首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究目的:介绍暖云降水之谜,总结湍流起伏和夹卷对云滴谱拓宽和暖雨形成过程的影响,包括观测、实验、模拟和理论方面取得的成果。重点阐述我国上世纪五六十年代在湍流起伏方面的突出成绩。重要结论:过饱和度、云滴数浓度、含水量和垂直速度等的起伏对凝结和碰并过程有显著影响。中国和俄罗斯科学家最早把随机凝结过程引入到云物理研究中。夹卷过程可能是暖云降水之谜的一个解。系统理论表明:湍流强度越大,云滴谱越宽。  相似文献   

2.
大气湍流是一种无序的、非确定性的大气运动,它可提高云滴碰撞效率,加速云滴增长速度,在云和降水形成及发展过程中起着十分重要的作用。本文综述了国内外近60 a来云中湍流的研究进展,重点介绍了云宏微观结构特征及云中湍流对云滴碰并增长方面取得的研究成果,以期为进一步观测研究云动力学过程、完善湍流-云微物理相互作用理论及优化云参数化方案提供重要参考。  相似文献   

3.
刘文惠  罗仕  陆春松  赵阳 《气象》2023,(5):551-562
云内过饱和度是影响云宏微观物理特性的关键之一。利用显式混合气泡模式,首先研究了云滴周围过饱和度在夹卷混合过程中的演变特征,结果表明:过饱和度先因干空气作用减小,后因云滴蒸发作用增大,直到气块恢复饱和。随后分析了不同的热力、动力和微物理因子对过饱和度的减小幅度和饱和恢复快慢程度的影响。敏感性试验表明:减幅小、恢复快的因子是较大的卷入空气相对湿度和初始云滴数浓度;相对湿度越大,夹卷的影响越小;数浓度越大,云滴尺度越小,蒸发越快,对湿度的补充越强。减幅大、恢复慢的因子是较大的卷入空气比例;卷入空气越多,蒸发量越大。减幅大、恢复快的因子是较大的湍流动能耗散率;混合过程越快,云滴蒸发越快。研究结果有助于提升对夹卷混合过程和暖云降水理论的理解。  相似文献   

4.
基于一维分档MISTRA边界层云模式,模拟研究了内部混有不可溶核的硫酸铵气溶胶对边界层暖云微物理特征的影响。结果表明:边界层内湍流动能通量是影响暖云发展的重要因素。云中液态水含量、过饱和度以及云滴谱离散度均随云中的高度增加而增大。云滴谱标准差是影响云滴谱离散度变化的主要因子。在暖云发展阶段,不可溶性核会增加云中过饱和度,进而导致云滴谱分别向大尺度和小尺度端拓宽,云滴谱标准差增大,云滴谱离散度随时间增加而增大的程度增强;在暖云减弱阶段,不可溶核会造成云中大尺度端云滴数浓度减少,云滴谱变窄,标准差变小,云滴谱离散度逐渐减小的特征减弱。  相似文献   

5.
层积云覆盖的边界层数值模拟研究(Ⅰ):数值模式的建立   总被引:3,自引:2,他引:1  
层积云是一种在湍流作用下形成的边界层云,在这种边界层中,层积云顶即边界层顶,云层和非云层耦合在一起,为了加深对这种层积云覆盖的边界层的理解,许多作者已经做了大量的野外观测和数值试验研究,然而在数值模拟研究中存在湍流和云物理模式相互脱节的现象,针对这种缺陷,本文在湍流控制方程组中引入云滴控制方程,发展了一个新的用于研究海区层积云覆盖的边界层的数值模式,所建模式具有如下特点:(1)实现了云物理模式与湍流模式的相互耦合;(2)实现了云滴分档凝结模式和三阶湍流闭合边界层模式相互耦合,利用所建模式对大涡模拟对比试验所采用的个例进行了数值模拟,数值模拟结果表明,该边界层模式能较合理地模拟海区层积云覆盖的边界层微湍流结构和云微物理过程。  相似文献   

6.
云滴数浓度影响混合型层状云降水的数值模拟   总被引:2,自引:1,他引:1  
使用耦合了Morrison双参数微物理方案的中尺度WRF模式V2.2,对2008年1月25-29日发生在我国南方的冰雪天气过程进行了数值试验。在模式准确再现了此次天气过程形势演变特点的基础上,对模式微物理方案中云滴数浓度影响累积降水量的情况进行了敏感性试验,发现云滴数浓度对降水量的影响是复杂和非线性的。对此次天气过程中的微物理量进行了详细的分析,并从各种水成物粒子的发展演变上,讨论了云滴数浓度的增加在暖云和冷云两种降水机制上对降水产生的不同影响。结果表明,云滴数浓度越大,云水混合比就越大,云滴的尺度越小。雨滴对不同云滴数浓度的响应与云滴的情况相反,随着云滴数浓度的增加,雨滴数浓度减小,雨水也减少,暖云降水过程受到了抑制;冰晶和雪晶的数浓度的演变过程没有明显变化,而冰晶和雪晶的混合比是相应增加的,冷云降水过程得到了一定程度的增强。从本文模拟的个例来看,设置不同云滴数浓度所得到的总累计降水量的差异在1%以内。总的来说,增加云滴数浓度,降水量会减少。从比例上来看,增加云滴数浓度对暖云降水过程的抑制作用比对冷云降水过程的增强作用更为显著,但是在本文模拟的个例中,冷云降水过程占主导地位,减少的降水和增加的降水的绝对值在同一个量级上并且数值相近,它们相互抵消后得到的结果是降水量变化的绝对值大大减小了,这解释了增加云滴数浓度后模拟的总累积降水量变化不明显的原因。  相似文献   

7.
自然云中冰晶生成的核化过程及雪晶对过冷云滴的撞冻   总被引:4,自引:2,他引:4  
鉴于冰晶过程在自然降水形成中的作用十分重要,对冰晶形成的物理过程曾进行过大量研究。由于自然云中冰晶的生成受大气热力、动力学条件及微物理过程等多因子制约,因而在自然云中研究冰晶的形成过程有很大困难,至今有关冰晶生成的核化过程的外场研究仍极少。室内实验可以在控制某些云物理条件下进行,但有些条件(过冷云维持时间、过冷云滴谱等)很难进行逼真的模拟。雪晶对过冷云滴的撞冻是雪粒子的重要增长过程之一;有关雪晶对过冷云滴的撞冻效率,已持续进行多年的室内实验与理论研究。这些研究工作中,都对雪晶形状做了不同程度的简化,对自然云中的雪晶撞冻过程的研究仍极少。  相似文献   

8.
云滴谱宽度对模式中云的光学厚度的参数化、气溶胶间接效应的评估以及降水形成过程的研究至关重要。本文利用美国POST(Physics of Stratocumulus Top)项目2008年7月19日的飞机观测资料,分析了微物理量和云滴谱的垂直分布及微物理过程。结果表明,该云系云滴谱宽度在云底附近较大,这是由低层核化过程导致的;中层凝结增长过程使得云滴谱宽度随高度增加逐渐减小;云顶附近夹卷混合过程导致云滴谱宽度增大。绝热云中垂直速度的增大会促进云凝结核的活化使云滴数浓度增大,促进凝结增长使云滴尺度增大、云滴谱宽度减小,云滴谱宽度与云滴数浓度、云滴尺度呈现负相关关系;云洞中受夹卷混合过程影响,垂直速度减小,云滴蒸发,云滴数浓度和云滴尺度减小、云滴谱宽度增大,且该效应随绝热程度减小而增强。建议云滴谱宽度的参数化将垂直速度、云滴数浓度、云滴尺度和绝热程度等考虑在内。  相似文献   

9.
起伏条件下重力碰并造成的暖性薄云降水   总被引:5,自引:0,他引:5  
徐华英  顾震潮 《气象学报》1963,33(1):108-114
本文中考虑了云中垂直气流的湍流起伏,来計算云滴的碰并增长.发現在这种上升气流有起伏的环境下,同样大小的云滴在云中可以长成不同大小的較大云滴,包括降水胚滴和降水微元(雨滴),从而对暖性薄云如何形成降水給出一个此較合理的解释。  相似文献   

10.
不同积云微物理特征的卫星反演分析   总被引:5,自引:0,他引:5  
利用NOAA卫星多光谱资料反演了云滴有效半径,采用多信息组合的RGB彩色显示方法,分析了云顶微物理特征;运用Rosenfeld的卫星微物理反演分析方法,根据云中物理过程与T-re分布关系,着重分析了不同积云的云物理过程和微物理特征.结果表明:中高纬内陆地区积云底层一般具有较深厚的凝结增长带和较小的云滴有效半径,晶化增长起始温度较低,具有典型的大陆性云物理特征;低纬度海岛与近海地区积云与大陆性积云相比,底层云滴有效半径普遍较大,碰并作用较强,晶化增长起始温度较高,具有大陆性到海洋性过渡的云物理特征;海洋上空积云底层的云滴有效半径最大,晶化增长起始温度高,降水带较深厚,具有海洋性云物理特征.  相似文献   

11.
暖云降水微观物理机制的統計理論   总被引:2,自引:0,他引:2  
周秀骥 《气象学报》1963,33(1):97-107
本文主要对暖云降水微观物理机制作了初步的实驗与理論分析,提出了云滴增长的随机过程理論以及暖云降水微观机制模式,結果表明,由于湍流所引起的起伏現象以及湍流碰并对降水的形成有极为重要的作用。  相似文献   

12.
在UWyo单组分气溶胶的绝热气块分档云模式基础上,发展了多种化学组分气溶胶的绝热气块分档云模式。利用2006年春季华北地区地面气溶胶分级采样的离子成分分析数据和同时段高空气溶胶、云微物理飞机观测资料,研究了气溶胶混合状态对暖云微物理特征的影响。模拟结果表明,华北地区气溶胶内部混合比外部混合有利于增加云凝结核数浓度、降低气块水汽最大饱和比、增加云滴数浓度。气溶胶的混合状态不同,形成的云滴谱的特征差异较大,主要体现在云滴谱的平均尺度和峰值的突出程度;云滴谱相对离散度在0.3附近变化,且随着云滴数浓度的增加,云滴谱相对离散度呈现减小的趋势。气溶胶混合状态能够影响暖云微物理特征,从而影响大气辐射和降水过程,在天气和气候变化的研究中应予以关注。  相似文献   

13.
云滴有效半径是气候模式中辐射参数化的一个云微物理量.在讨论现有处理方法的基础上,从基本概念出发,导出联系有效半径、含水量、总云滴数及湍流强度的普适幂律.该定律:(1)表明常用参数化公式的多样性源于人们选择数学模型的主观判断;(2)启示我们应该寻找有效半径与平均单位云滴含水量(含水量与总云滴数之比)之间的关系;(3)揭示出湍流在云参数化中的重要作用.通过本文的分析,建议人们要彻底了解人类活动对成云致雨(有意识人工影响天气)和全球变化的作用需研究“大气气溶胶─云激物理─湍流(动力)─辐射”系统.  相似文献   

14.
广西秋季层状云微物理特征分析   总被引:1,自引:0,他引:1  
利用2012年11—12月在广西进行的11架次飞机云物理探测资料对层状云宏微观物理结构特征进行研究,探讨层状云降水机制。结果表明:广西层状云微物理特征与我国其他地区的存在显著差异。层状云典型的微物理垂直结构为在云下层是由凝结作用生成云滴,随上升气流发展,云滴数浓度、平均直径和液态水含量随高度逐步增加,云滴谱拓宽,谱型向大尺度的方向扩展,至云中上层增大至最大值后随高度减小。冷暖混合云结构的高层云冷云部分的冰相粒子落入暖层后对其微物理结构产生影响,主要是使云滴谱展宽,CIP云滴平均直径垂直分布变幅增大,有利于暖层中碰并过程的启动和发展。层积云微物理水平分布呈现不连续跳跃式变化特征,存在对流泡结构,对流泡内各微物理量高于泡外,云滴谱型向大尺度移动,对流泡结构是层积云形成降水的重要机制。  相似文献   

15.
本文将水汽在云滴上凝结增长的物理过程与气溶胶、气体的化学过程相结合,对气溶胶核化清除的化学效应进行了研究。 计算结果表明:气溶胶的核化清除造成了云滴化学成分随云滴大小分布的非均匀性,这种非均匀性又对云滴内发生的气体吸收、液相氧化产生影响。 本文还比较了不同污染状况下,不同大小的云滴内气溶胶核化清除与液相氧化对云滴化学的相对贡献的差异。 因此,这种云滴化学的非均匀性(云微化学)的研究对于云化学的野外观测及数值模拟都是重要的。  相似文献   

16.
肖辉  徐华英  黄美元 《大气科学》1988,12(2):121-130
本文利用一维非定常积云数值模式,详细地考虑云的微物理过程,模拟了积云发展前期云的宏微观结构,研究了盐核谱和浓度对积云中云滴谱形成的影响。结果表明,本模式模拟的云中上升气流和含水量等宏观特征与观测结果基本上一致,云滴谱分布和大云滴浓度以及它们随高度分布的特征等也与观测相符。在积云顶部附近还模拟出双峰云滴谱。结果还指出,大陆性积云云滴谱和海洋性积云云滴谱之间的差异,主要是由于两地空气中盐核总浓度不同所致,而不是由于巨核多少的缘故。  相似文献   

17.
本文利用一维非定常积云数值模式,详细地考虑云的微物理过程,模拟了积云发展前期云的宏微观结构,研究了盐核谱和浓度对积云中云滴谱形成的影响。结果表明,本模式模拟的云中上升气流和含水量等宏观特征与观测结果基本上一致,云滴谱分布和大云滴浓度以及它们随高度分布的特征等也与观测相符。在积云顶部附近还模拟出双峰云滴谱。结果还指出,大陆性积云云滴谱和海洋性积云云滴谱之间的差异,主要是由于两地空气中盐核总浓度不同所致,而不是由于巨核多少的缘故。  相似文献   

18.
起伏场的相关时间对水滴随机长大的作用   总被引:1,自引:0,他引:1  
温景嵩 《气象学报》1964,34(3):369-377
本文讨论了云滴起伏增长中相关时间的作用。结果表明,起伏场的这个特征量是一个很重要的因素。 对湍流加速场的相关时间进行了研究。指出这个场的相关时间很短,不能在直接形成雨滴的过程中有重要贡献。 对含水量起伏场的研究初步表明,它可以在形成30—50微米大云滴的过程中有重要贡献。比以往均匀长大理论要快半小时以上。  相似文献   

19.
云滴谱离散度是云雨自动转化过程参数化中不可忽视的重要参数,对地面降水有着重要的影响。本文利用WRF-Chem (Weather Research and Forecast coupled with Chemistry)模式,对发生在2019年1月3~6日长江中下游地区的一次降水过程进行了模拟。在清洁和污染的气溶胶背景下,设定不同的云滴谱离散度的数值(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0),研究云降水微物理的变化。结果表明,该个例降水主要来源于云雨自动转化以及云雨碰并过程。在清洁条件下的地面累计降水量大于在污染条件下的累计降水量,这是因为在清洁条件下云滴数浓度小,有利于云雨自动转化以及云雨碰并过程。虽然云雨自动转化以及云雨碰并过程占主导,但导致地面累计降水量随云滴谱离散度增大而增大的主要原因是:随着云滴谱离散度的增大,冰粒子质量浓度增大,导致融化过程增强,产生更多的雨滴,从而增强地表降水。所得结果将提高我们对云降水对气溶胶和离散度响应过程的理论认识。  相似文献   

20.
一、问题的提出云滴谱分析是云物理学和人工降水研究的重要内容之一。过去较多地研究由碰并或破碎过程造成的云滴谱变化,而缺少对没有发生碰并前的云滴初始谱的理论研究。张学文同志首先把熵增加原理应用于碰并前的云滴谱研究中,推导出一个具有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号