturated soil as well as the load moving velocity had significant influence on the displacement and pore pressure responses.  相似文献   

2.
An analytical approach is used to investigate dynamic responses of a track system and the poroelastic half-space soil medium subjected to a moving point load under three-dimensional condition. The whole system is divided into two separately formulated substructures, the track sub-system and the ground. The ballast supporting rails and sleepers is placed on the surface of the ground. The rail is modeled by introducing the Green function for an infinitely long Euler beam subjected to the action of the moving point load and the reaction of sleepers represented by a continuous mass. Using the double Fourier transform, the governing equations of motion are then solved analytically in the frequency–wave-number domain. The time domain responses are evaluated by the inverse Fourier transform computation for a certain load velocities. Computed results show that dynamic responses of the soil medium are considerably affected by the fluid phase as well as the load velocity.  相似文献   

3.
A simplified analytical model including the coupled effects of the wheel–rail–soil system and geometric irregularities of the track is proposed for evaluation of the moving train load. The wheel–rail–soil system is simulated as a series of moving point loads on an Euler–Bernoulli beam resting on a visco-elastic half-space, and the wave-number transform is adopted to derive the 2.5D finite element formulation. The numerical model is validated by published data in the literature. Numerical predictions of ground vibrations by using the proposed method are conducted at a site on the Qin-Shen Line in China.  相似文献   

4.
The use of ballastless slab track is significantly increasing in HST line technology. This development is due to some structural and operational advantages over ballasted track. In addition, floating slab tracks can be used to control ground-borne vibrations generated by surface and underground rail transportation systems. In this paper, a general and fully three dimensional multi-body-finite element-boundary element model is used to study vibrations due to train passage on ballast and non-ballast tracks. The vehicle is modelled as a multi-body system, the track, in both cases, using finite elements and the soil is represented using boundary elements. The three components of the load are considered; the quasi-static excitation (force generated by moving axle loads), the parametric excitation due to discrete supports of the rails and the excitation due to wheel and rail roughness and track unevenness. Track receptances are computed for both track systems and vibrations induced by high-speed train passage at the track and the free-field are evaluated for different train speeds. Soil behaviour changes significantly with the track system. Finally, a floating slab track is studied to show how this type of solution leads to a significant vibration reduction for surface tracks.  相似文献   

5.
王小岗 《地球物理学报》2009,52(8):2084-2092
基于孔隙介质的Biot理论,首先利用Laplace变换,给出圆柱坐标系下横观各向同性饱和弹性多孔介质在变换域上的波动方程;将波动方程解耦后,根据方位角的Fourier展开和径向Hankel变换,求解了Biot波动方程,得到以土骨架位移、孔隙水压力和土介质总应力分量的积分形式的一般解;借助一般解,建立了有限厚度饱和土层和饱和半空间的精确动力刚度矩阵,并由土层的层间界面连续条件建立三维非轴对称层状饱和地基的总刚度方程;在此基础上,系统研究了横观各向同性饱和半空间体在内部集中荷载激励下的动力响应,并给出了问题的瞬态解答.该研究为运用边界元法求解饱和地基动力响应奠定了理论基础.  相似文献   

6.
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot’s poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.  相似文献   

7.
Model testing in laboratory, as an effective alternative to field measurement, provides valuable data to understand railway׳s dynamic behaviors under train moving loads. This paper presents comprehensive experimental results on track vibration and soil response of a ballastless high-speed railway from a full-scale model testing with simulated train moving loads at various speeds. A portion of a realistic ballastless railway comprising slab track, roadbed, subgrade, and subsoil was constructed in a larger steel box. A computer-controlled sequential loading system was developed to generate equivalent vertical loadings at the track structure for simulating the dynamic excitations due to train׳s movements. Comparisons with the field measurements show that the proposed model testing can accurately reproduce dynamic behaviors of the track structure and underlying soils under train moving loads. The attenuation characteristics of dynamic soil stresses in a ballastless slab track is found to have distinct differences from that in a ballasted track. The model testing results provide better understanding of the influence of dynamic soil–structure interaction and train speed on the response of track structure and soils.  相似文献   

8.
The ground vibrations induced by a passenger train at the test site of Ledsgaard, Sweden, have been analysed and numerically simulated through a spectral element discretization of the soil. To calculate the spatial distribution of loading due to train passage, the train is decoupled from the track, and a suitable series of static forces is applied. The track and the embankment are modeled as a beam on elastic foundation, using analytical solutions for loads moving at constant velocity. The results of both 2D and 3D modelling assumptions are thoroughly discussed, in terms of prediction of track motion and of attenuation of peak ground velocity with distance.  相似文献   

9.
In this paper, the analytical layer-element method is utilized to analyze the plane strain dynamic response of a transversely isotropic multilayered half-plane due to a moving load. We assume that the studied system moves synchronously with the moving load, then the moving load relative to the moving system is considered to be motionless. Therefore, the vertical stress and the vertical displacement under the moving load need not update for the variation of the load position. Based on the governing equations of motion in the moving system, the analytical layer-element solutions for a finite layer and a half-plane in the Fourier transform domain are derived by using the algebraic operations in Ref. [7]. The global matrix of the problem can be obtained by assembling the analytical layer-elements of all layers. The corresponding solution in the frequency domain is further recovered by the inverse Fourier transform. Several examples are given to confirm the accuracy of the proposed method and to illustrate the influence of material properties.  相似文献   

10.
列车引起场地振动的建模需要能够表达地层的动力格林函数.本文兼顾饱和土的流固两相耦合性、场地土的分层性和波动的三维传播性,构建了半解析的场地动力格林函数.首先,基于Biot方程,在傅里叶变换域求解固体骨架和流体的位移和应力.然后采用传递矩阵方法建立地表位移和应力间的关系,得到格林函数矩阵.进而讨论矩阵的一些固有特征,提出改善竖向位移计算效率的措施.最后利用推导的格林函数计算了几个典型算例.数值结果与文献中其他方法得到的结果十分接近,与场地振动的现场观测试验基本符合.软土场地振动的计算结果高于饱和砂土场地,高速列车场地振动强度高于低速列车.当车速接近场地瑞利波速,模拟结果中显示出马赫锥.数值结果还显示,即使车速略低于瑞利波速,马赫锥也可能出现.本文推导的格林函数将有助于深入理解列车等移动激励作用下层状饱和土场地的振动特征.  相似文献   

11.
既有线提速是高速铁路发展的重要方向之一。本文主要对轨道路基在列车荷载作用下的动力响应规律进行了研究。首先,建立轨道系统在移动荷载作用下的动力响应理论分析模型,该模型将轨道结构视为连续支承欧拉梁,对ANSYS软件进行二次开发,实现了模型的数值分析;然后,建立直线段轨道数值分析模型,利用该模型分析了荷载速度、载重、不平顺波长、不平顺波深对既有线路提速200km/h客货共线直线段钢轨、轨枕的竖向位移及竖向加速度的影响。可为制定新的铁路养护技术规范提供技术参考。  相似文献   

12.
This paper examines stresses and excess pore fluid pressure that are induced in a saturated poroelastic soil of halfspace extent by a concentrated line load. The line load is moving at a constant velocity along the surface of the poroelastic halfspace. The governing equations for the proposed analysis are based on the Biot's theory of dynamics in saturated poroelastic soils. The governing partial differential equations are solved using Fourier transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of inverse Fourier transforms. The numerical results are obtained by performing the numerical inversion of the transform integrals. A parametric study is presented to illustrate the influences of the velocity of moving load and the poroelastic material parameters on the stresses and excess pore pressure. At a high velocity, the maximum values of the stresses in a poroelastic halfspace are smaller than those in an elastic solid, whilst at a low velocity the stresses in a poroelastic halfspace are larger than those in an elastic halfspace. The potential of diffusivity has an important influence on the stresses and excess pore pressure.  相似文献   

13.
A full 3D analytical approach is adopted to account for trenches on one or both sides close to a railroad. Low-frequency ground vibrations are investigated due to the passing of trains, and open trenches are used as wave barriers. The modelling technique is based on Fourier transforms and Fourier series. The ground is modelled as a layered semi-infinite domain and the embankment with finite layers. The trenches are obtained by simulating the upper surface layer with two or three finite rectangular regions with appropriate widths. A particular boundary condition is adopted at the vertical sides of all finite regions to enable the solution procedure. Rails and sleepers are accounted for with Euler–Bernoulli beams and an anisotropic Kirchhoff plate with transversal isotropy. The wheel loads from the boogie wheel pairs of the train are simulated as moving forces. Hence, no irregularities in rails or wheels are accounted for.  相似文献   

14.
Diagnosis and prediction of vibration from railway trains   总被引:7,自引:0,他引:7  
In the North West of France, more particularly in the region of the Somme Bay, where the ground is constituted mainly of peat, observation of the surface of the soil near railway tracks has revealed high levels of displacement. This paper, contains a prediction model and diagnosis of vibration near the track. A model of a railway track on layered ground subjected to a moving train has been built and the calculation method uses Fourier transform formalism for a semi-analytical solution in the wave number domain. It includes all elements of the track and allows a parametric analysis of its different elements and evaluation of vertical displacement according to the speed, weight and composition of each train. The diagnosis has been performed with in situ measurements and with the aim of the validation of the model. A parameter study of the ground undertaken by seismic measurements shows a critical speed close to 100 m/s while the studied trains are moving with sub-Rayleigh speeds. Measurements give us a lot of information about lateral and vertical acceleration on the soil's surface and parts of the track. For high speeds and freight trains, displacement reaches more than 10 mm.  相似文献   

15.
移动荷载下高速铁路轨道-路基的动位移分析   总被引:1,自引:0,他引:1       下载免费PDF全文
薛富春 《地震工程学报》2019,41(5):1105-1113
建立精细化的足尺轨道-路基-地基耦合系统非线性数值分析模型,考虑岩土材料的非线性应力-应变关系、路基填筑完成后的静应力状态对其后动力计算的影响、底座板底面与路基基床表层表面之间的动力相互作用,模拟轨道与路基系统的建造过程和与8辆编组动车组轮对相对应的荷载以350 km/h的速度的移动过程。结果显示,以实体单元模拟钢轨能获得更符合事实的钢轨空间振动响应,比采用梁单元更具优势;路基各层底面的动位移具有随时间和空间变化的特征;沿路基断面横向,不同时刻的竖向动位移在轨道板宽度范围内的最大波动值约0.04 mm,可认为均匀分布;沿深度方向,竖向动位移在不同时刻的分布相似,按照指数函数衰减,最大值约为0.8 mm,小于我国高速铁路3.5 mm的控制标准;沿线路纵向,竖向动位移峰值出现的位置与该时刻移动荷载所处的空间位置对应,在同一深度条件下,不同时刻的竖向动位移分布形态相似;基床底层底面以上,同一转向架上前后轮对对应的荷载引起的竖向动位移具有可观的叠加效应。  相似文献   

16.
Piled embankments, which offer many advantages, are increasingly popular in construction of high-speed railways in China. Although the performance of piled embankment under static loading is well-known, the behavior under the dynamic train load of a high-speed railway is not yet understood. In light of this, a heavily instrumented piled embankment model was set up, and a model test was carried out, in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train. Earth pressure, settlement, strain in the geogrid and pile and excess pore water pressure were measured. The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading. The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase. Accumulated geogrid strain has an increasing tendency after long-term vibration. The closer the embankment edge, the greater the geogrid strain over the subsoil. Strains in the pile were smaller under dynamic train loads, and their distribution was different from that under static loading. At the same elevation, excess pore water pressure under the track slab was greater than that under the embankment shoulder.  相似文献   

17.
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.  相似文献   

18.
A new transmitting boundary in a cylindrical coordinate system has been developed for modeling the elastic waves radiating out to an infinite boundary in water-saturated transversely isotropic soil strata over a rigid bedrock. The saturated soil strata are assumed to consist of a porous material and modeled as a transversely isotropic two-phase medium, based on the uU formulation. The newly developed transmitting boundary is combined with the finite-elements model of the near-field region, using the same uU formulation, and applied to the study of the dynamics of a rigid circular foundation in porous isotropic or transversely isotropic layered strata, either fully or partly saturated with water. The verification and application examples give valuable insights into new and interesting aspects of the dynamic behavior of rigid circular foundations in fully or partly saturated two-phase ground in terms of permeability, transverse anisotropy, and ground-water table level.  相似文献   

19.
A semi-analytic approach is presented for the three-dimensional analysis of ground vibrations induced by trains moving over elevated bridges. The train is modeled as two sets of moving loads, with one for the front wheels and the other for the rear ones, the elevated bridge as a series of elastically supported beams, and the ground as a viscoelastic half space. Three key elements are considered in the solution: (1) the analytic solution for the vibration of an elastically supported beam under a series of moving loads, (2) the impedance of the foundation–soil system, and (3) Green's function for an elastic half space under a harmonic point load. Such an approach allows us to consider the structural dynamics of the elevated bridge, the foundation–soil interaction, and the wave propagation characteristics in the half space. From the numerical examples studied, the proposed approach was demonstrated to be accurate and efficient. The framework of analysis described herein can be generalized to solve problems with complex foundations and layered soils.  相似文献   

20.
丁智  张涛  魏新江  张孟雅 《地震工程学报》2015,37(3):789-793,802
地铁循环荷载作用下饱和软黏土的动力特性研究对于揭示软黏土在地铁荷载下的孔压、强度以及变形模式具有重要意义,可以为控制地铁长期沉降、降低运营风险提供理论依据。试验加载形式的不同会带来不同的动力特性表征,需选取最能反映地铁列车真实性质的荷载形式。本文在列车荷载作用下研究土动力特性,采用室内动三轴试验的方法,对比分析不同形式下动力荷载作用效果。试验研究表明:偏压正弦波可以作为简化波形研究列车荷载,它不仅可以确保加载过程中地基土只有压应力,而且能较好地模拟列车循环荷载。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号