首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the broad impact and importance of saltwater intrusion in coastal aquifers, little research has been directed towards forecasting saltwater intrusion in areas where the source of saltwater is uncertain. Saline contamination in inland groundwater supplies is a concern for numerous communities in the southern US including the city of Deltona, Florida. Furthermore, conventional numerical tools for forecasting saltwater contamination are heavily dependent on reliable characterization of the physical characteristics of underlying aquifers, information that is often absent or challenging to obtain. To overcome these limitations, a reliable alternative data-driven model for forecasting salinity in a groundwater supply was developed for Deltona using the fast orthogonal search (FOS) method. FOS was applied on monthly water-demand data and corresponding chloride concentrations at water supply wells. Groundwater salinity measurements from Deltona water supply wells were applied to evaluate the forecasting capability and accuracy of the FOS model. Accurate and reliable groundwater salinity forecasting is necessary to support effective and sustainable coastal-water resource planning and management. The available (27) water supply wells for Deltona were randomly split into three test groups for the purposes of FOS model development and performance assessment. Based on four performance indices (RMSE, RSR, NSEC, and R), the FOS model proved to be a reliable and robust forecaster of groundwater salinity. FOS is relatively inexpensive to apply, is not based on rigorous physical characterization of the water supply aquifer, and yields reliable estimates of groundwater salinity in active water supply wells.  相似文献   

2.
Saltwater intrusion is generally related to seawater-level rise or induced intrusion due to excessive groundwater extraction in coastal aquifers. However, the hydrogeological heterogeneity of the subsurface plays an important role in (non-)intrusion as well. Local hydrogeological conditions for recharge and saltwater intrusion are studied in a coastal groundwater system in Vietnam where geological formations exhibit highly heterogeneous lithologies. A three-dimensional (3D) hydrostratigraphical solid model of the study area is constructed by way of a recursive classification procedure. The procedure includes a cluster analysis which uses as parameters geological formation, lithological composition, distribution depth and thickness of each lithologically distinctive drilling interval of 47 boreholes, to distinguish and map well-log intervals of similar lithological properties in different geological formations. A 3D hydrostratigraphical fence diagram is then generated from the constructed solid model and is used as a tool to evaluate recharge paths and saltwater intrusion to the groundwater system. Groundwater level and chemistry, and geophysical direct current (DC) resistivity measurements, are used to support the hydrostratigraphical model. Results of this research contribute to the explanation of why the aquifer system of the study area is almost uninfluenced by saltwater intrusion, which is otherwise relatively common in coastal aquifers of Vietnam.  相似文献   

3.
Saltwater intrusion in coastal regions of North America   总被引:7,自引:3,他引:4  
Saltwater has intruded into many of the coastal aquifers of the United States, Mexico, and Canada, but the extent of saltwater intrusion varies widely among localities and hydrogeologic settings. In many instances, the area contaminated by saltwater is limited to small parts of an aquifer and to specific wells and has had little or no effect on overall groundwater supplies; in other instances, saltwater contamination is of regional extent and has resulted in the closure of many groundwater supply wells. The variability of hydrogeologic settings, three-dimensional distribution of saline water, and history of groundwater withdrawals and freshwater drainage has resulted in a variety of modes of saltwater intrusion into coastal aquifers. These include lateral intrusion from the ocean; upward intrusion from deeper, more saline zones of a groundwater system; and downward intrusion from coastal waters. Saltwater contamination also has occurred along open boreholes and within abandoned, improperly constructed, or corroded wells that provide pathways for vertical migration across interconnected aquifers. Communities within the coastal regions of North America are taking actions to manage and prevent saltwater intrusion to ensure a sustainable source of groundwater for the future. These actions can be grouped broadly into scientific monitoring and assessment, engineering techniques, and regulatory approaches.  相似文献   

4.
Saltwater intrusion in coastal aquifers depends on the distribution of hydraulic properties, on the climate, and on human interference such as land reclamation. In order to analyze the key processes that control saltwater intrusion, a hypothetical steady-state salt distribution in a representative cross-section perpendicular to the coastline was calculated using a two-dimensional density-dependent solute transport model. The effects of changes in groundwater recharge, lowering of drainage levels, and a rising sea level on the shape and position of the freshwater/saltwater interface were modeled in separate simulations. The results show that the exchange of groundwater and surface water in the marsh areas is one of the key processes influencing saltwater intrusion. A rising sea level causes rapid progression of saltwater intrusion, whereas the drainage network compensates changes in groundwater recharge. The time scale of changes resulting from altered boundary conditions is on the order of decades and centuries, suggesting that the present-day salt distribution does not reflect a steady-state of equilibrium.  相似文献   

5.
The Lei-Qiong Depression Zone, near the Leizhou Peninsula in southern China, consists of unconsolidated sediments of 500-3,000 m thickness. Groundwater occurs in a multi-aquifer system in the Leizhou Peninsula. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge mainly through subterranean drainage into the sea. Artificial pumping for drinking and agricultural purposes is another way of groundwater discharge. Groundwater development along the coast faces the threat of seawater intrusion. A quasi-three-dimensional finite element model, containing 457 nodes and 833 elements, has been used to simulate the spatial and temporal distribution of groundwater levels in the three-aquifer system. Verification of various aquifer parameters and boundary conditions was performed with the simulation model. Linear programming models have been developed for groundwater exploitation within the two confined aquifers. The objective function of the models is to maximize the total groundwater pumpage from the confined aquifers. Control of seawater intrusion is examined by restricting the water levels at points along the coast and the withdrawal rates in coastal management cells. A response matrix approach was used in the optimization models. The response matrix was obtained from the simulation model by forecasting drawdown produced by pumping at a unit impulse discharge. Groundwater development in the Leizhou Peninsula can be primarily optimized by allocating the pumping rates of the management cells.  相似文献   

6.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

7.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

8.
Groundwater depletion and seawater intrusion constitute major challenges along coastal aquifers in arid areas. This paper assesses the role of groundwater recharge dams constructed to replenish aquifers and fight seawater intrusion with reference to AlKhod dam, Oman, sited 7 km from the coast on a gravely unconfined aquifer. Water table rise in piezometers located downstream from the dam shows regular patterns correlating with magnitude of wadi flow, whereas upstream piezometers show irregular patterns. Controlled release of water captured by the dam optimizes water percolation and enhances artificial recharge which was estimated in the wet years 1997, 2003 and 2005 as 15, 22 and 27 Mm3, respectively, using water table fluctuation method. Recharge contributed 40–60 % of the total annual abstraction. Groundwater salinity increased in the 1980s and 1990s and the saline/freshwater interface advanced inland, but has receded partially after 1997 (highest rainfall) and completely after 2005 indicated by reduction in electrical conductivity and thickening of freshwater lens. The recession is attributed to the dam’s induced recharge and reduction of pumping in 2004 following the commissioning of Barka desalination plant. Integrating artificial recharge with groundwater resources management is therefore an effective measure to replenish aquifers in arid areas and mitigate seawater intrusion along the coasts.  相似文献   

9.
Groundwater preservation comprises a major problem in water policy. The comprehension of the groundwater/hydraulic systems can provide the means to approach this problem. Generally, drilling is expensive and time-consuming. On the other hand, new techniques have been applied during the last few decades that provide useful information on the depth and quality of aquifers. Among them, transient electromagnetic method (TEM) is an appealing method that provides fast results with minimum field crew and solves several hydrogeological problems. Many portable systems for single-site measurements are commercially available. The TEM-Fast 48HPC was used for acquiring 106 soundings in the northwestern Crete in Greece for defining the hydrogeological characteristics of the study area, since there were no available data from boreholes. Detailed geological, hydrolithological and tectonic survey was applied prior to the geophysical measurements. All the data were integrated to produce a secure and reliable hydrogeological model for the study area prior to any future hydrowell. Specifically, geometrical and hydraulic data of the study area groundwater were acquired. Two unconnected aquifers were detected and their possible contamination due to saltwater intrusion was analyzed and eliminated. Moreover, a location for borehole construction and groundwater pumping based on the potential of the aquifer system was proposed. Finally, the contribution of TEM (and electrical resistivity tomography) geophysical methods in studying complex coastal aquifers is shown by this work.  相似文献   

10.
Giese  Markus  Barthel  Roland 《Hydrogeology Journal》2021,29(7):2313-2328
Hydrogeology Journal - During the past few years, the number of regional and national assessments of groundwater quality in regard to saltwater intrusion in coastal aquifers has increased steadily....  相似文献   

11.
Water is a vital resource for the survival of not only human population, but also almost all ecosystems. Constituting 30 % of all freshwater, groundwater is the main source of available freshwater. Coastal aquifers, which serve as the major freshwater source for densely populated zones, are of vital importance and quite vulnerable to climate change. This paper examines the significant consequences of climate change, decreasing recharge rates, sea-level rise and increasing freshwater demand on the sustainable management of coastal aquifers, via a hypothetical case study. A 3-D numerical model is developed using SEAWAT, to simulate a circular island aquifer in the form of a freshwater lens surrounded by saltwater. Issues such as sloping land surface resulting in landward migration of the coastal boundary and transient response of the system due to pumping are considered through a set of predictive simulations. To assess the sensitivity of the model results to important parameters, a sensitivity analysis is performed. Results of this research, revealing the effects of mentioned pressures on the long-term sustainability of the freshwater resource, are evaluated on the basis of groundwater reserves and intrusion of the freshwater–saltwater interface in lateral and vertical directions. These outcomes are further used to determine the sustainable pumping rate of the system, considering both quantity and quality of the groundwater resources.  相似文献   

12.
Optimal Groundwater Development in Coastal Aquifers Near Beihai, China   总被引:1,自引:0,他引:1  
INTRODUCTIONThe city of Beihai,located on the south coast ofGuangxi,China,relies heavily on groundwater for its potablewater supply and agricultural irrigation.With rapid increasein population (for instance,from 134 0 0 0 in 1987to 47930 0in1995 ) and in developm ent program s,the demand for freshwater has been growing. Approxim ately 170 0 0 0 m3/ d ofgroundwater has been pumped from the productive coastalaquifers in recent years.Contamination of the fresh water inthe coastal aquifers b…  相似文献   

13.
海水入侵研究现状与展望   总被引:13,自引:0,他引:13  
李国敏  陈崇希 《地学前缘》1996,3(2):161-168
文中讨论了海水入侵的研究进展:海岸带海水入侵界面或过渡带的模拟,海岛地下淡水透镜体的动力学研究,井孔在界面或过渡带上部抽水所引起的升锥问题以及岸边地下水位动态研究及海平面变化对海水入侵的影响。海水入侵研究经历了从理想假定到合理概化,从室内实验模型、理想模型到数值模型这一过程。数值方法已成为模拟和求解海水入侵问题的最有力工具,海水入侵的过渡带模型成为主要的研究方向。分析了研究中存在的困难,展望了海水入侵研究的未来趋势:边界条件确定,水文地质参数选取,含水层结构估计,海水入侵输运与化学作用的耦合以及海水入侵预报。  相似文献   

14.
Groundwater suitability for agriculture in an island with limited recharge area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for oil palm cultivation at the ex-promontory land of Carey Island in Malaysia. This is the first study that used the integrated method of geo-electrical resistivity and hydro-geochemical methods to investigate seawater intrusion to the suitability of groundwater for oil palm cultivation at two different land cover condition. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour conductivity maps show that area facing severe coastal erosion and area still intact with mangrove forest exhibits unsuitable groundwater condition for oil palm at the unconfined aquifer thickness of 15 and 31 m, respectively. Based on local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), the condition in the study area, especially in severe erosion area, by the twenty-first century will no longer be suitable for oil palm plantation. The application of geo-electrical method combined with geochemical data, aided with the information on environmental history and oil palm physiography, has demonstrated that the integration of techniques is an effective tool in defining the status of agricultural suitability affected by salinity at the coastal aquifer area.  相似文献   

15.
Groundwater sustainability assessment in coastal aquifers   总被引:1,自引:0,他引:1  
The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and specific yield estimated from the existing database range from 10 to 810 m 2/day and 0.08% to 10.92% respectively. After successful calibration with Nash–Sutcliffe efficiency greater than 0.80, the values of horizontal hydraulic conductivity and specific yield of the unconfined aquifer were set in the range 1.85–61.90 m/day and 0.006–0.24 respectively. After validating the model, it is applied for forecasting the aquifer’s response to anticipated future scenarios of groundwater draft, recharge rate and sea level rise. The findings of the study illustrate that saltwater intrusion is intensified in the area adjoining the tidal rivers, rather than that due to the sea alone. Of all the scenarios simulated, the immense negative impact on groundwater quality emerges due to overdraft conditions and reduced recharge with the areal extent of seawater intrusion exceeding about 67% (TDS >1 kg/m 3). The study also arrives at the conclusion that, regional sea level rise of 1 mm/year has no impact on the groundwater dynamics of the aquifer.  相似文献   

16.
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.  相似文献   

17.
Sustainable management of groundwater resources is critical for viable development of semi-arid regions. Refugio County, TX, is predominantly a rural community that is in close proximity to two large urban areas of Corpus Christi and San Antonio. Large-scale water supply projects are being planned to export surplus water available in Refugio County to nearby growing cities. Being a coastal county with several sensitive bays and estuaries, these projects have caused concerns with regard to decreases in freshwater inflows to coastal bodies and raised the possibility of saltwater intrusion. A simulation model characterizing groundwater flow in the shallower unconfined and the deeper semi-confined formations of the Gulf coast aquifer was calibrated and evaluated. The model results were used in conjunction with a mathematical programming scheme to estimate maximum available groundwater in the county. Stakeholder concerns were incorporated as constraints, which included prevention of saltwater intrusion in the aquifer, limiting the amount of allowable drawdown in shallow aquifers, as well as maintaining current flow gradients especially near baseflow-dependent streams and rivers. For the conditions assumed in this study, the model results indicate that roughly 4.93 × 107 m3 of water can be extracted in a typical year. The management model was noted to be very sensitive to the imposed saltwater intrusion constraint.  相似文献   

18.
基于SEAWAT-2000程序构建室内二维砂箱试验中咸水入侵数值模型,利用该模型分析了针对不同补给井井位、补给井流量、截渗墙位置及贯穿深度等多种情景下的咸淡水界面运移规律。二维砂箱实验模拟结果表明,当注水井位于盐水楔前锋附近,距咸水边界40 cm、砂箱顶部边界5 cm处时,注水井工程措施能达到最佳海水入侵驱退效果,回退系数达21.5%。当截渗墙布设于距咸水边界10 cm处,贯穿深度为35 cm时,截渗墙工程措施能达到最佳海水入侵驱退效果,回退系数达81.1%。在此基础上,结合实际场地条件,构建山东龙口地区滨海含水层中某典型二维剖面的海水入侵数值模型,探讨了不同截渗墙布设情景模式下海水入侵状况。模拟结果表明,当截渗墙布设于距海岸线600 m处,贯穿深度为18 m时,截渗墙工程措施达到最佳海水入侵驱退效果,回退系数达28.4%。研究结果揭示了补给井井位、补给井流量、截渗墙位置及贯穿深度等因素对咸淡水界面运移规律的影响,可为场地条件下滨海含水层海水入侵防治中的工程管理措施优化提供参考依据。  相似文献   

19.
Groundwater systems in coastal aquifers may be affected by sea level change as increased seawater intrusion occurs with sea level rise. Artificial pumping taking place at the same time will increase this impact. In order to estimate the vulnerability of groundwater systems with sea level rise within coastal aquifers in South Korea, long-term groundwater data were analyzed using basic statistics, trend analysis, and correlation analysis. Conductivity depth profiling was also periodically conducted. Groundwater levels increased in wells with relatively low groundwater elevations but decreased in wells with higher groundwater elevations. At the same time, conductivity variations were greater in wells located in reclaimed land areas, which vertical conductivity profiles indicated were more affected by sea level variations, but decreased on the mainland. Results of auto-correlation analysis showed a decreasing trend with cyclic variations and significant periodic patterns during dry seasons, indicating that groundwater levels were not affected by artificial factors and that those in reclaimed land areas were less affected by rainfall than on the mainland. These results coincided with those from cross-correlation analysis showing that groundwater level was affected by sea level variation during the dry season. Sea level changes, which may be related to climate change, as well as rainfall in South Korea can influence groundwater levels, and the groundwater system in reclaimed land areas may be more affected than on the mainland, especially under dry conditions.  相似文献   

20.
The sea levels along the semi-arid South Texas coast are noted to have risen by 3–5 mm/year over the last five decades. Data from General Circulation Models (GCMs) indicate that this trend will continue in the 21st century with projected sea level rise in the order of 1.8–5.9 mm/year due to the melting of glaciers and thermal ocean expansion. Furthermore, the temperature in South Texas is projected to increase by as much as 4 °C by the end of the 21st century creating a greater stress on scarce water resources of the region. Increased groundwater use hinterland due to urbanization as well as rising sea levels due to climate change impact the freshwater-saltwater interface in coastal aquifers and threaten the sustainability of coastal communities that primarily rely on groundwater resources. The primary goal of this study was to develop an integrated decision support framework to assist land and water planners in coastal communities to assess the impacts of climate change and urbanization. More specifically, the developed system was used to address whether coastal side (primarily controlled by climate change) or landward side processes (controlled by both climate change and urbanization) had a greater control on the saltwater intrusion phenomenon. The decision support system integrates a sharp-interface model with information from GCMs and observed data and couples them to statistical and information-theoretic uncertainty analysis techniques. The developed decision support system is applied to study saltwater intrusion characteristics at a small coastal community near Corpus Christi, TX. The intrusion characteristics under various plausible climate and urbanization scenarios were evaluated with consideration given to uncertainty and variability of hydrogeologic parameters. The results of the study indicate that low levels of climate change have a greater impact on the freshwater-saltwater interface when the level of urbanization is low. However, the rate of inward intrusion of the saltwater wedge is controlled more so by urbanization effects than climate change. On a local (near coast) scale, the freshwater-saltwater interface was affected by groundwater production locations more so than the volume produced by the community. On a regional-scale, the sea level rise at the coast was noted to have limited impact on saltwater intrusion which was primarily controlled by freshwater influx from the hinterlands towards the coast. These results indicate that coastal communities must work proactively with planners from the up-dip areas to ensure adequate freshwater flows to the coast. Field monitoring of this parameter is clearly warranted. The concordance analysis indicated that input parameter sensitivity did not change across modeled scenarios indicating that future data collection and groundwater monitoring efforts should not be hampered by noted divergences in projected climate and urbanization patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号