首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   

2.
Study of Late Cretaceous lacustrine sedimentary strata in the eastern Songliao Basin, China revealed that the paleoclimate was relatively arid and hot during sedimentation of the upper Santonian of the Yaojia Formation, but became relatively humid and warm during deposition of the lower Campanian Nenjiang Formation. The upper Yaojia Formation was deposited in a freshwater lake environment, while the lower Nenjiang Formation was deposited in a slightly brackish to brackish environment. The average total organic carbon content in the upper Yaojia Formation is 0.15%, while the hydrogen index is 36 mgHC/gTOC, implying poor source rock for oil generation and the organic matter comprised of a mixture of woody and herbaceous organic matter. In contrast, the hydrogen index of oil shale and black shale of the lower Nenjiang Formation is 619 mgHC/gTOC, and total organic carbon content on average is 3.37%, indicating a mixed algae and herbaceous source of kerogen and an increase in aquatic bioproductivity. The black shale and oil shale have low Pristane/Phytane and C29 5α,14α,17α(H) ? stigmastane 20R/(20R + 20S) ratios, with maximum concentration of n‐alkanes at n‐C23, implying an anoxic depositional environment with algae, bacteria and higher plants providing most of the organic matter. Relatively abundant gammacerane and a higher Sr/Ba ratio in the oil shales suggest the presence of brackish water and development of salinity stratification in the lake. During sedimentation of the upper Yaojia through the lower Nenjiang Formations, the level of Songliao lake increased and a deep‐lake environment was formed with bottom waters being oxygen depleted. Concomitantly, as the lake deepened bottom conditions were changing from oxic to anoxic, and the input of organic matter changed from predominantly higher plants to a mixture of bacteria, algae and higher plants providing favorable conditions for oil source rock accumulation.  相似文献   

3.
The Eagle Ford Shale of Central and South Texas is currently of great interest for oil and gas exploration and production. Laboratory studies show that the Eagle Ford Shale is anisotropic, with a correlation between anisotropy and total organic carbon. Organic materials are usually more compliant than other minerals present in organic‐rich shales, and their shapes and distribution are usually anisotropic. This makes organic materials an important source of anisotropy in organic‐rich shales. Neglecting shale anisotropy may lead to incorrect estimates of rock and fluid properties derived from inversion of amplitude versus offset seismic data. Organic materials have a significant effect on the PP and PS reflection amplitudes from the Austin Chalk/Upper Eagle Ford interface, the Upper Eagle Ford/Lower Eagle Ford interface, and the Lower Eagle Ford/Buda Limestone interface. The higher kerogen content of the Lower Eagle Ford compared with that of the Upper Eagle Ford leads to a negative PP reflection amplitude that dims with offset, whereas the PS reflection coefficient increases in magnitude with increasing offset. The PP and PS reflection coefficients at the Austin Chalk/Upper Eagle Ford interface, the Upper Eagle Ford/Lower Eagle Ford interface, and the Lower Eagle Ford/Buda Limestone interface all increase in magnitude with increasing volume fraction of kerogen.  相似文献   

4.
The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago   总被引:1,自引:1,他引:1  
A suit of oil shales, predominated by black argillaceous silicalite and finely laminated black-brown shale, has been discovered in a set of carbonaceous-siliceous mudstone formations (350 m in thickness) in the third member of Xiamaling Formation of the Upper Proterozoic Qingbaikou Series (900―873 MaBP), Xiahuayuan, Hebei Province, China. The oil shale, combustible with strong bitumen odour, has su- per-high TOC contents ranging from 21.4% to 22.9%, bitumen “A” contents from 0.58% to 0.88% and oil length from 5.29% to 10.57%. The ultrathin section observation of the shale and the identification of its kerogen demonstrate that its hydrocarbon-generative parent material is mainly benthonic Rhodophyta whose specific tetrasporangia are legible and abundant. It is rarely reported in the literature that such a hydrocarbon-generative parent material, composed mainly of Rhodophyta and with extraordinarily high contents of TOC and bitumen “A”, developed into a set of high-quality source rocks. The extracts of the oil shale are characteristic of richness in 17α(H)-diahopanes and n-alkyl tricyclic terpenoids but low in steranes. Such a biomarker feature is obviously different from that of the extracts from other Proterozoic marine carbonate source rocks of the studied area. Since the biological constitution of this oil shale is rather simple, it is clear that these biomarkers most likely represent to certain extent the specific mo- lecular constitutions of the benthonic Rhodophyta identified in the ultrathin sections of the samples. Studies on its lithologic association and depositional sequences suggest that this suit of the carbona- ceous-siliceous mudstone formation, which contains oil shales, was probably developed in an under- compensation deep-bay environment when a maximum transgression occurred during the formation of the third member of Xiamaling Formation. The high concentration of SiO2 in this organic-rich rock and the positive correlation between TOC and some trace elements such as P, Cu, Ni, W and Mo indicate that this suit of rocks was affected by activities of bottom thermal currents as deposited.  相似文献   

5.
基于时频电磁法的富有机质页岩层系勘探研究   总被引:2,自引:0,他引:2       下载免费PDF全文
我国地质条件复杂、多样,能否充分发挥出非地震勘探技术成本低、效率高的技术优势,检验电法勘探技术在页岩气勘探中的有效性,是当前在页岩气勘探起步阶段亟待解决的重要问题之一.本文介绍了在研究和总结含气页岩密度、极化率、电阻率等岩石物理特征基础上,在四川盆地南部筠连地区开展的物性调查、时频电磁法勘探试验工作.勘探研究结果表明,本地区分布的富有机质页岩层系-志留系龙马溪组(S1l)具备开展电法勘探工作的物性条件,时频电磁法具有勘探富有机质页岩层系的能力.  相似文献   

6.
Shales comprise more than 60% of sedimentary rocks and form natural seals above hydrocarbon reservoirs. Their sealing capacity is also used for storage of nuclear wastes. The world's most important conventional oil and gas reservoirs have their corresponding source rocks in shale. Furthermore, shale oil and shale gas are the most rapidly expanding trends in unconventional oil and gas. Shales are notorious for their strong elastic anisotropy, i.e., so‐called vertical transverse isotropy. This vertical transverse isotropy, characterised by a vertical axis of invariance, is of practical importance as it is required for correct surface seismic data interpretation, seismic to well tie, and amplitude versus offset analysis. A rather classical paradigm makes a clear link between compaction in shales and the alignment of the clay platelets (main constituent of shales). This would imply increasing anisotropy strength with increasing compaction. Our main purpose is to check this prediction on two large databases in shaly formations (more than 800 samples from depths of 0–6 km) by extracting the major trends in the relation between seismic anisotropy and compaction. The statistical analysis of the database shows that the simultaneous increase in density and velocity, a classical compaction signature, is quite weakly correlated with the anisotropy strength. As a consequence, compaction can be excluded as a major cause of seismic anisotropy, at least in shaly formations. Also, the alignment of the clay platelets can explain most of the anisotropy measurements of both databases. Finally, a method for estimating the orientation distribution function of the clay platelets from the measurement of the anisotropy parameters is suggested.  相似文献   

7.
8.
Gas shales with a high gas content were drilled in the Lower Cambrian Lujiaping Formation in the northeastern Sichuan Basin,close to the Chengkou Fault in the Dabashan arc-like thrust fold belt.The equivalent vitrinite reflectance values of organic matters are over 4.0%Ro.The pore structures of the shales were investigated based on microscopy,field emission scanning electron microscopy(FESEM)observations,and low temperature N2 adsorption analysis.The study suggests that cleavages,comprising clay minerals mixed up with organic matter and other insoluble residues,were developed in the rock layers.The clay minerals are directionally arranged,displaying a mylonitized texture.Abundant nanometer-size organic matter and clay mineral particles are well mixed in the cleavage domains,which developed the mylonitized pore system that consists of nanometer-size intergranular pore spaces,aggregate pore spaces in clay mineral flakes and pore network.This mylonitized pore system has high specific surface area,high methane adsorption capacity,and high capillary pressure,which collectively contributes to the preservation of shale gas in such a complex tectonic area.The discovery of the mylonitized pore structure in organic-rich shales may reveal a new mechanism of shale gas enrichment in complex tectonic areas with over-mature organic matter in the northeastern part of Sichuan Basin.  相似文献   

9.
Zou  Caineng  Yang  Zhi  Sun  Shasha  Zhao  Qun  Bai  Wenhua  Liu  Honglin  Pan  Songqi  Wu  Songtao  Yuan  Yilin 《中国科学:地球科学(英文版)》2020,63(7):934-953
The Sichuan Basin is rich in shale oil and gas resources, with favorable geological conditions that the other shale reservoirs in China cannot match. Thus, the basin is an ideal option for fully "exploring petroleum inside source kitchen" with respect to onshore shale oil and gas in China. This paper analyzes the characteristics of shale oil and gas resources in the United States and China, and points out that maturity plays an important role in controlling shale oil and gas composition. US shale oil and gas exhibit high proportions of light hydrocarbon and wet gas, whereas Chinese marine and transitional shale gas is mainly dry gas and continental shale oil is generally heavy. A comprehensive geological study of shale oil and gas in the Sichuan Basin reveals findings with respect to the following three aspects. First, there are multiple sets of organic-rich shale reservoirs of three types in the basin, such as the Cambrian Qiongzhusi Formation and Ordovician Wufeng Formation-Silurian Longmaxi Formation marine shale, Permian Longtan Formation transitional shale, Triassic Xujiahe Formation lake-swamp shale, and Jurassic lacustrine shale. Marine shale gas enrichment is mainly controlled by four elements: Deep-water shelf facies, moderate thermal evolution, calcium-rich and silicon-rich rock association, and closed roof/floor. Second, the "sweet section" is generally characterized by high total organic carbon, high gas content, large porosity, high brittle minerals content, high formation pressure,and the presence of lamellation/bedding and natural microfractures. Moreover, the "sweet area" is generally characterized by very thick organic-rich shale, moderate thermal evolution, good preservation conditions, and shallow burial depth, which are exemplified by the shale oil and gas in the Wufeng-Longmaxi Formation, Longtan Formation, and Daanzhai Member of the Ziliujing Formation. Third, the marine, transitional, and continental shale oil and gas resources in the Sichuan Basin account for 50%, 25%, and 30% of the respective types of shale oil and gas geological resources in China, with great potential to become the cradle of the shale oil and gas industrial revolution in China. Following the "Conventional Daqing-Oil"(i.e., the Daqing oilfield in the Songliao Basin) and the "Western Daqing-Oil Gas"(i.e., the Changqing oilfield in the Ordos Basin), the Southwest oil and gas field in the Sichuan Basin is expected to be built into a "Sichuan-Chongqing Daqing-Gas" in China.  相似文献   

10.
Koichi  Aoyagi Mamoru  Omokawa 《Island Arc》1993,2(4):273-279
Abstract Various siliceous rocks are found in the Ohdoji, Akaishi and Maido Formations from the western Aomori basin, and the Yotsuzawa and Wadagawa Formations from the eastern Aomori basin of northern Honshu, Japan. These rocks are classified into diatomite, siliceous shale and chert.
Diatomite is composed of abundant amorphous silica and has porosity between 50 and 65%. Siliceous shale is composed of a large amount of quartz, and has porosity ranging from 25 to 35%. Chert is chiefly composed of cristobalite or quartz, and has porosity between 20 to 30%.
Average contents of total organic carbon, S1 and S2 generally increase from argillaceous rocks → diatomites → siliceous shales → cherts. Maturation of organic matter in these rocks is generally lower than that in average source rocks. Diatoms, which appeared in the late Cretaceous and became increasingly important in the Miocene, are the principal primary producers of organic matter in the marine environment during the Cenozoic. Excellent organic components and higher biological productivity show that diatoms might be the most important source of petroleum during the Neogene in Japan.
Proteins, carbohydrates and lipids in diatoms have been transformed into fulvic acids, humic acids and humin by polycondensation and polymerization. Later, these humin materials could be changed into insoluble kerogen under the effect of mild temperature and pressure. A part of the lipids would transform to geochemical fossils (biomarkers). Amorphous silica in cells of diatoms would change to low-cristobalite and low-quartz by the increase of geothermal temperature.  相似文献   

11.
There are different sulfur forms in the black shales from the Early Cambrian of the Yangtze platform. With its emphasis on pyrite and organosulfur, this paper discusses their distribution and formation. The research shows that sulfur phases take regular variations laterally as well as vertically in the research areas. In western researched profile with high terrigenous supply at the time it formed, there exists a larger amount of pyrite and less organosulfur, and pyrite amount declines while organosulfur content increases upwards along the profile. This black shale profile is characterized by relatively light sulfur isotope composition with evolution trend of becoming heavier both for pyrite and organosulfur from bottom to top along the profile. Opposite situation occurs in eastern profiles which were located farther away from terrigenous land. Here pyrite amount obviously decreases and organic matter has combined more sulfur, although these two kinds of sulfur species take similar trend in content variation along profiles to that for western profile. At the same time more34S is accumulated in sulfur species of black shale samples from eastern profile, and sulfur isotope composition gradually turns lighter from bottom to top. In combination with other information of iron, organic carbon contents and petrographic features, it can be established that sea-level change, supply of terrigenous matters, tectonic background and natures of paleoceanic chemistry have exerted great influence on the distribution of sulfur species in these black shales.  相似文献   

12.
Shales play an important role in many engineering applications such as nuclear waste, CO2 storage and oil or gas production. Shales are often utilized as an impermeable seal or an unconventional reservoir. For both situations, shales are often studied using seismic waves. Elastic properties of shales strongly depend on their hydration, which can lead to substantial structural changes. Thus, in order to explore shaly formations with seismic methods, it is necessary to understand the dependency of shale elastic properties on variations in hydration. In this work, we investigate structural changes in Opalinus shale at different hydration states using laboratory measurements and X-ray micro-computed tomography. We show that the shale swells with hydration and shrinks with drying with no visible damage. The pore space of the shale deforms, exhibiting a reduction in the total porosity with drying and an increase in the total porosity with hydration. We study the elastic properties of the shale at different hydration states using ultrasonic velocities measurements. The elastic moduli of the shale show substantial changes with variations in hydration, which cannot be explained with a single driving mechanism. We suggest that changes of the elastic moduli with variations in hydration are driven by multiple competing factors: (1) variations in total porosity, (2) substitution of pore-filling fluid, (3) change in stiffness of contacts between clay particles and (4) chemical hardening/softening of clay particles. We qualitatively and quantitatively analyse and discuss the influence of each of these factors on the elastic moduli. We conclude that depending on the microstructure and composition of a particular shale, some of the factors dominate over the others, resulting in different dependencies of the elastic moduli on hydration.  相似文献   

13.
A large number of primary oil and gas reservoirs have been discovered in Proterozoic strata all over the globe.Proterozoic sequences are widely distributed in China, and the discovery of large Sinian-aged gas reservoirs in the Sichuan Basin and Mesoproterozoic liquid oil seepages in North China shows that attention should be paid to the exploration potential of Proterozoic strata. In this paper, the main controlling factors of Proterozoic source rocks are discussed. Principally, active atmospheric circulation and astronomical cycles may have driven intense upwelling and runoff to provide nutrients; oxygenated oceanic surface waters could have provided suitable environments for the organisms to thrive; volcanic activity and terrestrial weathering caused by continental break-up would have injected large amounts of nutrients into the ocean, leading to persistent blooms of marine organisms; and extensive anoxic deep waters may have created ideal conditions for the preservation of organic matter. Additionally, the appearance of eukaryotes resulted in diversified hydrocarbon parent material, which effectively improved the generation potential for oil and gas. Through the comparison of Formations across different cratons, seven sets of Proterozoic organic-rich source rocks have been recognized in China, which mainly developed during interglacial periods and are also comparable worldwide. The Hongshuizhuang and Xiamaling Formations in North China have already been identified previously as Mesoproterozoic source rocks. The early Proterozoic Changchengian System is highly promising as a potential source rock in the Ordos Basin. In the Upper Yangtze area, the Neoproterozoic Datangpo and Doushantuo Formations are extensively distributed, and represent the major source rocks for Sinian gas reservoirs in the Sichuan Basin. Moreover, the Nanhuan System may contain abundant shales with high organic matter contents in the Tarim Basin, although this possibility still needs to be verified. Indeed, all three cratons may contain source rocks of Proterozoic strata; thus, these strata represent major exploration targets worthy of great attention.  相似文献   

14.
烃源岩的定量地震刻画对于勘探开发区块的优选、盆地油气资源量的估算都具有重要意义.陆相沉积环境下的浅湖或半深湖相的烃源岩横向变化快,其空间展布需要依靠钻井约束下的反射地震进行刻画,但是其地震弹性特征与岩性和有机质含量的映射关系呈现高度非线性化,因而很难利用传统基于地震岩石物理模型驱动的烃源岩地震预测方法进行有效刻画.本文...  相似文献   

15.
页岩中的TOC(Total Organic Carbon,总有机碳)含量,对页岩的有效弹性模量以及与之相关的弹性波速度(P波和S波)有重要影响,建立弹性模量与TOC含量关系是页岩气甜点预测的重要手段之一.CS和SM两种固体置换理论主要针对孔隙度较大的砂岩,能否适用于孔隙度低、孔隙形态复杂和非均质性强的页岩目前尚未深入研究.鉴于目前已知的富有机质页岩的TOC赋存形态与裂缝以及孔隙形态类似,有关TOC含量对岩石弹性模量的影响可视为孔隙物质充填问题来研究.本文利用数字岩心技术,构造同一数字岩心不同TOC含量的样本群,基于CS和SM两种固体替换理论模型,通过有限元(FEM)数值模拟交叉验证,详细研究了两种固体替换方程对页岩的适用性和TOC含量对页岩弹性性质的影响.研究表明,由于实际岩心孔隙及TOC分布的非均质性,CS替换方程弹性模量预测值与FEM模拟结果存在差异,而SM替换方程预测值与FEM模拟结果基本一致,两种方程的预测差异揭示页岩非均质强度,利用SM替换方程中的参数α_1,α_2,β_1和β_2可详细分析实际岩心孔隙及TOC分布的非均质特征.  相似文献   

16.
油页岩勘探开发现状及进展   总被引:1,自引:0,他引:1  
油页岩是当今世界热门的非常规油气资源。受石油危机的影响,全球寻找替代能源的脚步不断加快。继美国凭借页岩气革命逆转其天然气长期依赖进口的局面之后,多个国家包括中国越来越重视油页岩这一清洁型的接替能源。本文对油页岩勘探开发现状及进展进行了详细阐述:1油页岩是一种高灰分、有机质含量丰富的未成熟烃源岩,沉积环境有陆相、湖相以及海相三种,其矿床类型可分为近海型和内陆湖泊型;2油页岩在世界范围内储量丰富,美国是油页岩储量最多的国家,中国的油页岩资源也十分丰富,但可采储量明显低于探明储量;3在测井响应方面,油页岩具有低密度、高电阻率、高声波时差及高自然伽玛的特点,主要识别方法有log R重叠法、电阻率法、密度测井法等;4油页岩地震识别方法主要包括甜点属性预测法以及基于岩石物理模型的正反演有机质含量预测法;5油页岩主要对含油率进行评价,可使用的方法包括干馏法、测井评价法和岩石热解法;6页岩油开采是油页岩勘探开发的难点,主要技术包括干馏、原位开采和热转换加工技术等。研究结果对了解油页岩的特征、发展动态、关键技术以及进一步推动油页岩勘探开发具有一定的借鉴作用。  相似文献   

17.
Differential compaction has long been used by seismic interpreters to infer subsurface geology using knowledge of the relative compaction of different types of sediments. We outline a method to infer the gross fraction of shale in an interval between two seismic horizons using sandstone and shale compaction laws. A key component of the method involves reconstruction of a smooth depositional horizon by interpolating decompacted thicknesses from well control. We derive analytic formulae for decompaction calculations using known porosity–stress relations and do not employ discrete layer iterative methods; these formulae were found to depend not only upon the gross fraction of shale but also on the clay content of the shales and the thickness of the interval. The relative merits of several interpolation options were explored, and found to depend upon the structural setting. The method was successfully applied to an oil sands project in Alberta, Canada.  相似文献   

18.
More above-ground biomass (kg m−2) grows in the northern Appalachian Mountains (USA) in forests on shale than on sandstone at all landscape positions other than ridgetops. This has been tentatively attributed to physical (rather than chemical) attributes of the substrates, such as elevation, particle size, and water capacity. However, shales have generally similar phosphorus (P) concentrations to sandstones and, in the Valley and Ridge province, they erode more quickly. This led us to hypothesize that faster replenishment of the lithogenic nutrient P in shale soils through erosion + soil production could instead control the differences in biomass. To test this, soils and foliage from 10 sites on shales and sandstones in the northern Appalachians from roughly the same elevation and aspect were analysed. We discovered that, when controlling for location, concentrations of bioavailable P in soils and P in foliage were higher and P resorbed from senescing red oak leaves was lower on slower-eroding sandstone than on faster-eroding shale. Lower resorption generally can be attributed to lower P limitation for trees. Further investigation of weathering and erosion on one of the sandstone–shale pairs within a larger, paired watershed study revealed that the differences in P concentrations in biomass and foliage between lithologies likely developed because sandstones act as ‘collectors’ that trap nutrients from residual and exogenous sources, while shales erode quickly and thus promote production of soil from bedrock that releases P to ecosystems. We concluded that the combined effects of differential rates of dust collection and erosion results in roughly equal biomass growing on sandstone and shale ridgetops. This work emphasizes the balance between a landscape's capacity to collect dust versus produce soil in controlling bioavailability of nutrients.  相似文献   

19.
As a relatively stable craton block in the earth system, the petroliferous basin is influenced by the evolution of the earth system from the early development environment of source rocks, hydrocarbon formation, and reservoir dissolution to hydrocarbon accumulation or destruction. As a link between the internal and external factors of the basin, deep fluids run through the whole process of hydrocarbon formation and accumulation through organic-inorganic interaction. The nutrients carried by deep fluids promote the bloom of hydrocarbon-generating organisms and extra addition of carbon and hydrogen source, which are beneficial to the development of high-quality source rock and enhancement of the hydrocarbon generation potential. The energy carried by the deep fluid promotes the early maturation of the source rock and facilitates the hydrocarbon generation by activation and hydrogenation in high-mature hydrocarbon sources. The dissolution alteration of carbonate rocks and clastic reservoirs by CO_2-rich deep fluids improves the deep reservoir space, thus extending the oil and gas reservoir space into greater depth. The extraction of deeply retained crude oil by deep supercritical CO_2 and the displacement of CH_4 in shale have both improved the hydrocarbon fluidity in deep and tight reservoirs. Simultaneously, the energy and material carried by deep fluids(C, H, and catalytic substances) not only induce inorganic CH_4 formation by Fischer-Tropsch(F-T) synthesis and "hydrothermal petroleum" generation from organic matter by thermal activity but also cause the hydrothermal alteration of crude oil from organic sources. Therefore, from the perspective of the interaction of the earth's sphere, deep fluids not only input a significant amount of exogenous C and H into sedimentary basins but also improve the reservoir space for oil and gas, as well as their enrichment and accumulation efficiencies.  相似文献   

20.
The shales of the Qiongzhusi Formation and Wufeng–Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann’s equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号