首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Aluminous, high-temperature clay minerals form from alteration of tholeiitic basaltic glass and calcic plagioclase during hydrothermal venting on the crest of the East Pacific Rise at 21°N. The clay alteration assemblages are layered crusts (up to 1 mm thick) completely replacing glass and calcic plagioclase adjacent to surfaces exposed to hydrothermal fluids. The interiors of the affected basalt samples have unaltered appearances and oxygen isotopic compositions just slightly heavier than that of MORB. The surficial alteration crusts are mixtures of beidellitic smectite (aluminous, dioctahedral), randomly interstratified mixed-layer Al-rich chlorite/smectite, minor chlorite, an x-ray amorphous aluminosilicate material, and possible minor serpentine (amesite). A δ18O value of +4.1 ± 0.2%. (SMOW) is determined for the beidellitic smectite. Assuming that this smectite equilibrated with hydrothermal fluid having an oxygen isotope value between that of seawater (0%.) and 350°C hydrothermal fluid from EPR, 21°N vents (+1.6%.), an equilibration temperature between 290°C and 360°C is calculated for the beidellitic smectite. This is substantially higher than any previously reported temperature for an oceanic smectite. The mixed-layer Al-rich chlorite/smectite has a δ18O value of +3.5%., which corresponds to equilibration at 295°–360°C. The aluminous composition of the alteration assemblage is uncommon for clay minerals produced by submarine hydrothermal basalt alteration. We suggest that this assemblage is largely the product of high-temperature interaction between basalt glass + plagioclase and Mg-poor, acidic hydrothermal fluids, with possibly some contribution of Mg from bottom seawater, and that the aluminous clays either incorporate Al3+ remobilized from basalt by lowpH hydrothermal fluids, or are residual phases remaining after intense alteration of basaltic glass + plagioclase.  相似文献   

2.
Two types of white micas are found in drillhole samples within the geothermal system at Coso Hot Springs. Low-permeability zones of the crystalline basement contain coarse-grained relict muscovite, whereas rock alteration near fracture zones at temperatures > 150°C is characterized by abundant finegrained sericite in association with secondary calcite and quartz and unaltered relict microcline. In this hydrothermal sericite there is an increase in interlayer K, octahedral Mg + Fetotal and tetrahedral Al with increasing temperature between ~215° to >250°C.Thermodynamic activity of the Al2Si4O10(OH)2 component of serielles, calculated using site-mixing approximations of Helgeson and Aagaard (1985), decreases with increasing temperature between ~215° and >250°C. As a consequence of the observed variations in the interlayer, octahedral and tetrahedral site occupancies, the activity of KAl2(AlSi3O10(OH)2 is essentially constant in the Coso seriates over this temperature range. The calculated equilibrium distribution of aqueous species in the hydrothermal solutions produced from well 16−8, together with cation-activity phase diagrams that account for variations in sericite composition, requires a pH of ~6.7–6.8 at temperatures between 236° and 250°C. Comparison of predicted and observed phase relations with fluid compositions indicate that seriates are in local equilibrium with the geothermal reservoir fluid, whereas relict metamorphic muscovites are metastable.Although the compositions of hydrothermal sericites are a complex function of temperature, pressure and geothermal fluid composition, compositional relations observed at Coso together with published compositions of hydrothermal dioctahedral layer-silicates from the Salton Sea geothermal system demonstrates that elemental compositions of interlayer K and tetrahedral Al increase systematically with increasing temperature despite the dramatic differences in fluid compositions between these two geothermal systems. This suggests that the observed variations in interlayer and tetrahedral site occupancy is largely dependent on the enthalpy of hydrolysis reactions representing equilibrium between sericite solid solutions and the geothermal reservoir fluids.  相似文献   

3.
Dioctahedral smectite is present as a retrograde alteration product of chlorite in Permian-Triassic red slates of the Malaguide Complex in Sierra de Espuña (Betic Cordillera). Mineral assemblages and textures, illite crystallinity indices, and fluid inclusion data indicate sub-greenschist facies conditions that reached at least 180°C in the higher-grade tectonic unit of the Malaguide Complex, preceding formation of smectite. Smectite, having K as the dominant interlayer cation, occurs ubiquitously intercalated with trioctahedral chlorite as thin packets of layers and as individual layers that commonly change to chlorite along layers. Although some chlorite is typically homogeneous and trioctahedral, much chlorite shows signs of alteration and has compositions corresponding to different degrees of smectite contaimination. The incompatibility of metamorphic grade with the occurrence of smectite, the general association of chlorite and smectite, and the textural relations collectively show that dioctahedral smectite is derived through replacement of trioctahedral chlorite. Such replacement occurs on a regional basis and demonstrates that caution must be used in interpreting the occurrence of smectite in pelites as being due to prograde processes. Alteration of trioctahedral chlorite under oxidizing conditions due to introduction of phreatic water after uplift of the Betic Cordillera is proposed as the cause of formation of smectite.  相似文献   

4.
The experimental results of natural pyrochlore behavior in KF solutions in the presence of quartz at 550–850°C and 50–100 MPa are presented. It is shown that silicate matter (quartz) exerts a significant effect on pyrochlore solubility in aqueous solutions of fluorides of alkaline metals under hydrothermal conditions. This study of the fluid inclusions has revealed the occurrence of reactions of high-temperature hydrolysis of KF under the experimental conditions: KF + H2O = KOH + HF; in which case, the interaction with quartz SiO2 + 2KOH = K2SiO3 + H2O is followed by the formation of a silicate glass phase (an aqueous solution–melt). This phase of alkaline glass is a Nb concentrator (Nb2O5 up to 16 wt %). The coefficient of Nb distribution between the glass and the fluid is ≈500 (in favor of the glass). It is determined that the phase of the silicate solution–melt can serve as an effective concentrator of the ore component (Nb) at the last lowtemperature stages of crystallization of rare-metal granites.  相似文献   

5.
The sediments of the Bauer Deep, an open ocean basin situated on the northwest Nazca Plate in the southeast Pacific, constitute a regional metalliferous deposit dominated by authigenic smectite.Two 2-metre long cores from the Bauer Deep were examined to investigate the nature and origin of the smectite.Infra-red and Mossbauer spectroscopy and wet chemical analysis (LiBO2 fusion) of isolated smectite, indicate the mineral is a Mg-rich, Al-rich nontronite. Oxygen isotopic compositions for isolated smectite are uniform and translate to a non-hydrothermal temperature of formation of about 3°C. SEM observations show an abundance of well-preserved biogenic opal in surface and near surface sediment but postburial dissolution and transformation of this phase to smectite is evident at depth.Smectite formation is the result of interaction between iron oxyhydroxide, ponded in the Bauer Deep following a hydrothermal origin at the adjacent East Pacific Rise, and biogenic opal. A reaction mechanism is proposed.Regional factors control smectite formation. In particular, formation is inhibited in areas of CaCO3 accumulation (topographic elevations) but favoured in areas of oxyhydroxide and opal ponding (topographic depressions).  相似文献   

6.
Partial melting of metagreywackes, Part II. Compositions of minerals and melts   总被引:16,自引:0,他引:16  
A series of experiments on the fluid-absent melting of a quartz-rich aluminous metagreywacke has been carried out. In this paper, we report the chemical composition of the phases present in the experimental charges as determined by electron microprobe. This analytical work includes biotite, plagioclase, orthopyroxene, garnet, cordierite, hercynite, staurolite, gedrite, oxide, and glass, over the range 100–1000 MPa, 780–1025 °C. Biotites are Na- and Mg-rich, with Ti contents increasing with temperature. The compositions of plagioclase range from An17 to An35, with a significant orthoclase component, and are always different from the starting minerals. At high temperature, plagioclase crystals correspond to ternary feldspars with Or contents in the range 11–20 mol%. Garnets are almandine pyrope grossular spessartine solid solutions, with a regular and significant increase of the grossular content with pressure. All glasses are silicic (SiO2 = 67.6–74.4 wt%), peraluminous, and leucocratic (FeO + MgO = 0.9–2.9 wt%), with a bulk composition close to that of peraluminous leucogranites, even for degrees of melting as high as 60 vol.%. With increasing pressure, SiO2 contents decrease while K2O increases. At any pressure, the melt compositions are more potassic than the water-saturated granitic minima. The H2O contents estimated by mass balance are in the range 2.5–5.6 wt%. These values are higher than those predicted by thermodynamic models. Modal compositions were estimated by mass balance calculations and by image processing of the SEM photographs. The positions of the 20 to 70% isotects (curves of equal proportion of melt) have been located in the pressure-temperature space between 100 MPa and 1000 MPa. With increasing pressure, the isotects shift toward lower temperature between 100 and 200 MPa, then bend back toward higher temperature. The melting interval increases with pressure; the difference in temperature between the 20% and the 70% isotects is 40 °C at 100 MPa, and 150 °C at 800 MPa. The position of the isotects is interpreted in terms of both the solubility of water in the melt and the nature of the reactions involved in the melting process. A comparison with other partial melting experiments suggests that pelites are the most fertile source rocks above 800 MPa. The difference in fertility between pelites and greywackes decreases with decreasing pressure. A review of the glass compositions obtained in experimental studies demonstrates that partial melting of fertile rock types in the crust (greywackes, pelites, or orthogneisses) produces only peraluminous leucogranites. More mafic granitic compositions such as the various types of calk-alkaline rocks, or mafic S-type rocks, have never been obtained during partial melting experiments. Thus, only peraluminous leucogranites may correspond to liquids directly formed by partial melting of metasediments. Other types of granites involve other components or processes, such as restite unmixing from the source region, and/or interaction with mafic mantle-derived materials. Received: 11 July 1995 / Accepted: 27 February 1997  相似文献   

7.
Crystalline basalt, diabase and basalt glass have been reacted with a Na-Ca-K-Cl fluid of seawater ionic strength at 350–425°C, 375–400 bars pressure and fluid/rock mass ratios of 0.5–1.0, to assess the role of temperature, basalt/diabase chemistry and texture on heavy metal and sulfur mobility during hydrothermal alteration.Alteration of basalt/diabase is characterized by cation fixation and hydrolysis reactions which show increased reaction progress with increasing temperature at constant pressure. Correspondingly, pH in a series of 400 bar experiments ranges from 4.8 to 2.7 at 350 and 425°C, respectively and is typically lower for alteration of a SiO2-rich crystalline basalt than for other rock types, due, in part, to relatively high SiO2 concentrations in solution. High SiO2 concentrations stabilize hydrous Na- and Ca-rich alteration phases, causing pH to decrease according to reactions such as: 3.0 CaAl2Si2O8 + 1.0 Ca++ + 2.0 H2O = 2.0 Ca2Al3Si3O12(OH) + 2.0 H+Phases experimentally produced include: mixed layer chlorite/smectite, Ca-rich amphibole and clinozoisite. Clinozoisite was identified as a replacement product of plagioclase from diabase-solution interaction experiments.In direct response to H+ production, dissolved Fe, Mn and H2S concentrations increase dramatically. For early-stage reaction, H2S typically exceeds Fe and Mn. However, at 425°C and after long-term reaction at 400°C, H2S is lost from solution, apparently in response to pyrite replacement of oxide and silicate phases.Pyrrhotite formed at temperatures ≤ 375°C, whereas magnetite was identified in all run products, except from basalt glass alteration.Cu and Zn concentrations in solution are not simple functions of pH. These metals achieve greatest solubility in fluids from experiments at 375–400°C, except when basalt glass is used as a reactant. The relatively low concentrations of these species in solution during basalt glass reaction may be due to adsorption by fine grained alteration phases.  相似文献   

8.
《Lithos》1986,19(2):153-163
Amphiboles approached edenite (NaCa2Mg5Si7AlO22(OH)2), richterite (Na2CaMg5Si8O22(OH)2), tremolite (□Ca2Mg5Si8O22(OH)2) solid solutions were studied by conventional hydrothermal techniques employing the bulk compositions edenite, and edenite + additional quartz, all with excess H2O. For the stoichiometric edenite bulk composition + excess H2O, the equilibrium phase assemblage is diopside + Na-phlogopite + forsterite + fluid at, and just above the amphibole high-temperature limit at 850 ± 5°C, 500 bar, and 880 ± 5°C, 1000 bar. The breakdown temperature of sodic phlogopite is 855 ± 3°C at 500 bar, and 890 ± 5°C at 700 bar, producing nepheline + plagioclase (or melt), additional forsterite and fluid. Diopside and Na-phlogopite solid solution coexist over a broad Pfluid-T region, even within the amphibole field, where they are associated with an edenite-richterite (-tremolite) solid solution of approximate composition Ed35Rc50Tr15.In the system edenite + 4 quartz + excess H2O, nearly pure tremolite and albite coexist stably between 670° and 830°C at 1000 bar and give way to the possibly metastable assemblage diopside + talc + albite below 670°C. In the presence of albite, tremolite reacts to produce diopside + quartz + enstatite + fluid above 830°C at 1000 bar. For the investigated silica-rich bulk composition, amphibole Pfluid-T stability is divided by the albite melting curve into a tremolite + albite field, and a tremolite + aqueous melt field. Substantial equilibrium solid solution of tremolite towards edenite or richterite was not observed for silica-excess bulk compositions. Metastable edenite-rich amphiboles initially synthesized change to tremolite with increasing run length in the presence of free SiO2.Edenitic amphibole is stable only over a very limited temperature range in silica-undersaturated environments, thus accounting for its rarity in nature. Na-phlogopite solid solutions are also disfavored by high aSiO2; even for nepheline-normative lithologies, a hypothesized rapid low-temperature conversion to vermiculite or smectite could partly explain the scarcity of sodic phlogopite in rocks.  相似文献   

9.
The results of the study of clay mineral alterations in Upper Pleistocene sediments of the southern trough in the Guaymas Basin (Gulf of California) due to the influence of hydrothermal solutions and heat produced by sill intrusions are discussed. Core samples from DSDP Holes 477 and 477A were taken for the analysis of clay minerals. Application of the method of modeling X-ray diffraction patterns of oriented specimens of the finely dispersed particles made it possible to establish the phase composition of clay minerals, determine their structural parameters, and obtain reliable quantitative estimates of their contents in natural mixtures. The modeling data allowed us to characterize reliably the transformation of clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin. In Upper Pleistocene sandy–clayey sediments of the southern trough, changes in the composition of clay minerals occurred under the influence of a long-living hydrothermal system. Its lower part (interval 170.0–257.5 m) with maximum temperatures (~300°C) was marked by the formation of chlorite. Terrigenous clay minerals are not preserved here. Saponite appears at a depth of 248 m in the chlorite formation zone. Higher in the sedimentary section, the interval 146–170 m is also barren of terrigenous clay minerals. Sediments of this interval yielded two newly formed clay minerals (chlorite and illite), which were formed at lower temperatures (above 180°C and below 300°C, approximately up to ~250°C), while the relatively low-temperature upper part (110–146 m) of the hydrothermal system (from ~140°C to ~180°C) includes the mixture of terrigenous and newly formed clay minerals. Terrigenous illite is preserved here. Illitization of the mixed-layer illite–smectite was subjected to illitization. The terrigenous montmorillonite disappeared, and chlorite–smectite with 5–10% of smectite layers were formed. In the upper interval (down to approximately 110 mbsf), the composition of terrigenous clay minerals remains unchanged. They are composed of the predominant mixed-layer illite–smectite and montmorillonite, the subordinate illite, mixed-layer chlorite–smectite with 5% of smectite layers, mixed-layer kaolinite–smectite with 30% of smectite layers, and kaolinite. This composition of clay minerals changed under the influence of sill intrusions into the sedimentary cover at 58–105 m in the section of Hole 477. The most significant changes are noted in the 8-m-thick member above the sill at 50–58 m. The upper part of this interval is barren of the terrigenous mixed-layer illite–smectite, which is replaced by the newly formed trioctahedral smectite (saponite). At the same time, the terrigenous dioctahedral smectite (montmorillonite) is preserved. The composition of terrigenous clay minerals remains unchanged at the top of the unit underlying the sill base.  相似文献   

10.
Talc, kerolite–smectite, smectite, chlorite–smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite–smectite to smectite-rich kerolite–smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite–smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite–smectite with lower crystalline perfection as the proportion of smectite layers in kerolite–smectite increases.Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite–smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250 °C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200–250 °C) phase forming deep within the sediment (~ 0.8 m). Chlorite and chlorite–smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150–200 °C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite–smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite–smectite are hydrothermal alteration products of the background turbiditic sediment.  相似文献   

11.
New experimental data on the effect of anorthite (An) on liquidus phase equilibria in the system Qz–Ab–Or are presented. The data were obtained for 5 wt% An added to variable Qz/Ab/Or compositions at 300 MPa and under H2O-saturated conditions. Crystal–liquid equilibria were determined for 13 synthetic glass compositions made from gels in experiments performed between 660 and 750 °C in cold-seal pressure vessels. Forward and reversal experiments were systematically conducted on each composition to demonstrate equilibrium. A total of 51 charges was examined. Three crystalline phases, quartz, alkali feldspar and plagioclase appear on the H2O-saturated liquidus surface. The determined minimum liquidus 5 wt% An “piercing” point (39% Qz, 33% Ab, 28% Or) is shifted away from the Ab apex toward the Qz–Or sideline when compared with the An-free 300 MPa H2O-saturated minimum. This shift is of the same type as that observed at 100 MPa in the same system and at 200 MPa in a rhyolitic system. The new experimental results are used to test both empirical and thermodynamic models for silicic magmas. Empirical models reproduce reasonably well the new experimental data, although more sophisticated calculations schemes appear to be required to improve their accuracy. The new experimental results in the haplogranodiorite system are not well reproduced with the model of Holland and Powell (2001), mainly because plagioclase stability appears greatly enhanced in the model. Rhyolite-MELTS satisfactorily reproduces the Qz-, Pl- and Af-liquid phase equilibria, but model H2O solubilities are significantly lower and crystallization temperatures higher than in experiments.  相似文献   

12.
The ternary feldspar system KAlSi3O8 - NaAlSi3O8 - CaAl2Si2O8 was reinvestigated at 650 ° C and 800 ° C (P H2O = 1 kb) using mixtures of crystalline plagioclases and alkali feldspars as starting materials. The compositions of plagioclases and alkali feldspars of the run products were determined by X-ray means. The Or-content of the feldspar phases was determined by measuring the position of the (201) X-ray peak of the unexchanged feldspars, whereas the An-content was determined by measuring the same X-ray peak of the K-exchanged feldspars. The reaction rate of a reaction leading to a more An-rich plagioclase (type II reaction) is much faster than a reaction producing a more Ab-rich plagioclase (type I). In a type II reaction run times of approximately 20 days are needed to reach new constant plagioclase and alkali feldspar compositions at 650 ° C, and 10 days are needed to reach constant compositions at 800 ° C. In a reaction of type I only the outer zone of the plagioclases reacts to more Abrich compositions. A diffuse zone with a wide range of compositions was observed in 650 ° C runs. Equilibrium could not be reached in these experiments within 45 days. At 800 ° C a new zone having a specific composition develops in 42 days. This new zone is believed to be in equilibrium with the coexisting alkali feldspar. The depth of reaction is calculated as 0.03 μm after 42 days (800 ° C, P f= 1 kb). The reaction between the two feldspar phases could be reversed at 800 ° C. The following compositions are considered to represent equilibrium data at 800 ° C and P t = 1 kb:
  • An 43 Ab 51 Or 6 coexisting with Or 79 Ab 20 An 1, and
  • An 40 Ab 54 Or 6 coexisting with Or 75 Ab 24 An 1.
  • Recent data obtained with gels of ternary feldspar composition as starting materials do not agree with the results presented in this paper. Gels obviously crystallize spontaneously forming coexisting feldspars of non - equilibrium composition - alkali feldspars too rich in Ab and plagioclases too rich in An.  相似文献   

    13.
    14.
    The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt. Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite. There are three distinguishable types of fluid inclusions: crystal-rich, CO2–NaCl–H2O, and NaCl–H2O. At more than 500°C and 350~480 MPa, crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage, characterized by a dense hydrous alkali borosilicate fluid with a carbonate component. Between 412°C and 278°C, CO2–NaCl–H2Ofluid inclusions developed in spodumene (I) and quartz (II) with a low salinity (3.3–11.9 wt%NaCl equivalent) and a high volatile content, which represent the boundary between the transition stage and the hydrothermal stage. The subsequentNaCl–H2Ofluid inclusions from the hydrothermal stage, between 189°C and 302°C, have a low salinity (1.1–13.9 wt%NaCl equivalent). The various types of fluid inclusions reveal the P–T conditions of pegmatite formation, which marks the transition process from magmatic to hydrothermal. The ore-forming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit. The ore-forming fluid provided not only materials for crystallization of rare metal minerals, such as spodumene and beryl, but also the ideal conditions forthe growth of ore minerals. Therefore, this area has favorable conditions for lithium enrichment and excellent prospecting potential.  相似文献   

    15.
    Basaltic glass and diabase were reacted with seawater at 70°C at 1 bar and 150°C at 500 bars to determine fluid composition and alteration mineralogy. All experiments were performed at a water/ rock mass ratio of 10.The changes in seawater chemistry depended on temperature and crystallinity of the basalt. The experiment at 70°C produced a slight but continuous loss of Mg, Na and K and enrichment of Ca and SiO2 in the seawater while pH decreased slowly. At 150°C, in contrast, Mg and SO4 were quickly and quantitatively removed while Ca, SiO2, Na, K, Fe, Mn and Ba were added to the seawater. pH rose to values between 5.5 and 6.5 after an initial drop to lower values. Basalt glass reacted more extensively at 150°C than diabase.Smectite was the major alteration product (iron-rich saponite) at 150°C for both the glass and diabase experiments. Smectite from the diabase experiment was well crystallized while that from the glass experiment was poorly crystallized. The smectites are similar to smectites found in altered oceanic ophiolitic basalts.  相似文献   

    16.
    《Chemical Geology》2003,193(3-4):273-293
    The El Berrocal granite/U-bearing quartz vein (UQV) system has been studied as a natural analogue of a high-level radioactive waste repository. The main objective was to understand the geochemical behaviour of natural nuclides under different physicochemical conditions. Within this framework, the argillization processes related to fracturing and formation of the uranium–quartz vein were studied from a mineralogical and isotopic standpoint in order to establish their temperatures of formation and thus complete the geothermal history of the system. For this purpose, δ18O values were determined for pure mineral from the unaltered granite and quartz from the uranium–quartz vein, as well as for mixture samples from the hydrothermally altered granite (sericitised granite) and clayey samples from fracture fillings, including the clayey walls of the uranium–quartz vein. The isotopic signature of quartz from the uranium–quartz vein and the monophasic nature of its fluid inclusions led us to conclude that the isotopic signature of water in equilibrium with quartz was approximately in the range from −8.3‰ to −5.7‰ V-SMOV, its temperature of formation being around 85–120 °C. The δ18O values of pure sericite from the hydrothermally altered granite, calculated by means of the oxygen fraction molar method, indicate that its temperature of formation, in equilibrium with the aforementioned waters, is also in the range from 70 °C to approximately 120 °C. Clays from fracture fillings and clayey walls of the uranium–quartz vein are usually mixtures, in different proportions, of illite, approximately formed between 70 and 125 °C; two generations of kaolinite formed at approximately 90–130 °C and at around 25 °C, respectively; smectite, formed at ≤25 °C; and occasionally palygorskite, formed either between 30 and 45 °C or 19 and 32 °C, depending on the fractionation equation used. These data suggest that sericite from the hydrothermally altered granite, quartz from the uranium–quartz vein, illite and the first generation of kaolinite from the fracture fillings resulted from the same hydrothermal process affecting the El Berrocal granite in relation to fracturing. Under certain physicochemical conditions (T≈100 °C, pH≈8 and log [H4SiO4] between −4 and −3), illite and kaolinite can be paragenetic. As a result of weathering processes, smectite was formed from hydrothermal illite and inherited albite under alkaline weathering, while the second generation of kaolinite was formed from smectite, under acid conditions and close to the sulphide-rich uranium–quartz vein. Palygorskite is an occasional mineral formed probably either during the thermal tail of the above-described hydrothermal process or during weathering processes. In both cases, palygorskite must have formed from alkaline Si–Mg-rich solutions. Finally, these data and processes are discussed in terms of natural analogue processes, drawing some implications for the performance assessment of a deep geological radwaste repository (DGRR).  相似文献   

    17.
    A number of previous investigations have examined the ordering behavior of magnesium cordierite using X-ray diffraction, transmission electron microscopy, infrared spectroscopy and solution calorimetry. In the present investigation, one series of samples from the above studies has been examined by Raman spectroscopy. Systematic modifications in the spectra with annealing time at 1,200° C are consistent with a continuous ordering of the average Al/Si distribution from 4 h to at least 64 h, and which may begin earlier. Spectral changes are first definitely observed when the ordered domains are around 100 Å across, suggesting that Raman spectroscopy is sensitive to this distance scale. The spectra of samples annealed at 1,200° C are compared with samples annealed at 1,400°; C where ordering proceeds much faster, and the possible use of Raman spectroscopy in characterization of Al/Si order in cordierite is discussed. Finally, the Raman spectrum of Mg2Al4Si5O18 with a stuffed β-quartz structure has been obtained. Comparison of its spectrum with that of cordierite glass suggests similar structures for both, which seem different to that of disordered cordierite.  相似文献   

    18.
    Summary ?Hydrothermal experiments to synthesize pumpellyite group minerals of the pumpellyite–okhotskite series and to investigate their stability have been carried out at 200, 300 and 400 MPa P fluid and 250–500 °C by using cold-seal pressure vessels and solid buffers of MnO2–Mn2O3, Cu2O–CuO and Cu2O–Cu buffer assemblages. Okhotskite and pumpellyite rich in the okhotskite component crystallized from an oxide mixture starting material of Ca4MgMn3+ 3Al2Si6O24.5-oxide+excess H2O at P fluid of 200, 300 and 400 MPa and temperatures of 300 and 400 °C. However, a single phase of okhotskite was not produced, and associated piemontite, hausmannite, wollastonite, clinopyroxene, corundum, braunite–neltnerite solid solution and alleghanyite also formed. Mn-pumpellyite of the okhotskite–pumpellyite join occurs as aggregates of needle crystals, rounded grains or flaky crystals. Chemical compositions are variable and range from pumpellyite-(Mn2+) to okhotskite: 31–36 SiO2, 13–21 Al2O3, 12–25 total Mn2O3, 0.6–4 MgO and 20–24 wt.% CaO. Reconnaissance experiments using a starting material of synthetic Ca2Mn3+Al2Si3O12(OH)-piemontite at 300 MPa and temperatures of 250, 300, 400 and 500 °C indicate that Mn-rich pumpellyite can crystallize from piemontite at lower temperatures than the stability field of piemontite. The Mn-rich pumpellyite was accompanied by garnet, wollastonite and alleghanyite. The chemical compositions of the Mn-pumpellyites are 32–36 SiO2, 18–27 Al2O3, 8–18 total Mn2O3 and 20–23 wt.% CaO. This study shows that the stability fields of piemontite, piemontite+Mn-pumpellyite, and Mn-pumpellyite range in this order with decreasing temperature under high fO2 conditions. The maximum stability temperature of Mn-rich pumpellyite lies between 400 and 500 °C at 200–400 MPa in high fO2 conditions. Received March 3, 2000; revised version accepted December 28, 2001  相似文献   

    19.
    Speciation of aqueous calcium chloride and the solubility of wollastonite represented by the reaction wollastonite + 2HCl° → CaCl2° + quartz + H2O were experimentally investigated at 1 and 2 kbar in the range 425–600°C using rapid-quench hydrothermal techniques and a modified Ag + AgCl buffer technique (Frantz and Popp, 1979). Variation in the measured concentration in HCl° as a function of total dissolved calcium was used to identify associated aqueous CaCl2° as the predominant calcium species in the fluid at temperatures above 500°C at 2 kbar. The data were used to calculate the equilibrium constant for the above reaction as a function of temperature and pressure, from which the difference in Gibbs free energy of formation between CaCl2° and HCl° at 1 and 2 kbar, 450°–600°C was calculated. Solubility constants for minerals in the system MgO-CaO-SiO2-H2O-HCl-CO2 were calculated using the data from this study and from Frantz and Popp (1979). Calculated mineral solubilities were used to calculate the solution compositions and solid alteration products resulting from interactions of a Ca-Mg silicate mineral (diopside) with hydrothermal solutions containing a range of different total chloride concentrations. High total chloride (2.0 m) in the solution results in Si-Mg enrichment in the solids and Ca enrichment in the fluid, whereas low total chloride (0.008 m) results in Mg enrichment in the solids and Ca-Si enrichment in the fluid.  相似文献   

    20.
    The chemistry of seawater at conditions of 350° to 500°C, 220 to 1000 bars (22 to 100 MPa) is controlled by reactions involving magnesium hydroxide sulfate (MHSH) and anhydrite. During progressive heating from 350° to 500°C at 1000 bars (100 MPa), MHSH with a MgSO4 ratio of 1.25 is formed via precipitation from solution and via reaction of solution with pre-existing anhydrite. During adiabatic expansion the MHSH extracts additional SO4 from seawater and converts to a stoichiometry in which MgSO4 = 1.16. These reactions control and greatly change the concentrations of Ca, Mg, SO4 in solution and produce significant ionizable hydrogen, attaining 11.7 mmoles kg?1 at maximum conditions.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号