首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The Cambrian-Vendian groundwater body plays an important role in drinking water supply of capital Tallinn and other settlements in northern Estonia. Water quality in this deep-seated confined groundwater body is influenced by the intrusion of present-day seawater and pumping-induced upward migration of deeper saline groundwater. The aim of this study is to evaluate the threshold values applying the methodology worked out within the EU 6th FP project “Background criteria for the identification of groundwater thresholds (BRIDGE)” and to compare the results with the values proposed by local authorities. A database containing 250 monitoring points was completed and used for the calculation of natural background levels (as the 90 and 97.7 percentile) in groundwater. The calculation of threshold values is based on natural background levels and reference values. In case of Cambrian-Vendian groundwater body the receptor is drinking water, thus limit values set by Estonian drinking water standard were used as reference values. The threshold values proposed by local authorities are more or less the same as calculated by BRIDGE methodology. Exceptionally different values are derived in case of chloride and ammonium.  相似文献   

2.
In recent years, voices in Jordan became lauder to exploit the fresh to brackish deep groundwater overlain by fresh groundwater bodies. In this article the implications of such a policy on the existing fresh water bodies are worked out through studying the sources of salinity in the different aquifer systems and the potentials of salinity mobilization by artificial changes in the hydrodynamic regimes. It is concluded that extracting the groundwater of deep aquifers overlain by fresh water bodies, whether the deep groundwater is fresh to brackish, brackish or salty, is equivalent to extracting groundwater from the overlying fresh groundwater bodies because of the hydraulic connections of the deep and the shallow aquifers’ groundwaters. The consequences are even more complicated and severe because exploiting the deep groundwater containing brackish or salty water will lead to refilling by fresh groundwater leaking from the overlying aquifers. The leaking water becomes salinized as soon as it enters the pore spaces of the emptied deep aquifer matrix and by mixing with the deep aquifer brackish or saline groundwater. Therefore, the move to exploit the deep groundwater is misleading and damaging the aquifers and is unjust to future generation's rights in the natural wealth of Jordan or any other country with similar aquifers’ set-up. In addition, desalination produces brines with high salinity which cannot easily be discharged in the highlands of Jordan (with only very limited access to the open sea) because they will on the long term percolate down into fresh water aquifers.  相似文献   

3.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

4.
 This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl, Ca2+/Cl, Mg2+/Cl, and Br/Cl molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater. Received, May 1997 / Revised, May 1998, December 1998 / Accepted, February 1999  相似文献   

5.
Managing environmental problems in Cuban karstic aquifers   总被引:1,自引:0,他引:1  
The study area is located along the Dead Sea Rift, the climate is considered arid in its southern margin near the Dead Sea, which is the lowest water reservoir found on the globe (412 m BSL), to semiarid in its northern part. During the last few decades, the water resources became depleted limiting the natural development of the agricultural settlements, which are the most common type of communities in the region. Previous studies suggested that a large amount of freshwater is lost as the result of salinization processes, which occur when fresh groundwater from the mountain aquifers, flow into the saline clastic Neogene aquifer complex. In order to comprehend this complex system, a detailed outlining of the regional hydrogeological system is essential. Since there are no boreholes, which penetrate the aquiferous rock sequences within the Rift, it was necessary to interpolate a large variety of data from several fields of geosciences. The methods applied included geological mapping, geophysical modeling based on interpretation of seismic profiles and geochemical modeling based on chemical and isotopic analysis of runoff, sediments and groundwater. The combined modeling based on results from the different types of analyses implied to several conclusions relevant to the regional water management policy: (1) groundwater becomes saline as it flows from the margins of the Rift to its center. Therefore, it is recommended to exploit it along the foothills of the rift escarpment. (2) Geophysical modeling indicated that the foothills and the Karstic mountain aquifer extend into the subsurface of the valley and can be farther exploited (up to 15 mm3 per annum) by relatively shallow wells. (3) Several mechanisms of groundwater salinization were deciphered: (a) the dense vertical faulting systems act as potential conduits for saline water, which flow-up from deep-seated sources and penetrate into the fresh aquifers. (b) Fresh groundwater in the clastic aquifer complex is rare, furthermore, two evaporates bodies were encountered (Auja and Zaharat el Qurein), also acting as sources for fresh water salinization. (c) Although the quantity of runoff recharge to the Jordan Valley aquifer complex is negligible, the increase in its salt-content (TDS) turns this negligible freshwater recharge to a significant contributor of salts.  相似文献   

6.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

7.
Interpreting sustainable yield of an aquifer using a fuzzy framework   总被引:2,自引:0,他引:2  
Reliable estimates for how much water can be safely withdrawn from aquifers without harming the environment is crucial for identifying new water supply sources and fostering sustainable growth. Methodologies to estimate groundwater availability that are rooted in science and yet accomplishable with minimal data are particularly useful for effectual aquifer management. Also, as groundwater management is increasingly becoming a participatory process, these methodologies must be transparent and easily understood by a wide range of audiences. In addition, proposed approaches must also reconcile imprecision and uncertainties arising from lack of data, differences in stakeholders’ perceptions and limitations associated with incomplete aquifer characterization. In this study, the fundamental concept of water balance is coupled with fuzzy regression to develop a scheme for assessing regional-scale groundwater availability. Using the mass-balance approach, anthropogenic water demands (municipal, industrial and agricultural) and ecological demands (baseflows to rivers) can be incorporated into the availability estimation process. The use of fuzzy regression enables the specification of decision makers’ preferences to the adopted procedure and renders the parameter estimation to be more robust in the presence of extreme values. The methodology is illustrated by using it to estimate groundwater availability in the Gulf coast aquifer, underlying Refugio County, TX, USA.  相似文献   

8.
Wadi Zerka Ma’in catchment area is located to the north east of the Dead Sea. It has two types of aquifers: (a) an upper unconfined aquifer and (b) a lower confined aquifer. The two aquifers are separated by a marl aquiclude. A major strike slip fault passes perpendicularly through the two aquifers and the aquiclude layer with embedded normal faults. The aim of the study was to specify the effect of the major strike slip fault on the groundwater chemistry. The spatial variability of the hydrochemical compositions and physiochemical parameters of the groundwater were investigated. It was found that the embedded normal faults, of the strike slip fault, form conduits that allow groundwater to flow from the lower aquifer to the upper aquifer, resulting in mixed groundwater. The ratio of mixing was estimated to be 94 % groundwater from the upper aquifer and 6 % from the lower aquifer. Since groundwater in the lower aquifer is around three times more saline than the upper aquifer, water mixing into the upper water aquifer generates a salinity hazard.  相似文献   

9.
A proposal for an extended typology of groundwater habitats   总被引:1,自引:1,他引:0  
Many governments now require the ecological condition of groundwater ecosystems to be considered when making policy decisions. However, groundwater habitats and communities occur at different spatial scales to those at which aquifers are managed, making their inclusion in policy decisions difficult. A system of classifying groundwater ecosystems is needed to aid this, yet such a typology is currently not available. Here, a hierarchical model for a typology of groundwater habitats is suggested, which considers three spatial scales: macro, meso, and local. On a macroscale, communities are influenced by biogeographic characteristics; at a mesoscale they are influenced by the hydrogeological type of the aquifer; and on local scale by the hydrological exchange with surface water and hence the oxygen and nutrient supply. Consequently, groundwater habitats are assumed to be defined by biogeographic particularities, the hydrogeological aquifer type and by localized hydrological exchange with surface water. By adopting a ‘groundwater habitat typology’, groundwater biologists may be able to work with hydrogeologists to assist in the sustainable management of groundwater by predicting groundwater biodiversity and the distribution of important or endangered species. The typology proposed here is a first step towards achieving this goal.  相似文献   

10.
The effect of separation by aquitard layers on the distribution of saline groundwater in coastal aquifers has been demonstrated in two Israeli coastal aquifers: the Mediterranean and the Dead Sea aquifers. There is vertical separation in the Dead Sea area, even where the clayey aquitard layers are <1?m thick, exhibited by large differences in hydraulic head (2?C5?m), salinity (TDS of 50?C340?g/L) and chemical composition (e.g. Na/Cl range 0.28?C0.55). Similar features are found in the Mediterranean coastal aquifer, where the separating aquitard layers are thicker (??5?C10?m). Here, the different subaquifers host fresh and saline groundwater of different ages (tritium and 14C ages range from tens to thousands of years), as well as different chemical compositions. This high resolution of results can be obtained only by drilling without fluids; otherwise, the spatial information may lead to incorrect representation of the studied aquifer. This is especially important in saline systems where only partial flushing occurs and, thus, large variations in salinity and chemical composition are expected. The main factors controlling the salinity of groundwater in subaquifers in coastal aquifers are their connection to the sea or saline lakes, existence of brines, salinization and flushing rates, and separation by aquitard layers.  相似文献   

11.
Management of freshwater lenses on small Pacific islands   总被引:3,自引:0,他引:3  
The nature of shallow aquifers and the impacts of seawater intrusion in small islands within the Pacific Ocean are reviewed. Many Pacific islands rely on shallow fresh groundwater lenses in highly permeable aquifers, underlain and surrounded by seawater, as their principal freshwater source. It is argued here that, in small islands, the nature of fresh groundwater lenses and their host aquifers coupled with frequent natural and ever-present anthropogenic threats make them some of the most vulnerable aquifer systems in the world. A simple steady-state approximation is used to provide insight into the key climatic, hydrogeological, physiographic, and management factors that influence the quantity of, and saline intrusion into freshwater lenses. Examples of the dynamic nature of freshwater lenses as they respond to these drivers are given. Natural and human-related threats to freshwater lenses are discussed. Long dry periods strongly coupled to sea surface temperatures impact on the quantity and salinity of fresh groundwater. The vulnerability of small island freshwater lenses dictates careful assessment, vigilant monitoring, appropriate development, and astute management. Strategies to aid future groundwater sustainability in small islands are presented and suggested improvements to donor and aid programs in water are also advanced.  相似文献   

12.
The aim of the study was the determination of the natural background levels (NBLs) for the ions Na+, Cl?, SO4 2?, As3+, F?, Fe2+, and Mn2+, in some groundwater bodies of the Campania region (southern Italy). The ??Protocol to evaluate the natural background concentrations?? proposed in 2009 by ISPRA (Italian Institute for Environmental Protection and Research) has been applied to the chemical data set of groundwater of the examined groundwater bodies. These analyses have also been examined following the guidelines of the BRIDGE project (Background cRiteria for the IDentification of Groundwater thrEshold). These approaches to evaluate the Threshold Values (TVs) and the NBLs, based on probability distribution functions, have been applied in many countries by various authors during the last 5?years. Changes applied to ISPRA Protocol in this study concern mainly the preselection criteria, in particular threshold values of specific ions, deriving from the aquifers geochemical features. The preselection criteria of the ISPRA Protocol have been merged with those of the BRIDGE Project in order to define a procedure suitable for the definition of the NBLs in the examined aquifers. The NBL of fluoride for the ??Phlegrean Fields?? and the ??eastern Plain of Naples?? groundwater bodies shows values deeply exceeding the reference value (REF) of 1,500???g/L, ranging between 3,600 and 15,000???g/L. The cause of this very high fluoride content is in the natural features of the aquifers constituted by volcanic and pyroclastic rocks. The volcanic origin of the aquifers is also the reason for the high arsenic content in ??Phlegrean Fields?? groundwater. Here the NBL calculated was about 47???g/L against the drinking water standard value of 10???g/L. The widespread high content of manganese and iron for the groundwater body of the ??eastern Plain of Naples?? is due to the reducing conditions related to the extensive marshlands present in the past. The very high NBL of all the examined ions for the groundwater body of ??Ischia Island?? depends on the existence of a geothermal system.  相似文献   

13.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

14.
 Groundwater modelling studies have been found to be a potential tool in planning the pre-development management of groundwater resources in newly developing aquifer systems. One such study was attempted in Upper Thamalakane River valley, Okavango Delta, Botswana (southern Africa). There are three major aquifers separated by two aquitards in the valley portion. The top two aquifers are freshwater bearing zones and the bottom one is saline. The hydrological set-up of the basin is complex, as the groundwater flow directions are opposite in the upper-unconfined and in the lower-confined aquifers. A preliminary multilayer model was developed for this aquifer system by making use of only available data. The hydrodynamic behavior was then studied under two prediction scenarios to evolve appropriate management decisions for locating the well field (large diameter wells) in the upper aquifer by making use of induced river infiltration during the flood season. The aquifer response for variable river-flow conditions was studied and the induced river infiltration was quantified. Received: 27 August 1998 · Accepted: 8 March 1999  相似文献   

15.
Hydrogeochemical characteristics of groundwater in phreatic aquifers of Alleppey district were studied. Factor analysis has been applied to the chemical analysis data of 32 water samples collected from dug wells to extract the principal factors corresponding to the sources of variation in the hydrochemistry. 12 hydrochemical parameters were correlated and statistically examined. Varimax rotation was used to define the factor scores and percentage of variance in the hydrogeochemistry. A four-factor model is extracted and explains over 80.394% of the total groundwater quality variation. Factor-1 has high loading values of Electrical Conductivity (EC), Ca++, and Cl, and reflects the signature of saline water. Similarly strong correlation exists between F3 score and pH. The correlation coefficient matrix between EC and Na+, Cl, SO4−− is significant. The mineralogy of coastal aquifers and the marine aerosol are playing significant role in the hydrogeochemistry of groundwater in the phreatic aquifer system.  相似文献   

16.
Small islands groundwater are often exposed to heavy pumpings as a result of high demand for freshwater consumption. Intensive exploitation of groundwater from Manukan Island’s aquifer has disturbed the natural equilibrium between fresh and saline water, and has resulted increase the groundwater salinity and leap to the hydrochemical complexities of freshwater–seawater contact. An attempt was made to identify the hydrochemical processes that accompany current intrusion of seawater using ionic changes and saturation indices. It was observed that the mixing between freshwater–seawater created diversity in geochemical processes of the Manukan Island’s aquifer and altered the freshwater and seawater mixture away from the theoretical composition line. This explained the most visible processes taking place during the displacement.  相似文献   

17.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource.  相似文献   

18.
Concentration and isotope ratios (δ34SSO4 and δ18OSO4) of dissolved sulfate of groundwater were analyzed in a very large anaerobic aquifer system under the Lower Central Plain (LCP) (25,000 km2) in Thailand. Groundwater samples were collected in two different kinds of aquifers; type 1 with a saline water contribution and type 2 lateritic aquifers with no saline water contribution. Two different isotopic compositional trends were observed: in type 1 aquifers sulfate isotope ratios range from low values (+2.2‰ for δ34SSO4 and +8.0‰ for δ18OSO4) to high values (+49.9‰ for δ34SSO4 and +17.9‰ for δ18OSO4); in type 2 aquifers sulfate isotope ratios range from low values (−0.1‰ for δ34SSO4 and +12.2‰ for δ18OSO4) to high δ18OSO4 ratios (+18.4‰) but with low δ34SSO4 ratios (<+12.9‰). Isotopic comparison with possible source materials and theoretical geochemical models suggests that the sulfate isotope variation for type 1 aquifer groundwater can be explained by two main processes. One is the contribution of remnant seawater, which has experienced dissimilatory sulfate reduction in the marine clay, into recharge water of freshwater origin. This process accounts for the high salinity groundwater. The other process, explaining for the modest salinity groundwater, is the bacterial sulfate reduction of the mixture water between high salinity water and fresh groundwater. Isotopic variation of type 2 aquifer groundwater may also be explained by bacterial sulfate reduction, with slower reduction rate than that of the groundwater with saline water effect. The origin of groundwater sulfate with low δ34SSO4 but high δ18OSO4 is recognized as an important topic to be examined in a future investigation.  相似文献   

19.
 Saline/fresh water interface structure is one of the most important and basic hydrogeological parameter that needs to be estimated for studies related to coastal zone management, well-field design and understanding saline water intrusion mechanism/processes. The success and stability of a groundwater structure in a coastal region depend upon an accurate estimate of interface structure between saline and fresh water zones, aquifer-aquiclude boundaries and their lateral continuities and the interstitial water qualities of aquifers. Self-potential and resistivity logs provide a reasonably good basis for such estimates and for sustainable development of fresh groundwater resources. The interface depth structure for the Mahanadi delta region, as obtained and interpreted through self-potential and resistivity logs, provides a fairly clear picture of the regional extensions and boundaries of aquifers, aquicludes and interstitial water quality patterns. Aquifers in the northern sector of the basin and within the framework of Birupa and Mahanadi are characterized by an interface depth range that varies between 40 and 280 m below ground level (bgl) with brackish water on the top underlain by freshwater aquifers. The aquifers in the southern sector within the framework of Khatjori/Devi and Koyakhai/Daya/Kushbhadra/Bhargavi are characterized by an interface depth range that varies from 10 to 120 m with freshwater aquifers near the surface underlain by saline, brackish water aquifers. The inversion of these major fluid systems appears to have taken place over a narrow zone between Mahanadi and Khatjori tributaries, possibly over a wide subsurface ridge with separate basin characteristics. Received: 29 November 1999 · Accepted: 2 May 2000  相似文献   

20.
The Madrid Tertiary Detrital Aquifer is one of the largest and most important aquifers of Spain. This paper assesses the most relevant controls on the natural baseline quality and the dominant chemical processes within the aquifer. The hydrochemistry of the groundwater is variable despite the relative uniformity of the detrital sediments. The natural baseline is expressed as a range of values that are controlled by lithological and hydrological factors; spatial variations of groundwater chemistry are related to changes in rock type, water-rock interaction and the residence time of groundwater. The fundamental chemical processes within the Arkosic aquifer are hydrolysis of silicates, dissolution of carbonates, dissolution of evaporites (only in the vicinity of the transitional facies), ion exchange, neoformation of clays, precipitation of silica as cement, and precipitation of carbonates due to increasing temperature along the downward pathways. Some chemical and physico-chemical parameters like pH, dissolved oxygen, and hardness, and several elements like calcium, sodium, magnesium, silica, and arsenic show an evolutionary trend according to groundwater flow path. A gradual increase in arsenic concentration from recharge areas to discharge areas is observed; it is the main natural water constituent that deteriorates the quality of the fresh Madrid groundwater as a drinking water supply. The occasionally elevated arsenic concentrations originate from natural sources. The concentration and mobility of arsenic seems to be controlled by pH-dependent anion exchange processes resulting from the evolution to Na-HCO3 water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号