首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

2.
Fe and Cu skarn deposits constitute the most important skarn type worldwide, whereas the controlling factors that lead to the difference in metal associations remain not well known. The Fe- and Cu-hosting Tieshan complex in the Edong district provides a good opportunity for comparative study on the genetic differences between Fe and Cu skarn deposits. In this study, integrated studies of geochronology, geochemistry and Sr-Nd-Hf isotope compositions were conducted on the complex. LA-ICP-MS zircon U-Pb dating results show that the Tieshan complex was emplaced in the time interval of 135 ± 3 to 144 ± 1 Ma. Multiphase rocks from the complex can be broadly subdivided into two suites. The Fe-Cu-related suite, which consists of diopside diorite, quartz diorite, quartz diorite porphyrite and porphyritic granodiorite, possesses low SiO2 (53.5–67.1 wt.%), K2O (2.44–3.53 wt.%) and Rb (45−83 ppm) contents, but high Sr (1132−2684 ppm), Ba (1073−1656 ppm) contents and negligible Eu anomalies, with very high Sr/Y (>90) ratios, similar to typical high Ba-Sr granitoids. The rock suite has initial 87Sr/86Sr values of 0.70648 to 0.70737, εNd(t) values of −12.3 to −8.2 and εHf(t) values of −16 to −7, comparable to values of the Early Cretaceous mafic rocks in the Edong district and adjacent areas, indicating that it might be largely derived from an enriched lithospheric mantle source, along with minor involvement of lower-crustal components. By contrast, the Fe-related suite, which is composed of quartz diorite, quartz diorite porphyrite and granodiorite porphyry, is characterized by relatively high SiO2 (63.0–71.0 wt.%) and K2O contents (3.36–5.53 wt.%), and a wide range of Sr (158−1135 ppm), Ba (762−1366 ppm) contents and Sr/Y (11–99) ratios. In combination with the presence of abundant inherited zircon grains, the lower εNd(t) (−12.4 to −9.3) and εHf(t) (−25 to −15) values indicate a greater degree of lower-crustal contribution for the Fe-related suite. In addition, the calculated zircon Ce (Ce/Ce* and Ce4+/Ce3+) and Eu (Eu/Eu*) anomalies suggest that the Fe-Cu-related suite has much higher oxygen fugacity (fO2) than the Fe-related suite. This study highlights fO2 and fractionation degree of magma as useful indicators for differentiating Fe and Cu skarn mineralization.  相似文献   

3.
Petrochemical studies on acid plutonic (granite, microgranite) and volcanic (rhyolite, trachyte) rocks occurring in the Siner area of the Siwana Ring Complex, Malani Igneous Suite have been carried out. These rocks are characterized by high concentrations of SiO2, Na2O, K2O, Zr, Nb, Y and REE (except Eu) but low in MgO, Fe2O3(t), CaO, Cr, Ni, Sr; indicating their A-type affinity. Field studies in conjunction with the geochemical characteristic indicate that the magmatism in the Siner area is generally represented by peralkaline suite of rocks which are formed due to rift tectonics. It is also suggested that these acidic rocks could have been derived by low degree partial melting of crustal material. Characteristics of certain pathfinder elements such as Rb, Ba, Sr, K, Zr, Nb, REE and the ratios of K/Rb, Zr/Rb, Ba/Rb along with the multi elemental primitive mantle normalized spidergrams suggest that the Siner peralkaline granites and microgranites have the potential for rare metal and rare earth mineralizations.  相似文献   

4.
The Rb–Sr and 147Sm–143Nd age data obtained for sheeted dolerite dykes and rocks of the Platinum Belt of the Urals within the Tagil segment of the paleoceanic spreading structure (Middle Urals) are discussed. The study of the Rb–Sr isotope systematics of gabbro allowed us to reveal errochronous dependencies, which yielded ages of 415 and 345 Ma at (87Sr/86Sr)0 = 0.70385 ± 0.00068 and 0.7029 ± 0.0010, correspondingly. The 147Sm–143Nd isotope age data demonstrate a specific coincidence of the chronometric ages of the sheeted dolerite dyke complex (426 ± 54, 426 ± 34, and 424 ± 19 Ma) and gabbro from the Revda gabbro–ultramafic massif (431 ± 27 Ma) and from screens between dolerite dykes in the sheeted dyke complex (427 ± 32 Ma, 429 ± 26 Ma). The proximity of the 147Sm–143Nd ages of gabbro and dolerite can be explained by the thermal effect of the basaltic melt, which is the protolith for the dyke complex, on the hosting gabbro.  相似文献   

5.
Rocks enriched in iron oxide and mafic silicates are commonly present as minor volumes of Proterozoic anorthosite complexes. In the Laramie Range, Wyoming, anorthositic rocks, gabbros, and iron oxide ore have been chemically analyzed to determine if the spatial association is a result of genetic relationships between the rock types.Variations in abundances of REE, Th, Sc, and Sr in whole-rock and in mineral separates from anorthositic rocks provide evidence for the presence of trapped intercumulus liquid. Initial 87Sr/86Sr ratios in apatites separated from iron oxide ore (0.70535±0.00004) are analogous to initial 87Sr/86Sr ratios in Laramie Range anorthosite (0.70531 and 0.70537). In addition, REE abundances in calculated parental liquids for both anorthositic rocks and iron ore are similar, providing further evidence for a comagmatic relationship.Trace element and textural characteristics of spatially associated Laramie Range gabbros indicate that they are not mixtures of the trapped liquid and cumulus components which formed anorthositic rocks. It is suggested that gabbros are early differentiation products of a high-Al gabbroic magma which subsequently crystallized large volumes of plagioclase to produce the anorthosite massif.  相似文献   

6.
The Eastern Ghats Granulite Belt (EGGB) forms part of a continuous Precambrian metamorphic terrain in Gondwana. It is characterised by widespread development of an Archaean khondalite suite of metasedimentary rocks, Archaean to Late-Proterozoic charnockites and Late Proterozoic anorthositic, granitic and syenitic emplacements. A 1900 Ma megacrystic granitoid suite, containing varying proportions of charnockites and granites, forms an important and widely distributed litho-unit in the central khondalite and eastern migmatite zones of the EGGB. It contains metasedimentary enclaves, megacrystic K-feldspar, quartz, plagioclase ovoids, biotite, garnet (porphyroblasts and coronas), apatite, zircon, ilmenite, magnetite, etc. Hypersthene is present in the charnockite phase. Monazite is present in some garnet-free granites. It is characterised by low Na2O/K2O ratios, high alumina saturation index, CaO, MgO, and ÝREE, negative correlation of TiO2, Al2O3, Fe2O3t, MgO, MnO, CaO, P2O5, Ba, Sr, Zr and V with SiO2, positive correlation of K2O, REE, Th and Rb with SiO2, fractionated LREE, relatively flat HREE and negative Eu anomalies.The data suggest S-type nature of the suite. Fractionation of the granitic magma and local variations in pH2O and fCO2 caused the formation of megacrystic charnockites. Formation of the corona garnet is related to the reworking of the suite during late Proterozoic (ca. 1250 Ma) isothermal decompression associated with channelised CO2-rich fluid flux along narrow shear zones.  相似文献   

7.
Geochemistry and origin of massif-type anorthosites   总被引:2,自引:0,他引:2  
Samples of Proterozoic anorthosite complexes from the Adirondack Mountains of New York, Burwash Area of Ontario, and the Nain Complex of Labrador, ranging in composition from anorthosite to anorthositic gabbro, have been analyzed for major elements, Rb, Sr, Ba and nine rare-earth elements (REE), in order to set limits on the compositions and origins of their parent magmas. Similar rock types from the different areas have similar major and trace element compositions. The anorthosites have high Sr/Ba ratios, low REE abundances (Ce about 10, Yb about 0.5–1.5 times chondrites) and large positive Eu anomalies. The associated anorthositic gabbros have lower Sr/Ba ratios, REE abundances nearly an order of magnitude higher than the anorthosites, and small to negligible positive Eu anomalies.Model calculations using the adcumulate rocks with the lowest REE abundances and published distribution coefficients yield parent liquids having REE abundances and patterns similar to those of the associated anorthositic gabbros with the highest REE abundances. Rocks with intermediate REE abundances are the result of incorporation of a liquid component by a plagioclase-rich cumulate similar to the adcumulate samples. The analytical data and model calculations both suggest parent liquids having compositions of 50–54% SiO2, greater than 20% Al2O3, about 1% K2O, atomic Mg/(Mg+Fe2+) ratios (Mg No.'s) of less than 0.4, 15–30 ppm Rb, 400–600 ppm Sr and 400–600 ppm Ba, 40–50 times chondrites for Ce and 8–10 times chondrites for Yb.The low atomic Mg/(Mg+Fe2+) values for these rocks combined with geophysical evidence suggesting there are not large quantities of ferromagnesian material at depth, indicate that the anorthositic masses are not products of fractional crystallization of mafic melt derived from melting of the mantle. Rather, it is suggested that they are a result of partial melting of tholeiitic compositions at depths shallower than the basalt-eclogite transformation, leaving a pyroxene-dominated residue.  相似文献   

8.
The Paleozoic granitoids of the Sierra de San Luis comprise the Ordovician tonalite suite (OTS; metaluminous to mildly peraluminous calcic tonalite–granodiorites) and granodiorite–granite suite (OGGS; peraluminous calcic to calc-alkaline granodiorite–monzogranites), as well as the Devonian granite suite (DGS; peraluminous alkali-calcic monzogranites) and monzonite–granite suite (DMGS; metaluminous alkali-calcic quartz monzonite–monzogranite ± granodiorite, mildly peraluminous alkalicalcic monzogranites). The OTS has relatively high K2O, CaO, and YbN and low Cr, Ni, Ba, Sr, Rb/Sr, Sr/Y, and (La/Yb)N, as well as negative Eu/Eu1, high 87Sr/86Sr (0.70850–0.71114), and unradiogenic εNd(470Ma) (−5.3 to −6.0), which preclude an origin of variably fractionated mantle melts and favour a mafic lower crustal source. The OGGS consists of two granitoids: (1) high-temperature characterized by low Al2O3/TiO2, Rb/Sr, and (La/Yb)N, a smooth negative Eu/Eu1, and relatively high CaO and (2) low-temperature with high Al2O3/TiO2 and Rb/Sr, low CaO, (La/Yb)N, and Sr/Y, and negative Eu/Eu1. Melting of metagreywackes at pressures below 10 kbar with a variable supply of water could account for the chemistry of the high-T OGGS, whereas dehydration melting of biotite-bearing metasedimentary sources at low pressures is proposed for the low temperature OGGS. Melting of crustal sources relates to a contemporaneous mafic magmatism.Devonian magmatism is characterized by high Ba, Sr, K2O, Na2O, Sr/Y, and (La/Yb)N. Sources for the DGS include metasedimentary or metatonalitic protoliths. Biotite dehydration melting triggered by the addition of heat, supplied by mantle-derived magmas, is proposed. High Ba, Sr, LREE, MgO, Cr, Ni, Zr, and V of the monzonites suggest an enriched lithospheric mantle source. Low Yb and Y and high Sr and (La/Yb)N indicate a garnet-rich residual assemblage (P  10 kbar). Melts for the peraluminous rocks may have derived from a metasedimentary or metaigneous source at lower pressures in a process dominated by biotite consumption and plagioclase in the residue.The Ordovician granitoids are synkinematic with compressive deformation related to the early stages of Famatinian convergence. The Devonian magmatism is synkinematic with a system of shear zones that were active during the Achalian cycle.  相似文献   

9.
The Lukinda dunite–troctolite–gabbro massif in the Selenga–Stanovoy superterrane on the southeastern framing of the Siberian Platform was earlier considered Precambrian. The performed 40Ar/39Ar dating of the massif plagioclase yielded an Early Permian age (285 ± 7.5 Ma). The main specific petrochemical features of the intrusion rocks during their crystallization differentiation are an increase in SiO2 and CaO contents and a decrease in FeOtot content, with TiO2 content remaining low and showing minor variations. A specific geochemical feature of the Lukinda massif ultrabasite–basites is a slight domination of LREE over HREE, with (La/Yb)N= 1.0–8.2. The depletion of the massif rocks in LILE (except for Sr and Ba), REE, and HFSE suggests that the massif formed on an active continental margin.  相似文献   

10.
佳木斯地块位于东北亚早前寒武纪陆块,区内变质岩系发育,是重要的晶质石墨富集地带。文章通过对佳木斯地块典型的萝北云山和鸡西柳毛石墨矿床含矿岩石进行SHRIMP锆石U-Pb年龄测定,结果表明:变质锆石和碎屑锆石207Pb/206Pb年龄分别为(1855±5)~(1979±13)Ma和(476±9)~(575±12)Ma。通过地球化学特征分析,萝北云山石墨矿和鸡西柳毛石墨矿含矿岩石富集Rb、Ba等大离子亲石元素和Zr、Hf、Th、U、Nb、Ta等高场强元素,含矿岩石Rb/Sr平均值均高于陆壳值0.24,表明循环沉积作用较弱;Sr/Ba比值较低,表明岩浆来源于陆壳重熔,显示以陆源物质为主;V/Cr平均值为4.58,V/(Ni+V)平均值为0.90,显示弱还原环境;两处典型矿床轻稀土元素含量均高于重稀土元素,萝北云山矿床负Eu异常明显,显示陆棚浅海沉积特征,鸡西柳毛矿床正Ce异常明显,显示海源物质为主的浅海沉积特征。研究区混合花岗岩脉的稀土元素配分曲线具有正Eu异常,显示出外来岩浆热液交代岩石特征。因此,佳木斯地块典型石墨矿床含矿岩石在古元古代晚期经受区域性高温高压变质作用,后经过早古生代强烈的泛亚构造作用,在构造岩浆侵入背景下进一步增生形成巨晶鳞片状石墨。  相似文献   

11.
Voluminous granitoids are widely distributed in the Langshan region, northeast of the Alxa block, and record the evolutionary processes of the southern Central Asian Orogenic Belt. The Dabashan pluton was emplaced into the Paleoproterozoic Diebusige complex. Early Carboniferous zircon LA-ICP MS U-Pb ages were from 327 Ma to 346 Ma. The Dabashan pluton can be classified as monzogranite and syenogranite, and exhibits high K2O contents and K2O/Na2O ratios, which reveal a high-K calc-alkaline nature. The samples display strongly fractionated REE patterns, and are enriched in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). The Dabashan plutons display unusually high Ba (823–2817 ppm) and Sr (166–520 ppm) contents and K/Rb ratios (315–627), but low Rb/Ba ratios (0.02–0.14), and exhibit fertile zircon Hf isotopic compositions [εHf(t)=?14 to ?20], which are comparable to those of typical high Ba–Sr granitoids. Based on the geochemical compositions of the samples, we suggest that subducted sediments and ancient crustal materials both played important roles in their generation. Basaltic melts were derived from partial melting of subcontinental lithophile mantle metasomatized by subducted sediment-related melts with residual garnet in the source, which caused partial melting of ancient lower crust. Magmas derived from underplating ascended and emplaced in the middle–upper crust at different depths. The resultant magmas experienced some degree of fractional crystallization during their ascent. Given these geochemical characteristics, together with regional tectonic, magmatic, and structure analysis data, an active continental margin environment is proposed for the generation of these rocks.  相似文献   

12.
The Kooh-Shah region located in a Tertiary volcanic-plutonic belt of the Lut Block in eastern Iran comprises several subvolcanic intermediate to acidic intrusive rocks, diorite to syenite in composition, which have intruded into volcanic rocks. The Kooh-Shah granitoid rocks are characterized by enrichment in large ion-lithophile elements (LILE: e.g. Sr, Ba, Rb) and depletion in high field-strength elements (HFSE: e.g. Nb, Ta, Ti). The chondrite-normalized REE patterns are characterized by moderate LREE enrichment (La/Yb)N=6.01-10.01, medium-heavy REE enrichment, and absence of Eu anomalies. The Kooh-Shah intrusive rocks are metaluminous, shoshonitic with calc-alkaline affinity and high values of magnetic susceptibility, and classified as the magnetite-series of oxidant I-type granitoids. The age of Kooh-Shah granitoid rocks based on zircon U-Pb age dating is 39.7±0.7 Ma (=Middle Eocene) and the ranges of their initial 87Sr/86Sr and 143Nd/144Nd ratios are from 0.704812 to 0.704920 and 0.512579 to 0.512644, respectively, when recalculated to an age of 39 Ma. The initial ?Nd isotope values for the Kooh-Shah intrusive rocks range from -0.18 to 1.09. This geochemical data indicates that the Kooh-Shah granitoid rocks formed from depleted mantle in an island arc setting. The geochemical signature of the studied granitoid rocks represents a characteristic guide for future exploration of copper-gold porphyry-type deposits in the Lut block.  相似文献   

13.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

14.
Zircon dating, geochemical and Nd-Sr isotopic analyses have been determined for samples from two granitic intrusions in the Talate mining district, Chinese Altay. Our data suggest that these intrusions were emplaced from 462.5 Ma to 457.8 Ma. These rocks have strong affinity to peralumious S-type granite and are characterized by prominent negative Eu anomalies(δEu=0.20–0.35), strong depletion in Ba, Sr, P, Ti, Nb, Ta and positive anomalies in Rb, Th, U, K, La, Nd, Zr, Hf. Nd-Sr isotopic compositions of the whole rock show negative εNd(t) values(-1.21 to-0.08) and Mesoproterozoic Nd model ages(T2 DM=1.20–1.30 Ga). Their precursor magmas were likely derived from the partial dehydration melting of Mesoproterozoic mica-rich pelitic sources and mixed with minor mantle-derived components, under relatively low P(≤1 kbar) and high T(746–796°C) conditions. A ridge subduction model may account for the early Paleozoic geodynamic process with mantle-derived magmas caused by Ordovician ridge subduction and the opening of a slab window underplated and/or intraplated in the middle–upper crust, which triggered extensive partial melting of the shallow crust to generate diverse igneous rocks, and provided the heat for the crustal melting and juvenile materials for crustal growth.  相似文献   

15.
位于长江中下游的宣城水东地区发育一套酸性火山岩,主要由流纹质角砾岩、流纹岩和珍珠岩组成。本文对该套火山岩进行了详细的锆石U-Pb年代学、主量元素、微量元素以及Nd-Hf同位素研究。LA-ICP MS锆石U-Pb定年结果显示3种岩性的火山岩年龄分别为133.2±0.8、133.4±0.8和131.5±0.9 Ma。主量元素组成上,这套酸性火山岩具高硅(72.51%~81.79%)、富钾(K_2O/Na_2O=2.04~14.93,平均6.72)、贫钙镁(Ca O=0.19%~1.57%,Mg O=0.06%~0.29%)的特征,属于弱过铝质(A/CNK=1.02~1.24)的高钾钙碱性-钾玄岩系列岩石。微量元素方面,轻重稀土元素分馏明显[(La/Yb)_N=5.43~9.17],具明显的负铕异常(Eu/Eu~*=0.44~0.60),富集大离子亲石元素(LILE)Rb、Th、K和Pb等,亏损Ba、Sr、Nb、P和Ti等元素,表现出壳源的特征。全岩Sr-Nd和锆石Hf同位素组成变化范围相对较小,(~(87)Sr/~(86)Sr)_i为0.707 3~0.708 8,εNd(t)值为-7.05~-5.56,εHf(t)为-8.6~-1.3。结合区域地质研究成果,认为宣城水东地区酸性火山岩可能是在约135 Ma古太平洋板块俯冲作用之后的伸展-拉伸环境下,由新元古代早期新生地壳重熔而成。  相似文献   

16.
Mafic dikes and sheets rich in Fe, Ti-oxides and apatite are commonly associated with Proterozoic massif anorthosites and are referred to as oxide-apatite gabbronorites (OAGN). Within the Adirondacks, field evidence indicates that during middle to late stages of anorthositic evolution, these bodies were emplaced as magmas with unspecified liquid-crystal ratios. Sixty whole rock analyses of Adirondack OAGN and related rocks define continuous oxide trends on Harker variation diagrams (SiO2=37–54%). Similar trends exist for Sr, Y, Nb, Zr, and REE and together suggest a common origin via fractional crystallization. A representative parental magma (plagioclase-rich crystal mush) has been chosen from this suite, and successive daughter magmas have been produced by removal of minerals with compositions corresponding to those determined in actual rocks. Least squares, mass balance calculations of major element trends indicate that removal of intermediate plagioclase (An40–50) plus lesser amounts of pyroxene account for the compositional variation of this suite and produce very low sums of the squares of the residuals (R2 s>0.25). The extracted mineral phases correspond volumetrically and compositionally to those of the anorthositic suite, and the model succeeds in accounting for the observed OAGN trends. The major element model is utilized to calculate trace elejent concentrations for successive magmas, and these agree closely with observation. We conclude that, beginning with a plagioclase-rich crystal mush, the extraction of intermediate plagioclase (An40–50) drives residual magmas to increasingly Fe-, Ti-, and P-rich and SiO2-poor conditions characteristic of Fenner-type fractionation. The crystallization sequence is plagioclaseplagioclase+orthopyroxeneplagioclase+orthopyroxene (pigeonite)+augite. Fe, Ti-oxides begin to crystallize near the end of the sequence and are followed by apatite and fayalitic olivine which appears in place of pigeonite. Augitic pyroxene becomes the dominant ferromagnesian phase in late stages of fractionation. Resultant OAGN magmas are injected into congealed anorthosite by filter pressing of liquid-rich interstitial fractions. Varying compositions of the dikes reflect filter pressing at different stages during fractionation and thereby provide information on the fractionation history of Proterozoic massif anorthosites.  相似文献   

17.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

18.
Rocks of the northeast portion of the Colorado mineral belt form two petrographically, chemically and geographically distinct rock suites: (1) a silica oversaturated granodiorite suite; and (2) a silica saturated, high alkali monzonite suite. Rocks of the granodiorite suite generally have Sr contents less than 1000 ppm, subparallel REE patterns and initial 87Sr/ 86Sr ratios greater than 0.707. Rocks of the monzonite suite are restricted to the northeast part of the mineral belt, where few rocks of the granodiorite suite occur, and generally have Sr contents greater than 1000 ppm, highly variable REE patterns and 87Sr/86Sr initial ratios less than 0.706.Despite forming simple, smooth trends on major element variation diagrams, trace element data for rocks of the granodiorite suite indicate that they were not derived from a single magma. These rocks were derived from magmas having similar REE patterns, but variable Rb and Sr contents, and Rb/Sr ratios. The preferred explanation for these rocks is that they were derived by partial melting of a mixed source, which yielded pyroxene granulite or pyroxenite residues.The monzonite suite is chemically and petrographically more complex than the granodiorite suite. It is subdivided here into alkalic and mafic monzonites, and quartz syenites, based on the textural relations of their ferromagnesian phases and quartz. The geochemistry of these three rock types require derivation from separate and chemically distinct magma types. The preferred explanation for the alkalic monzonites is derivation from a heterogeneous mafic source, leaving a residue dominated by garnet and clinopyroxene. Early crystallization of sphene from these magmas was responsible for the severe depletion of the REE observed in the residual magmas. The lower Sr content and higher Rb/Sr ratios of the mafic monzonites requires a plagioclase-bearing source.The Sr-isotope systematics of the majority of these rocks are interpreted to be largely primary, and not the result of crustal contamination. The positive correlation of Rb/Sr and 87Sr/86Sr ratios for the least fractionated samples indicate that the sources from which parent magmas of both the granodiorite and monzonite suites were derived are Precambrian in age.  相似文献   

19.
陕西省西南部铧厂沟火山岩以英安岩为主(~ 90vol%),夹玄武岩构造透镜体(~ 10vol%).玄武岩SiO2含量为43.6% ~ 54.7%,具有低K、Ti,高Na、Mg的特征;稀土总量为24×10-6 ~29×10-6,中稀土轻微富集,Eu、Sr轻微正异常;具有正Rb、Ba异常及负Nb、Zr异常,LaN/YbN值为1.81 ~2.87,Th/Yb值为0.19 ~0.23,Th/Nb值为0.11 ~0.20,Nb/La值为0.26~0.70,Hf/Th值为0.50 ~ 0.67,显示亚碱性弧玄武岩的特征.英安岩SiO2含量为59.5%~ 72.3%,稀土总量较低(116×10-6~187 × 10-6),为右倾式配分模式,Eu负异常,富集大离子亲石元素(如Rb、Ba、Th、K等),亏损高场强元素(如Nb、P、Ti、Ta等),显示弧火山岩地球化学特征.获得玄武岩的锆石SHRIMP U-Pb年龄为801.7±4.7Ma (MSWD=1.18;n=12),英安岩的锆石LA-ICP-MS U-Pb年龄为802.1±5.3Ma (MSWD=1.02;n=19),二者在误差范.内一致.因此,铧厂沟火山岩是一套火山弧环境的亚碱性玄武质-英安质火山岩组合,表明新元古代曾有大洋板块向南俯冲到扬子古板块北缘之下;这套火山岩裹挟于泥盆系沉积地层中,与泥盆系地层一起,共同组成了一套由晚古生代-三叠纪勉略洋闭合所致的构造混杂岩带.  相似文献   

20.
《International Geology Review》2012,54(16):1885-1905
Late Mesozoic granitoid plutons of four distinct ages intrude the lower plate of the Hohhot metamorphic core complex along the northern margin of the North China craton. The plutons belong to two main groups: (1) Group I, deformed granitoids (148 and 140 Ma subgroups) with high Sr, LREE, and Na2O, low Y and Yb contents, high Sr/Y and La/Yb ratios, weak or no Eu anomalies, low Rb/Ba ratios, similar initial 87Sr/86Sr values (0.7064–0.7071) and low Mg# (<37 mostly, 100?×?molar MgO/MgO + FeO t ); (2) Group II, non-deformed granitoids (132 and 114 Ma subgroups) with low Sr, relatively low Na2O, high Y and Yb contents, pronounced negative Eu anomalies, high Rb/Ba ratios, and initial 87Sr/86Sr values (0.7098–0.7161). The two groups share geochemical similarities in ?Nd(t) (–11.3 to –15.4) and T DM2 ages (1.85–2.18 thousand million years) as well as Hf isotopic ratios in zircons. Geochemical modelling (using the MELTS code) suggests that similar sources but different depths of magma generation produced the early, high-pressure low-Mg adakitic granitoids and late, low-pressure granitoids with A-type characteristics. The early granitoids likely represent a partially melted, deep-seated, thickened lower continental crust that involved a minor contribution from young materials, whereas the later group partially melted at shallower depths. This granitic magmatic evolution coincided with the tectonic transition from crustal contraction to extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号