首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
孙凯  周肃  赵志丹  张琳琳  刘栋 《岩石学报》2011,27(12):3718-3726
出露于雅鲁藏布江缝合带北侧尼木县的变质岩主要由石榴黑云片麻岩和黑云斜长角闪角岩组成.研究表明岩石变质程度达到角闪角岩相-辉石角岩相;石榴子石变斑晶具有生长环带,角闪石均为钙质角闪石,黑云母大多为铁质黑云母和铁叶云母,长石多为更长石和中长石,少量为正长石.利用石榴子石-黑云母温度计、石榴子石-黑云母-斜长石-石英压力计和角闪石-斜长石温度及压力计计算获得石榴黑云片麻岩和黑云斜长角闪角岩的变质温度分别为619 ~661℃,695 ~ 702℃,压力范围分别为1.86~1.94kbar和3.69~4.56kbar.野外和室内研究认为岩石原岩为冈底斯带南缘叶巴组火山岩及其上部沉积岩,岩石经历了高温低压的接触变质作用.结合已有冈底斯带陆缘岩浆活动特征,对变质岩的形成环境和过程进行了反演.  相似文献   

2.
大别山典型燕山期侵入体中矿物成分特征及其地质意义   总被引:4,自引:0,他引:4  
分析了大别造山带核部典型燕山期侵入体中的斜长石、黑云母和角闪石的化学成分和成因特点,并从矿物平衡角度讨论了典型侵入体岩石成因。结果表明:(1)石鼓尖侵入岩中,斜长石成分较稳定,共生角闪石和黑云母为岩浆平衡结晶的矿物;(2)天堂寨和九资河侵入岩中,部分斜长石和黑云母可能为深蚀残留矿物,角闪石属于火成岩区的新生矿物,可能为斜长石和黑云母发生融反应所形成;(3)三个侵入体的岩石均为岩浆成因。  相似文献   

3.
青海祁漫塔格地区位于东昆仑造山带西段,是我国近些年来的重点找矿地区之一。本文对区内与虎头崖矿床I矿带(Fe)、野马泉矿床(Fe)、虎头崖矿床VI矿带(Zn)和卡而却卡矿床B区(Cu)有关的花岗质岩石开展了矿物学研究。结果显示,虎头崖矿床I矿带的斜长石以奥长石为主(An15.0-24.1);虎头崖矿床VI矿带的斜长石主要为钠长石和奥长石(An8.7-20.8);卡而却卡矿床B区的斜长石主要是中长石(An33.8-42.2);野马泉矿床的斜长石主要为奥长石和中长石(An26.2-48.4)。角闪石为典型的钙角闪石,其中,虎头崖矿床I矿带的角闪石属铁浅闪石;卡而却卡矿床B区的角闪石为镁角闪石和铁角闪石。各矿床(带)的黑云母普遍富Fe、Ti、F、Cl,属典型的铁黑云母。矿物学特征显示,各矿床(带)的黑云母结晶于相似的高氧逸度条件下,但在结晶温度和挥发份组成等方面存在差异。黑云母的结晶温度和氧逸度特征与各矿床类型之间未表现出明显的规律性特征。结合前人的研究成果可知,岩浆结晶的温度和氧逸度可能不是控制本区矽卡岩矿床成矿作用类型的主要因素。黑云母的挥发份组成与各成矿元素间表现出明显的规律性特征,其中,以Fe为主的虎头崖矿床I矿带和野马泉矿床的岩浆流体特征基本一致,表现出相对富Cl、贫H2O、F的特点;以Zn为主的虎头崖矿床VI矿带的岩浆流体相对富F贫H2O、Cl;以Cu为主的卡而却卡矿床B区的岩浆流体相对富Cl、H2O贫F,说明岩浆流体不同的挥发份组成可能与不同的矿床类型之间存在密切的联系。综合地质特征和矿物学特征可知,岩浆流体的挥发份组成可能是控制青海祁漫塔格地区矽卡岩矿床成矿作用类型多样性的重要因素之一。  相似文献   

4.
Mafic microgranular enclaves (MMEs) are widespread in the Horoz pluton with granodiorite and granite units. Rounded to elliptical MMEs have variable size (from a few centimetres up to metres) and are generally fine-grained with typical magmatic textures. The plagioclase compositions of the MMEs range from An18?CAn64 in the cores to An17?CAn29 in the rims, while that of the host rocks varies from An17 to An55 in the cores to An07 to An33 in the rims. The biotite is mostly eastonitic, and the calcic-amphibole is magnesio-hornblende and edenite. Oxygen fugacity estimates from both groups?? biotites suggest that the Horoz magma possibly crystallised at fO2 conditions above the nickel?Cnickel oxide (NNO) buffer. The significance of magma mixing in their genesis is highlighted by various petrographic and mineralogical characteristics such as resorption surfaces in plagioclases and amphibole; quartz ocelli rimmed by biotite and amphibole; sieve and boxy cellular textures, and sharp zoning discontinuities in plagioclase. The importance of magma mixing is also evident in the amphiboles of the host rocks, which are slightly richer in Si, Fe3+ and Mg in comparison with the amphiboles of MMEs. However, the compositional similarity of the plagioclase and biotite phenocrysts from MMEs and their host rocks suggests that the MMEs were predominantly equilibrated with their hosts. Evidence from petrography and mineral chemistry suggests that the adakitic Horoz MMEs could be developed from a mantle-derived, water-rich magma (>3 mass%) affected by a mixing of felsic melt at P >2.3?kbar, T >730°C.  相似文献   

5.
Chemical analyses are given for actinolitic hornblendes of tonalitic rocks from the Hercynian belt of Northern Portugal. The distribution of elements between amphibole and co-existing biotite is studied. The composition of the amphiboles is analysed in the light of experimental data on amphiboles and the physical conditions of crystallization inferred from the study of the biotite and rock series. The data on the biotites lead to the definition of a temperature of 800°C for the crystallization of actinolitic hornblendes with Mg/(Mg + Fe) ratios of 0·72-0·61 at pressures of about 3 Kb and fO2 defined by FMQ.  相似文献   

6.
Plagioclase compositions vary from An0.1–2.5 to An32 with increasing grade in chlorite zone to oligoclase zone quartzofeldspathic schists, Franz Josef-Fox Glacier area, Southern Alps, New Zealand. This change is interrupted by the peristerite composition gap in rocks transitional between greenschist and amphibolite facies grade. Oligoclase (An20-24) and albite (An0.1–0.5) are found in biotite zone schists below the garnet isograd. With increasing grade, the plagioclase compositions outline the peristerite gap, which is asymmetric and narrows to compositions of An12 and An6 near the top of the garnet zone. In any one sample, oligoclase is the stable mineral in mica-rich layers above the garnet isograd, whereas albite and oligoclase exist in apparent textural equilibrium in adjacent quartz-plagioclase layers. The initial appearance of oligoclase in both layers results from the breakdown of epidote and possibly sphene. Carbonate is restricted to the quartz-plagioclase rich layers and probably accounts for the more sodic composition of oligoclase in these layers. The formation of more Ca-rich albite and more Na-rich oligoclase near the upper limit of the garnet zone coincides with the disappearance of carbonate and closure of the peristerite gap. Garnet appears to have only a localized effect on Ca-enrichment of plagioclase in mica-rich layers within the garnet zone. The Na-content of white mica increases sympathetically with increasing Ca-content of oligoclase and metamorphic grade. Comparison of the peristerite gap in the Franz Josef-Fox Glacier schists and schists of the same bulk composition in the Haast River area, 80 km to the S, indicates that oligoclase appears and epidote disappears at lower temperatures, and that the composition gap between coexisting albite and oligoclase is narrower in the Franz Josef-Fox Glacier area. It is suggested that a higher thermal gradient (38-40°C/km) and variations in Si/Al ordering during growth of the plagioclases between the two areas may account for these differences. In the Alpine schists the peristerite gap exists over a temperature and pressure interval of about 370-515°C and 5.5-7 kbar (550-700 MPa) PH2O.  相似文献   

7.
Actinolite, hornblende and biotite coexisting in greenschist mafic metagreywackes have been analysed with the electron microprobe to obtain information on their chemical relationship during metamorphism. As in some other parts of the world, the two calcic amphiboles coexist in the greenschist facies because of a miscibility gap between them which is observed under conditions of low-pressure regional metamorphism; it is thought that the two amphiboles are in equilibrium, or at least that the actinolite participated in hornblendeforming reactions. Contact metamorphism by granitic intrusives of these metagreywackes has converted them to hornblende hornfelses with the assemblage hornblende, andesine, quartz, biotite±cummingtonite; the hornblendes of the hornfelses are found to have compositions between actinolite and hornblende of the greenschists, and frequently show fine exsolution lamellae of cummingtonite as a result of oversaturation in this component. The distribution of Fe-Mg between hornblende and biotite changes from the greenschist to the hornblende hornfels facies, and the K D is probably dependent on AlVI in the hornblende.  相似文献   

8.
Calcic schists in the andalusite-type regional metamorphic terrainin the Panamint Mountains, California, contain the low-varianceassemblage quartz+epidote+muscovite+biotite+calcic amphibole+chlorite+plagioclase+spheneat low grade. Near the sillimanite isograd, chlorite in thisassemblage is replaced by garnet. The low variance in many calcicschists allows the determination of the nature of the reactionthat resulted in the coexistence of garnet+hornblende. A graphicalanalysis of the mineral assemblages shows that the reactioncan not be of the form biotite+epidote+chlorite+plagioclase+quartz=garnet+hornblende+muscovite+sphene+H2Obecause garnet+chlorite never coexisted during metamorphismand the chlorite-bearing and garnet-bearing phase volumes donot overlap. The compositions of the minerals show that withincreasing grade amphibole changed from actinolite to pargasitichornblende with no apparent miscibility gap, the partitioningof Fe and Mg between chlorite and hornblende changed from KD(Mg/Fe, chl&amp) < 1 to KD > 1, the partitioning betweenbiotite and hornblende changed from KD (Mg/Fe, bio/amp) <1 in chlorite-zone samples to KD > 1 in garnet + hornblende-zonesamples, and the transition to the garnet-bearing assemblageoccurred when the composition of plagioclase was between An55and An80. Both the graphical analysis and an analytical analysisof the compositions of the minerals using simplified componentsderived from the natural mineral compositions indicate thatat the garnet+hornblende isograd the composition of hornblendewas colinear with that of plagioclase and biotite, as projectedfrom quartz, epidote, muscovite, and H2O. During progressivemetamorphism, chlorite+biotite+epidote+quartz continuously brokedown to form hornblende+muscovite+sphene until the degeneracywas reached. At that point, tie lines from hornblende couldextend to garnet without allowing garnet to coexist with chlorite.Thus, the garnet+hornblende isograd was established throughcontinuous reactions within the chlorite-grade assemblage ratherthan through a discontinuous reaction. In this type of isograd,the low-grade diagnostic assemblage occurs only in Mg-rich rocks;whereas the high-grade assemblage occurs only in Fe-rich rocks.This relation accounts for the restricted occurrence of garnet+hornblendeassemblage in low-pressure terrains. In Barrovian terrains,garnet+chlorite commonly occurs, and the first appearana ofgarnet+hornblende can simply result from the continuous shiftof the garnet+chlorite tie line to Mg-rich compositions.  相似文献   

9.
Analyses of 80 biotite, alkali feldspar, oligoclase, hornblende, Fe-Ti oxide separates from the coarse-grained granites of a late-hercynian epizonal diapir, the Ploumanac'h complex, Brittany, show that these minerals display a regular concentric cryptic layering related to fractional crystallization. The Ca, Mg, Ba, Sr, Cr, V content of minerals decreases as the Na, Fe, and Rb content increases. Biotites become more dioctahedral towards the outer residual syenogranite, with a correlative K deficiency. Trioctahedral biotites from the inner accumulative monzogranite are secondarily oxidized with a gain of Fe3+ and a loss of OH. This alteration id due to the percolation of exsolved fluids rich in H2O and containing a small amount of CO2, F, S, Cl. During this autometamorphic stage, trace elements like Rb, Sr are completely redistributed on the scale of hand specimens, with a restricted range of partition coefficients between biotite, perthite and oligoclase. This equilibration occurred at a temperature about 550 ° C and a fluid pressure about 1,000 bars, with f H2O probably less than 500 bars. A later stage of fluid circulation along fractures brings up a slight Li metasomatism. Biotites are a sensitive marker of both magmatic and postmagmatic stages of subsolvus or ‘wet’ plutonites.  相似文献   

10.
Finely cellular plagioclase intergrowths have been studied in xenocrystic andesine (An32) and andesine mantled K-feldspars within mafic magmatic enclaves in a quartz-feldspar porphyry from the Proterozoic subvolcanic Hammarudda complex, Åland rapakivi batholith, SW Finland. The cellular intergrowths usually occur as 0.2–2.0 mm mantles around xenocrysts but also as entirely cellular grains, and are built up of a network of two distinct phases: one relatively Na-rich (An31) and one relatively Ca-rich (An50). The grains are also covered by a thin (0.08–0.12 mm), continuous, normally zoned rim outside the cellular mantle. Small inclusions (0.01–0.05 mm) of Fe–Mg minerals are concentrated in the Ca-rich part of the network. Compositionally, the Na-rich phase of the network is close to the inner non-cellular andesine of the xenocrysts. However, it has a lower Or- and a slightly lower An-content. The Ca-rich phase has the same composition as the inner part of the normally zoned rim, which outwards grades into lower An-contents that overlap the An-content of the matrix plagioclases. The cellular network was developed after the andesine xenocrysts (or andesine mantled K-feldspars) were engulfed in mafic magmatic enclaves during a mixing event. The xenocrysts became heated to a temperature just below the liquidus of the mafic magma. Dissolution of the xenocrysts developed a spongy cellular texture which was penetrated by enclave magma. Ca-rich plagioclase crystallized in the cells in equilibrium with the enclave magma, trapping Fe–Mg-rich melt. As the enclaves cooled the outermost thin rim and matrix plagioclases crystallized from the mafic melt. These processes operated in fairly large enclaves, as the one studied here, which has a diameter of 70cm. Smaller enclaves, on the other hand, were cooled more rapidly to temperatures close to the solidus of the enclave magma, and consequently had no time to dissolve the xenoxrysts.  相似文献   

11.
Abstract A garnet–hornblende Fe–Mg exchange geothermometer has been calibrated against the garnet–clinopyroxene geothermometer of Ellis & Green (1979) using data on coexisting garnet + hornblende + clinopyroxene in amphibolite and granulite facies metamorphic assemblages. Data for the Fe–Mg exchange reaction between garnet and hornblende have been fitted to the equation. In KD=Δ (XCa,g) where KD is the Fe–Mg distribution coefficient, using a robust regression approach, giving a thermometer of the form: with very satisfactory agreement between garnet–hornblende and garnet–clinopyroxene temperatures. The thermometer is applicable below about 850°C to rocks with Mn-poor garnet and common hornblende of widely varying chemistry metamorphosed at low aO2. Application of the garnet–hornblende geothermometer to Dalradian garnet amphibolites gives temperatures in good agreement with those predicted by pelite petrogenetic grids, ranging from 520°C for the lower garnet zone to 565–610°C for the staurolite to kyanite zones. These results suggest that systematic errors introduced by closure temperature problems in the application of the garnet–clinopyroxene geothermometer to the ‘calibration’data set are not serious. Application to ‘eclogitic’garnet amphibolites suggests that garnet and hornblende seldom attain Fe–Mg exchange equilibrium in these rocks. Quartzo-feldspathic and mafic schists of the Pelona Schist on Sierra Pelona, Southern California, were metamorphosed under high pressure greenschist, epidote–amphibolite and (oligoclase) amphibolite facies beneath the Vincent Thrust at pressures deduced to be 10±1 kbar using the phengite geobarometer, and 8–9kbar using the jadeite content of clinopyroxene in equilibrium with oligoclase and quartz. Application of the garnet–hornblende thermometer gives temperatures ranging from about 480°C at the garnet isograd through 570°C at the oligoclase isograd to a maximum of 620–650°C near the thrust. Inverted thermal gradients beneath the Vincent Thrust were in the range 170 to 250°C per km close to the thrust.  相似文献   

12.
The atomic fractions Mg/(Mg + Fe) and the Mg-Fe distribution coefficient $$K_{{\text{D}}{\text{.Mg - Fe}}}^{{\text{Ca - am - Cum}}} \left( { = \tfrac{{[{\text{Mg/Fe]}}_{{\text{Ca - am}}} }}{{{\text{[Mg/Fe]}}_{{\text{Cum}}} }}} \right)$$ are calculated for 31 metamorphic cummingtonite-hornblende pairs. Data on 21 pairs are taken from the litterature, and new electron microprobe analyses and structural formulae are presented of nine pairs from Tydal, Sör-Tröndelag, Norway, and of one pair from Cooma, N.S.W., Australia (cf. Kisch, 1969). The electron microprobe methods used are described, particularly the use of mineral standards, and the variation of the mass absorption in substitution series. The hornblendes from the Tydal pairs are markedly pargasitic in composition, and contain minor proportions of the cummingtonite “molecule”. The Mg-Fe distributions in the cummingtonite-hornblende pairs — as plotted on a [Mg/(Mg + Fe)]Ca-am vs. [Mg/(Mg + Fe)]Cum diagram (Fig. 3) — differ significantly from the Mg-Fe distribution curve for cummingtonite-actinolite pairs from Quebec (Mueller, 1961). Whereas the actinolites have markedly higher Mg/Fe ratios than the co-existing cummingtonites (K D.Mg-Fe Ca-am-Cum ≈ 1.5–2.0), the cummingtonite-hornblende pairs diverge towards lower values from the distribution coefficient. In most of the metamorphic cummingtonite-hornblende pairs — including the nine pairs from Tydal — the Mg/Fe ratio of the hornblende is lower than in the co-existing cummingtonite, i.e K D.Mg-Fe Ca-am-Cum <1. A relation appears to exist between the Mg-Fe distribution and the Al content of the calcic amphibole phase. This is believed to be due to the non-random distribution of AlY among the octahedral lattice sites: in hornblende AlVI enters the M 1+M3 positions, in which Mg is preferred over Fe, rather than M 2, in which Fe is preferred (Ghose, 1965). Since the cummingtonites remain Al-poor, the over-all Mg/Fe ratio in the hornblende is reduced relative to the co-existing cummingtonite as a result. The variations of the Mg-Fe distribution in the cummingtonite-hornblende pairs can also be related directly to the presence and composition of the plagioclase and other Al-rich phases in the metamorphic mineral assemblage. In any range of Mg/Fe ratios, the cummingtonite-hornblende pairs associated with oligoclase have lower distribution coefficients (0.61–0.81; 12 pairs) than those associated with calcic plagioclase or plagioclase-free assemblages (0.97 to 1.89; 6 pairs); the pairs associated with andesine have intermediate Mg-Fe distributions (0.74–1.15; 6 pairs).  相似文献   

13.
义敦岛弧形成于晚三叠世大规模俯冲造山作用过程中,位于松潘甘孜地体和羌塘地体之间。稻城边部岩体是义敦岛弧带内规模巨大的复式花岗质岩体,由花岗岩、花岗闪长岩和钾长花岗岩组成。大量暗色镁铁质微粒包体发育于花岗闪长岩和钾长花岗岩中,且其与寄主岩石的接触界线明显。暗色镁铁质微粒包体具有细粒结构,发育石英眼构造、针状磷灰石和具环带结构的斜长石斑晶。文中以稻城岩体寄主岩石和暗色微粒包体中斜长石、黑云母和角闪石为研究对象,开展岩相学和电子探针原位化学成分分析,厘定了矿物形成的物理化学条件,探讨了岩浆混合作用过程及其形成的构造环境。研究表明:花岗闪长岩和暗色微粒包体中的斜长石主要为中长石,其核部呈浑圆状;前者核部的An值(21~50)显著高于幔部(21~34);后者则发育典型的突变环带,An值(29~44)呈波状变化且相对集中。暗色微粒包体与寄主花岗闪长岩中斜长石的An值部分重叠表明二者形成过程中存在含量的岩浆混合作用。斜长石环带中的An值随Al2O3、FeO、MgO和CaO含量的升高而升高,但随SiO2、Na2O和K2O含量的升高而降低。寄主岩石和暗色微粒包体中角闪石富镁铁,阳离子特征为:CaB=1.56~1.75,Ti=0.08~0.13,属于钙质角闪石,具壳源特征,其结晶温度分别为697~725 ℃和680~705 ℃。花岗闪长岩中黑云母的Mg/(Mg+Fe2+)为0.37~0.45,显示出富Fe贫Ca、Mg,属于典型的岩浆成因黑云母。黑云母TiO2含量变化范围为3.54%~4.62%,Al2O3含量变化范围为13.89%~15.15%;黑云母的氧化系数为0.08~0.11,Mg#为0.39~0.46,MF值为0.36~0.44,单位分子中阳离子数AlⅥ为0.03~0.11,以单位分子中Ti和Al阳离子数计算的黑云母结晶温度为584~624 ℃,表明其结晶温度较高,具壳幔混源特征。稻城岩体是以壳源为主的壳幔混源成因的I型花岗岩,暗色微粒包体是由镁铁质岩浆与长英质岩浆不同程度的混合作用形成的。  相似文献   

14.
Magmatic augites reacted with high temperature aqueous solutions to form secondary calcic pyroxenes during the subsolidus cooling of the Skaergaard intrusion. Secondary, hydrothermal clinopyroxenes replace wall rock igneous augites at the margins of veins filled with calcic amphibole. These veins are up to several millimeters wide and tens of meters in length. Hydrothermal clinopyroxenes are a ubiquitous and characteristic phase in the earliest veins throughout the Layered Series of the intrusion, and occur rarely in late veins that, in some places, crosscut the early veins. Associated secondary phases in early veins include amphiboles ranging in composition from actinolite to hornblende, together with biotite, Fe-Ti oxides and calcic plagioclase. Hydrothermal clinopyroxenes in late veins may be associated with actinolite, hornblende, biotite, magnetite and albite.Hydrothermal clinopyroxenes are depleted in Fe, Mg and minor elements, and enriched in Ca and Si relative to igneous augites in the Layered Series gabbros. Secondary vein pyroxenes are similar in composition to calcic pyroxenes from amphibolite facies metamorphic rocks. Clinopyroxene solvus thermometry suggests minimum temperatures of equilibration of between 500° and 750° C. These temperatures, combined with numerical transport models of the intrusion, suggest that vein clinopyroxenes could have formed during 20,000 to 60,000 year time intervals associated with a maximum in the fluid flux through fractures in the Layered Series.  相似文献   

15.
The Songshugou Alpine-type ultramafic massif intruded into the surrounding plagioclase-amphibole schists where high-temperature aureoles are found well exposed but not distroyed. From the outer part inwards, four aureoles are recognized: the oligoclase-hornblende zone, the andesine-hornblende zone, the garnet zone and the pyroxene zone. Toward the massif, systematic variations are noticed in the rocks from one zone to another, i.e., the rocks vary from fine-grained, fibrous, crystalloblastic texture to medium coarse-grained, granular, crystalloblastic texture and from schistose structure to massive structure; hornblende varies from blue-green to brofn; plagioclases vary in composition from An12–17 to An37, even to An60 near the contact; garnet and pyroxene become more and more abundant; sphene is replaced progressively by titanomagnetite; and Na(K), Al and Ti in the hornblende tend to increase near the contact. Studies have shown that the typical rocks in the four contact metamorphic zones are generally similar in major and trace elements. But different mineral assemblages and mineral chemistry indicate that the rocks were formed under different physical conditions.  相似文献   

16.
Amphibolites from the crystalline basement of the Western Tatra Mountains, which are found as small lenses within migmatitic gneisses and mica schists, were formed during pre‐ or early Variscan amphibolite‐facies metamorphic events, and subsequently intruded by the post‐metamorphic Variscan Tatra Granite. The amphibolites occur in both the upper and lower metamorphic complexes, which are separated by a major subhorizontal shear zone in the Western Tatra Mountains. The amphibolites can be divided into three types: massive, striped and garnetiferous. The striped and massive amphibolites, concordant with a dominant S1 foliation, and the garnet amphibolites, which cross‐cut the S1 banding in the gneisses, were all originally intrusive dolerites. The striped amphibolites (consisting primarily of hornblende, andesine and quartz), and later, cross‐cutting garnet‐hornblende‐andesine‐quartz‐bearing amphibolites, predominate in the lower part of the dominantly migmatitic upper complex, and are exposed mainly on the ridges. The massive amphibolites, which contain a similar mineral assemblage, mainly occur in the usual unmigmatized lower structural unit. Chemical studies indicate that three amphibolite suites are present, which probably originated as a series of enriched tholeiites, similar to more recent plume‐influenced magmas, which were derived by partial melting of a spinel lherzolite with primitive mantle composition and compositionally slightly modified by crustal contamination. The amphibolites were intruded as dolerites into clastic sediments which had accumulated in an extensional basin floored by attenuated continental crust, a situation similar to that of amphibolites found in metamorphic complexes within the Variscan belt, e.g. in the Orlica–Snieznik area of the Sudetes, where amphibolites chemically similar to those in the Western Tatra also occur. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
柴北缘鹰峰环斑花岗岩矿物学特征及其岩石学意义   总被引:3,自引:0,他引:3  
柴北缘构造带中元古代鹰峰环斑花岗岩主要造岩矿物的研究结果表明,该岩体具pyterlitic型环斑结构,各主要矿物均具多世代特征。钾长石主要以卵形斑晶出现,出溶钠长石条纹极发育,出溶后主晶成分为Or94.57Ab5.25An0.18,钠长石条纹为Or0.71Ab97.59An1.7,推算出球斑均一化成分为Or66.41Ab32.95An0.64。岩浆结晶的斜长石以更长石为主,由于不同程度的蚀变使An降低成为钠质长石。黑云母多有不同程度的蚀变,析出磁铁矿和钛铁矿,析出铁后黑云母的n(Fe)/n(Fe+Mg)=0.5~0.63,属Mg-Fe2+-和Fe2+-黑云母,原成分应更富铁。鹰峰岩体在矿物组成及主要矿物特征上与典型环斑花岗岩的相似,但也存在一些差异,这些差异有的是起因于加里东期的变质改造,有的反映了岩体形成环境和过程的特性。  相似文献   

18.
Open‐system behaviour through fluid influx and melt loss can produce a variety of migmatite morphologies and mineral assemblages from the same protolith composition. This is shown by different types of granulite facies migmatite from the contact aureole of the Ceret gabbro–diorite stock in the Roc de Frausa Massif (eastern Pyrenees). Patch, stromatic and schollen migmatites are identified in the inner contact aureole, whereas schollen migmatites and residual melanosomes are found as xenoliths inside the gabbro–diorite. Patch and schollen migmatites record D1 and D2 structures in folded melanosome and mostly preserve the high‐T D2 in granular or weakly foliated leucosome. Stromatic migmatites and residual melanosomes only preserve D2. The assemblage quartz–garnet–biotite–sillimanite–cordierite±K‐feldspar–plagioclase is present in patch and schollen migmatites, whereas stromatic migmatites and residual melanosomes contain a sub‐assemblage with no sillimanite and/or K‐feldspar. A decrease in X Fe (molar Fe/(Fe + Mg)) in garnet, biotite and cordierite is observed from patch migmatites through schollen and stromatic migmatites to residual melanosomes. Whole‐rock compositions of patch, schollen and stromatic migmatites are similar to those of non‐migmatitic rocks from the surrounding area. These metasedimentary rocks are interpreted as the protoliths of the migmatites. A decrease in the silica content of migmatites from 63 to 40 wt% SiO2 is accompanied by an increase in Al2O3 and MgO+FeO and by a depletion in alkalis. Thermodynamic modelling in the NCKFMASHTO system for the different types of migmatite provides peak metamorphic conditions ~7–8 kbar and 840 °C. A nearly isothermal decompression history down to 5.5 kbar was followed by isobaric cooling from 840 °C through 690 °C to lower temperatures. The preservation of granulite facies assemblages and the variation in mineral assemblages and chemical composition can be modelled by ongoing H2O‐fluxed melting accompanied by melt loss. The fluids were probably released by the crystallizing gabbro–diorite, infiltrating the metasedimentary rocks and fluxing melting. Release of fluids and melt loss were probably favoured by coeval deformation (D2). The amount of melt remaining in the system varied considerably among the different types of migmatite. The whole‐rock compositions of the samples, the modelled compositions of melts at the solidus at 5.5 kbar and the residues show a good correlation.  相似文献   

19.
张翊钧 《地球学报》1988,10(1):105-115
在沸石相变质条件下,花岗岩里浊沸石交代了斜长石和石英,在酸性火山岩里产生明矾石、埃洛石或高岭石。经受绿纤石-葡萄石相变质的花岗岩,其中黑云母变为钙铝榴石、帘石、绿纤石和葡萄石集合体,同时斜长石发生绢云母化。绿片岩相内酸性岩的浅色矿物有石英、微斜长石、钠长石和绿帘石,暗色矿物有绿泥石和黑云母。在角闪岩相变质的酸性岩中,开始出现中、基性斜长石,其中暗色矿物黑云母的镁铁比值要大于角闪石的镁铁比值。经受麻粒岩相变质后,紫苏花岗岩的矿物组成没有变化,但有铀、钍和钾的迁出。  相似文献   

20.
The Kelly's Mountain gneiss complex of Cape Breton Island, Nova Scotia, is a migmatitic paragneiss dominated by biotite- and cordierite-bearing assemblages. Metamorphic grade throughout the complex is in the upper amphibolite facies, with garnet absent and only retrograde muscovite present. In the high grade core of the complex the reaction biotite+andalusite+quartz=cordierite+K-feldspar+sillimanite+ilmenite+H2O is preserved. The pelitic migmatites contain cordierite- and K-feldspar-rich leucosomes and biotite-rich melanosomes. Minor clinopyroxene-bearing amphibolite in the complex does not show migmatitic textures. The migmatites are interpreted as in situ peraluminous partial melts on the basis of phase relations and textural criteria. Retrograde metamorphism under conditions of high fluid pressure locally produced muscovite after K-feldspar and muscovite+green biotite+chlorite after cordierite in paragneiss, and sphene after ilmenite in amphibolite. Peak metamorphic conditions of 1–3.5 kb and 580–700° C are estimated. The high geothermal gradient inferred from these conditions was probably caused by the intrusion of diorites associated with the gneiss complex. The Kelly's Mountain complex represents a rare example of migmatites formed in the low-pressure facies series, and illustrates some of the reactions involving melting in high grade pelitic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号