首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P 0.001). The SOC concentrations were in the order: oil-polluted wetland corn field paddy field forest land reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4~+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4~+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution.  相似文献   

2.
Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-soluble organic C(WSOC),easily oxidizable organic C(EOC),humic C fractions,aggregate-associated C,aggregate stability,and humic acid(HA) composition along an east-west transect across Qinghai-Tibet Plateau,and explored their spatial patterns and controlling factors.The contents of SOC,WSOC,EOC,humic C fractions and aggregate-associated C,the proportions of macroaggregates(2-0.25) and micro-aggregates(0.25-0.053 mm),and the aggregate stability indices all increased in the order alpine desert alpine steppe alpine meadow.The alkyl C,O-alkyl C,and aliphatic C/aromatic C ratio of HA increased as alpine desert alpine meadow alpine steppe,and the trends were reverse for the aromatic C and HB/HI ratio.Mean annual precipitation and aboveground biomass weresignificantly correlated with the contents of SOC and its fractions,the proportions of macro- and microaggregates,and the aggregate stability indices along this transect.Among all these C fractions,SOC content and aggregate stability were more closely associated with humic C and silt and clay sized C in comparison with WSOC,EOC,and macro- and microaggregate C.The results suggested that alpine meadow soils containing higher SOC exhibited high soil aggregation and aggregate stability.Mean annual precipitation should be the main climate factor controlling the spatial patterns of SOC,soil aggregation,and aggregate stability in this region.The resistant and stable C fractions rather than labile C fractions are the major determinant of SOC stocks and aggregate stability.  相似文献   

3.
准确预测未采样区域SOC密度,是研究SOC演变趋势和探索土壤固碳作用对缓解全球气候变化的基础。采用泛克里格法(Universal Kriging,UK)和土壤类型法(pedological professional knowledge-based method,PKB),分别对长兴县水稻土有机碳密度进行了预测,其中,UK直接以长兴水稻土剖面资料为源数据、PKB以长兴水稻土剖面数据和长兴1∶5万数字土壤图为源数据进行预测。根据平均绝对误差(MAE)及均方根误差(RMSE)大小,评价了两种方法在县域尺度土壤有机碳密度空间预测效果。结果表明:UK的MAE(31.2)、RMSE(52.5)均大于PKB的MAE(24.7)、RMSE(43.1),说明PKB法的预测效果较好,UK法相对较差。研究表明,对土壤类型、土壤母质,以及剖面点位置等信息的综合考虑能使PKB法更好地表达土壤属性的空间特征,也更适于县域尺度土壤有机碳密度的空间预测。  相似文献   

4.
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland.  相似文献   

5.
The first account of the effects of wetland reclamation on soil nematode assemblages were provided, three sites in Heihe River Basin of Northwest China, that is grass wetland(GW), Tamarix chinensis wetland(TW) and crop wetland(CW) treatments, were compared. Results showed that the majority of soil nematodes were presented in the 0–20 cm soil layers in CW treatments, followed by in the 20–40 cm and 40–60 cm layers in GW treatments. Plant-feeding nametodes were the most abundant trophic groups in each treatment, where GW(91.0%) TW(88.1%) CW(53.5%). Generic richness(GR) was lower in the TW(16) than that in GW(23) and CW(25). The combination of enrichment index(EI) and structure index(SI) showed that the soil food web in GW was more structured, and those in TW was stressed, while the enrichment soil food web was presented in the CW treatment. Several ecological indices which reflected soil community structure, diversity, Shannon-Weaver diversity(H′), Evenness(J′), Richness(GR) and modified maturity index(MMI) were found to be effective for assessing the response of soil namatode communities to soil of saline wetland reclamation. Furthermore, saline wetland reclamation also exerted great influence on the soil physical and chemical properties(p H, Electric conductivity(EC), Total organic carbon(TOC), Total nitrogen(Total-N) and Nitrate Nitrogen(N-NO3–)). These results indicated that the wetland reclamation had significantly effects on soil nematode community structure and soil properties in this study.  相似文献   

6.
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-30 cm) showed no significant differences, while AP content in top soil (0-15 cm) was significantly higher than that in sub-top soil (15-30 cm). SOC content was correlated positively with TN and TP content (r = 0.901 and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.  相似文献   

7.
In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readil...  相似文献   

8.
Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20- and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents de- creased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27% 57%, 37%-7%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p 〈 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China.  相似文献   

9.
Soil organic carbon (SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set (n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature (MAT) and mean annual precipitation (MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP (P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.  相似文献   

10.
Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration( 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.  相似文献   

11.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

12.
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.  相似文献   

13.
Land use change is one of the major factors that affect soil organic carbon(SOC) variation and global carbon balance. However, the effects of land use change on SOC are always variable. In this study, using a series of paired-field experiments, we estimated the effects of revegetation types and environmental conditions on SOC stock and vertical distribution after replacement of cropland with poplar(Populus tomentosa) and korshinsk peashrub(Caragana korshinskii) in three climate regions(Chifeng City, Fengning City and Datong City of the ′Beijing-Tianjin Sandstorm Source Control′(BTSSC) program area. The results show that SOC sequestration rate ranges from 0.15 Mg/(ha·yr) to 3.76 Mg/(ha·yr) in the soil layer of 0–100 cm in early stage after cropland afforestation in the BTSSC program area. The SOC accumulation rates are the highest in Fengning for both the two vegetation types. Compared to C. korshinskii, P. tomentosa has greater effects on SOC accumulation in the three climate regions, but significantly greater effect only appears in Datong. The SOC density increases by 20%–111% and 15%–59% for P. tomentosa and 9%–63% and 0–73% for C. korshinskii in the 0–20 cm and 20–100 cm soil layers, respectively. Our results indicate that cropland afforestation not only affects SOC stock in the topsoil, but also has some effects on subsoil carbon. However, the effect of cropland afforestation on SOC accumulation varied with climate regions and revegetation types. Considering the large area of revegetation and relatively high SOC accumulation rate, SOC sequestration in the BTSSC program should contribute significantly to decrease the CO2 concentration in the atmosphere.  相似文献   

14.
A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0–10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC. Foundation item: Under the auspices of Key Project of National Natural Science Foundation of China (No. 40231016)  相似文献   

15.
Soil evolution features of debris flow waste-shoal land   总被引:1,自引:1,他引:0  
The reclamation and utilization of debris flow waste-shoal land plays an important role in the mitigation and control of debris flow hazards, which thus contributes a lot to the exploitation of insufficient land resources in mountainous areas and the reduction of losses caused by debris flow. The aim of this paper is to discuss the features and mechanism of soil evolution of debris flow waste-shoal land so as to search for the available modes of its reclamation and utilization. The Jiangjiagou Ravine, a typical debris flow ravine, was selected to study soil evolution features of debris flow waste-shoal land based on the analysis of soil physieochemical properties and soil microstructure. It was found that the soil evolution rates of debris flow waste-shoal land varied with different modes of reclamation. For the land which had been reclaimed for less than lO years, soil evolved most rapidly in paddy fields, and more rapidly in dry farmland than in naturally restored waste-shoal land. For the land which had been used for more than lo years, the soil evolution rates of dry farmland, naturally restored waste-shoal land and paddy farmland decreased in the file. For the same utilization period of time, significant differences were recognized in soil evolution features under different modes of reclamation. Analysis data showed that soil clay content, soil thickness, the psephicity of skeleton particles and contents of microaggregates (〈0.02 mm) in paddy farmland were all highest. Soil nutrients and porosity of dry farmland were better than those of paddy farmland and naturally restored waste-shoal land, and those of paddy farmland were superior to those of naturally restored waste-shoal land. Paddy farmland characterized by rapid pedogenesis, stable evolution and high utilizability was the priority candidate for the reclamation and utilization of debris flow waste -shoal land.  相似文献   

16.
Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native (Suaeda salsa) and invasive (Spartina alterniflora) salt marshes were selected to study the effects of Spartina alterniflora invasion on soil organic carbon (SOC) contents and stocks in the Yellow River Delta. Results showed that the SOC contents (g/kg) and stocks (kg/m2) were significantly increased (P < 0.05) after Spartina alterniflora invasion of seven years, especially for the surface soil layer (0–20 cm). The SOC contents exhibited an even distribution along the soil profiles in native salt marshes, while the SOC contents were gradually decreased with depth after Spartina alterniflora invasion of seven years. The natural ln response ratios (LnRR) were applied to identify the effects of short-term Spartina alterniflora invasion on the SOC stocks. We also found that Spartina alterniflora invasion might cause soil organic carbon losses in a short-term phase (2–4 years in this study) due to the negative LnRR values, especially for 20–60 cm depth. And the SOCD in surface layer (0–20 cm) do not increase linearly with the invasive age. Spearman correlation analysis revealed that silt + clay content was exponentially related with SOC in surface layer (Adjusted R2 = 0.43, P < 0.001), suggesting that soil texture could play a key role in SOC sequestration of coastal salt marshes.  相似文献   

17.
Labile organic carbon (LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the sources and causes of LOC contamination are. In this study, soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and LOC were analyzed based on different soil horizons and elevations using turnover time in an experimental site (3700 m to 4300 m area) in Sygera. SOC and LOC in higher-elevation vegetation types were higher than that of in lower-elevation vegetation types. Our results presented that the soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) were positively correlated with SOC. The content of easily oxidized carbon (EOC), particulate organic carbon (POC) and light fraction organic carbon (LFOC) decreased with depth increasing and the content were the lowest in the 60 cm to 100 cm depth. The total SOC, ROC and POC contents decreased with increasing soil horizons. The SOC, TN, MBC and MBN contents increased with increasing altitude in the Sygera Mountains. The MBC and MBN contents were different with the changes of SOC (p<0.05), meanwhile, both LFOC and POC were related to total SOC (p<0.05). The physical and chemical properties of soil, including temperature, humidity, and altitude, were involved in the regulation of SOC, TN, MBC, MBN and LFOC contents in the Sygera Mountains, Tibetan Plateau.  相似文献   

18.
Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon (SOC) fractions in forest ecosystems. This study had two aims: (1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and (2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains (SW Poland, Central Europe). The content of the most labile fraction of carbon (dissolved organic carbon, DOC) decreases with altitude, but the content of fulvic acids (FA), clearly increases in the zone above 1000 m asl, while the stabile fraction (humins, non-hydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests (Norway spruce), while a smaller - under deciduous forests (European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above 1000 m asl may lead to a substantial increase in the stable humus fraction (mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization. In the lower zone (below 1000 m asl), a decrease in the most stable humus forms can be expected, accompanied by an increase of DOC contribution, which will result in a reduction in SOC pools. Overall, the expected prevailing (spatial) effect is a decreasing contribution of the most stable humus fractions, which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe.  相似文献   

19.
The urban population and urbanized land in China have both increased markedly since the 1980s. Urban and suburban developments have grown at unprecedented rates with unknown consequences for ecosystem functions. In particular, the effect of rapid urbanization on the storage of soil carbon has not been studied extensively. In this study, we compared the soil carbon stocks of different land use types in Beijing Municipality. We collected 490 top-soil samples (top 20 cm) from urban and suburban sites within the Sixth Ring Road of Beijing, which cover approximately 2400 km2, and the densities of soil organic carbon (SOC), soil inorganic carbon (SIC), and total carbon (TC) were analyzed to determine the spatial distribution of urban and suburban soil carbon characteristics across seven land use types. The results revealed significant differences in soil carbon densities among land use types. Additionally, urban soil had significantly higher SOC and SIC densities than suburban soil did, and suburban shelterbelts and productive plantations had lower SIC densities than the other land use types. The comparison of coefficients of variance (CVs) showed that carbon content of urban topsoil had a lower variability than that of suburban topsoil. Further findings revealed that soil carbon storage increased with built-up age. Ur- ban soil built up for more than 20 years had higher densities of SOC, SIC and TC than both urban soil with less than 10 years and sub- urban soil. Correlation analyses indicated the existence of a significantly negative correlation between the SOC, SIC, and TC densities of urban soil and the distance to the urban core, and the distance variable alone explained 23.3% of the variation of SIC density and 13.8% of the variation of TC density. These results indicate that SOC and SIC accumulate in the urban topsoil under green space as a result of the conversion of agricultural land to urban land due to the urbanization in Beijing.  相似文献   

20.
This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号