首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The roles of anthropogenic climate change and internal climate variability in causing the Mediterranean region’s late 20th Century extended winter drying trend are examined using 19 coupled models from the Intergovernmental Panel on Climate Change Fourth Assessment Report. The observed drying was influenced by the robust positive trend in the North Atlantic Oscillation (NAO) from the 1960s to the 1990s. Model simulations and observations are used to assess the probable relative roles of radiative forcing, and internal variability in explaining the circulation trend that drove much of the precipitation change. Using the multi-model ensemble we assess how well the models can produce multidecadal trends of realistic magnitude, and apply signal-to-noise maximizing EOF analysis to obtain a best estimate of the models’ (mean) sea-level pressure (SLP) and precipitation responses to changes in radiative forcing. The observed SLP and Mediterranean precipitation fields are regressed onto the timeseries associated with the models’ externally forced pattern and the implied linear trends in both fields between 1960 and 1999 are calculated. It is concluded that the radiatively forced trends are a small fraction of the total observed trends. Instead it is argued that the robust trends in the observed NAO and Mediterranean rainfall during this period were largely due to multidecadal internal variability with a small contribution from the external forcing. Differences between the observed and NAO-associated precipitation trends are consistent with those expected as a response to radiative forcing. The radiatively forced trends in circulation and precipitation are expected to strengthen in the current century and this study highlights the importance of their contribution to future precipitation changes in the region.  相似文献   

2.
We examine the possibility that anthropogenic forcing (Greenhouse gases and Sulfate aerosols, GS) is a plausible explanation for the observed near-surface temperature trends over the Mediterranean area. For this purpose, we compare annual and seasonal observed trends in near-surface temperature over the period from 1980 to 2009 with the response to GS forcing estimated from 23 models derived from CMIP3 database. We find that there is less than a 5% chance that natural (internal) variability is responsible for the observed annual and seasonal area-mean warming except in winter. Using additionally two pattern similarity statistics, pattern correlation and regression, we find that the large-scale component (spatial-mean) of the GS signal is detectable (at 2.5% level) in all seasons except in winter. In contrast, we fail to detect the small-scale component (spatial anomalies about the mean) of GS signal in observed trend patterns. Further, we find that the recent trends are significantly (at 2.5% level) consistent with all the 23 GS patterns, except in summer and spring, when 9 and 5 models respectively underestimate the observed warming. Thus, we conclude that GS forcing is a plausible explanation for the observed warming in the Mediterranean region. Consistency of observed trends with climate change projections indicates that present trends may be understood of what will come more so in the future, allowing for a better communication of the societal challenges to meet in the future.  相似文献   

3.
Using monthly independently reconstructed gridded European fields for the 500 hPa geopotential height, temperature, and precipitation covering the last 235 years we investigate the temporal and spatial evolution of these key climate variables and assess the leading combined patterns of climate variability. Seasonal European temperatures show a positive trend mainly over the last 40 years with absolute highest values since 1766. Precipitation indicates no clear trend. Spatial correlation technique reveals that winter, spring, and autumn covariability between European temperature and precipitation is mainly influenced by advective processes, whereas during summer convection plays the dominant role. Empirical Orthogonal Function analysis is applied to the combined fields of pressure, temperature, and precipitation. The dominant patterns of climate variability for winter, spring, and autumn resemble the North Atlantic Oscillation and show a distinct positive trend during the past 40 years for winter and spring. A positive trend is also detected for summer pattern 2, which reflects an increased influence of the Azores High towards central Europe and the Mediterranean coinciding with warm and dry conditions. The question to which extent these recent trends in European climate patterns can be explained by internal variability or are a result of radiative forcing is answered using cross wavelets on an annual basis. Natural radiative forcing (solar and volcanic) has no imprint on annual European climate patterns. Connections to CO2 forcing are only detected at the margins of the wavelets where edge effects are apparent and hence one has to be cautious in a further interpretation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
气候变暖背景下我国南方旱涝灾害时空格局变化   总被引:16,自引:7,他引:9  
我国南方地区各季节降水异常主要包含三种优势模态:长江及其以南地区降水呈整体偏多或偏少的一致型,长江中下游流域与华南呈反相变化的南北反相型以及东南与西南呈反相变化的东西反相型。其中一致型是南方地区各季节降水变率的第一优势模态。总体而言,在1961—2013年南方地区平均降水存在明显的年代际和长期趋势变化。其中,夏季和冬季南方区域平均降水具有相似的年代际变化特征,而秋季降水的年代际演变几乎与上述两个季节的相反。不过,在近30年南方各季降水量发生年代际转折的时间不尽相同:春季和秋季降水分别在21世纪初期和20世纪80年代中后期之后进入干位相,冬季和夏季降水则分别在80年代中期和90年代初期之后进入湿位相。自21世纪初期以来,南方夏季和冬季降水逐渐转入中性位相。此外,南方春季和秋季降水均呈减少趋势;而夏季和冬季则相反,均呈增多趋势。对于西南地区,除了春季外,其他三个季节的降水均呈减少趋势,出现了季节连旱的特征,尤其是秋旱最为严重。不过,不管是季节降水量还是旱/涝日数,在我国南方大部分地区其线性变化趋势并不十分显著,这与南方降水年代际分量对降水变率存在较大贡献相关。分析还发现,我国南方区域洪涝受灾面积具有比较明显的年代际变化,而干旱受灾面积则没有明显的年代际变化特征,近十多年来西南地区干旱和洪涝受灾出现了交替互现的特点。  相似文献   

5.
Based on daily precipitation data from 524 meteorological stations in China during the period 1960–2009, the climatology and the temporal changes (trends, interannual, and decadal variations) in the proportion of seasonal precipitation to the total annual precipitation were analyzed on both national and regional scales. Results indicated that (1) for the whole country, the climatology in the seasonal distribution of precipitation showed that the proportion accounted for 55 % in summer (June–August), for around 20 % in both spring (March–May) and autumn (September–November), and around 5 % in winter (December–February). But the spatial features were region-dependent. The primary precipitation regime, “summer–autumn–spring–winter”, was located in central and eastern regions which were north of the Huaihe River, in eastern Tibet, and in western Southwest China. The secondary regime, “summer–spring–autumn–winter”, appeared in the regions south of the Huaihe River, except Jiangnan where spring precipitation dominated, and the southeastern Hainan Island where autumn precipitation prevailed. (2) For the temporal changes on the national scale, first, where the trends were concerned, the proportion of winter precipitation showed a significantly increasing trend, while that of the other three seasons did not show any significant trends. Second, for the interannual variation, the variability in summer was the largest among the four seasons and that in winter was the smallest. Then, on the decadal scale, China experienced a sharp decrease only in the proportion of summer precipitation in 2000. (3) For the temporal changes on the regional scale, all the concerned 11 geographic regions of China underwent increasing trends in the proportion of winter precipitation. For spring, it decreased over the regions south of the Yellow River but increased elsewhere. The trend in the proportion of summer precipitation was generally opposite to that of spring. For autumn, it decreased over the other ten regions except Inner Mongolia with no trend. It is noted that the interannual variability of precipitation seasonality is large over North China, Huanghuai, and Jianghuai; its decadal variability is large over the other regions, especially over those regions south of the Yangtze River.  相似文献   

6.
Identifying and removing the influence of atmospheric circulation variability on central England temperature increases the statistical significance of warming trends in spring, autumn and the annual mean over the last 50 years. The trends are more detectable because the circulation changes contribute greatly to the ‘noise’ of interannual to interdecadal variability, but induce only small multi-decadal trends (the ‘signal’). Factoring out the circulation can thus enhance the signal-to-noise ratio. For precipitation, the recent enhancement in the difference between summer rainfall in south-east England and winter precipitation in northern Scotland can partly be explained by atmospheric circulation variability over the past 40 years (particularly the increase in the North Atlantic Oscillation index from the 1960s to the early 1990s).  相似文献   

7.
Summary In this study, the trends of annual and seasonal precipitation time series were examined on the basis of measurements of 22 surface stations in Greece for the period 1955–2001, and satellite data during the period 1980–2001. For this purpose, two statistical tests based on the least square method and one based on the Mann-Kendall test, which is also capable of detecting the starting year of possible climatic discontinuities or changes, are applied. Greece, in general, presents a clear significant downward trend in annual precipitation for the period 1955–2001, which is determined by the respective decreasing trend in winter precipitation. Both winter and annual series exhibit a downward trend with a starting year being 1984. Satellite-derived precipitation time series could be an alternative means for diagnosing the variability of precipitation in Greece and detecting trends provided that they have been adjusted by surface measurements in the wider area of interest. The relationship between precipitation variability in Greece and atmospheric circulation was also examined using correlation analysis with three circulation indices: the well-known North Atlantic Oscillation Index (NAOI), a Mediterranean Oscillation Index (MOI) and a new Mediterranean Circulation Index (MCI). NAOI is the index that presented the most interesting correlation with winter, summer and annual precipitation in Greece, whereas the MOI and MCI were found to explain a significant proportion of annual and summer precipitation variability, respectively. The observed downward trend in winter and annual precipitation in Greece is linked mainly to a rising trend in the hemispheric circulation modes of the NAO, which are connected with the Mediterranean Oscillation Index.  相似文献   

8.
1960-2009年咸宁市气候变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1960-2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温早在1990年发生突变。春季与秋季平均气温的变化比较一致,冬季平均气温对全球变暖响应最敏感,春秋与秋季对气候变暖的响应是比较敏感,而夏季对气候变暖的响应最为迟缓。近50 a年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著、其余季节无明显相关性。  相似文献   

9.
利用1960—2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10 a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温在1990年发生突变。春季与秋季平均气温的变化较一致,冬季平均气温对全球变暖响应最敏感,春季与秋季对气候变暖的响应较敏感,而夏季对气候变暖的响应最为迟缓。近50 a咸宁市年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著,其余季节无明显相关性。  相似文献   

10.
The Mediterranean region has been identified as a global warming hotspot, where future climate impacts are expected to have significant consequences on societal and ecosystem well-being. To put ongoing trends of summer climate into the context of past natural variability, we reconstructed climate from maximum latewood density (MXD) measurements of Pinus heldreichii (1521–2010) and latewood width (LWW) of Pinus nigra (1617–2010) on Mt. Olympus, Greece. Previous research in the northeastern Mediterranean has primarily focused on inter-annual variability, omitting any low-frequency trends. The present study utilizes methods capable of retaining climatically driven long-term behavior of tree growth. The LWW chronology corresponds closely to early summer moisture variability (May–July, r = 0.65, p < 0.001, 1950–2010), whereas the MXD-chronology relates mainly to late summer warmth (July–September, r = 0.64, p < 0.001; 1899–2010). The chronologies show opposing patterns of decadal variability over the twentieth century (r = ?0.68, p < 0.001) and confirm the importance of the summer North Atlantic Oscillation (sNAO) for summer climate in the northeastern Mediterranean, with positive sNAO phases inducing cold anomalies and enhanced cloudiness and precipitation. The combined reconstructions document the late twentieth—early twenty-first century warming and drying trend, but indicate generally drier early summer and cooler late summer conditions in the period ~1700–1900 CE. Our findings suggest a potential decoupling between twentieth century atmospheric circulation patterns and pre-industrial climate variability. Furthermore, the range of natural climate variability stretches beyond summer moisture availability observed in recent decades and thus lends credibility to the significant drying trends projected for this region in current Earth System Model simulations.  相似文献   

11.
The study examines future scenarios of precipitation extremes over Central Europe in an ensemble of 12 regional climate model (RCM) simulations with the 25-km resolution, carried out within the European project ENSEMBLES. We apply the region-of-influence method as a pooling scheme when estimating distributions of extremes, which consists in incorporating data from a ‘region’ (set of gridboxes) when fitting an extreme value distribution in any single gridbox. The method reduces random variations in the estimates of parameters of the extreme value distribution that result from large spatial variability of heavy precipitation. Although spatial patterns differ among the models, most RCMs simulate increases in high quantiles of precipitation amounts when averaged over the area for the late-twenty-first century (2070–2099) climate in both winter and summer. The sign as well as the magnitude of the projected change vary only little for individual parts of the distribution of daily precipitation in winter. In summer, on the other hand, the projected changes increase with the quantile of the distribution in all RCMs, and they are negative (positive) for parts of the distribution below (above) the 98% quantile if averaged over the RCMs. The increases in precipitation extremes in summer are projected in spite of a pronounced drying in most RCMs. Although a rather general qualitative agreement of the models concerning the projected changes of precipitation extremes is found in both winter and summer, the uncertainties in climate change scenarios remain large and would likely further increase considerably if a more complete ensemble of RCM simulations driven by a larger suite of global models and with a range of possible scenarios of the radiative forcing is available.  相似文献   

12.
Abstract

Past research has unveiled important variations in total precipitation, often related to large‐scale shifts in atmospheric circulation, and consistent with projected responses to enhanced greenhouse warming. More recently, however, it has been realized that important and influential changes in the variability of daily precipitation events have also occurred in the past, often unrelated to changes in total accumulation.

This study aims to uncover variations in daily precipitation intensity over Canada and to compare the observed variations with those in total accumulation and two dominant modes of atmospheric variability, namely the North Atlantic Oscillation (NAO) and the Pacific/North America teleconnection pattern (PNA). Results are examined on both annual and seasonal bases, and with regions defined by similarities in monthly variability.

Seasonally increasing trends in total precipitation that result from increases in all levels of event intensity during the 20th century are found in southern areas of Canada. During the latter half of the century increases are concentrated in heavy and intermediate events, with the largest changes occurring in Arctic areas. Variations in precipitation intensity can, however, be unrelated to variations in the total accumulation. Consistent with these differences, the precipitation responses to the NAO and PNA are often found to occur only at specific levels of event intensity. Precipitation responses to the NAO occur in northeastern regions in summer and winter with the intensity affected in both seasons. The PNA strongly influences precipitation in many regions of the country during autumn and winter. In particular, it strongly influences variations in southern British Columbia and the Prairies, affecting the intensity in only some areas. However, it only influences the frequency of heavier events in autumn and winter in Ontario and southern Quebec, where this response is actually more robust than the response in total accumulation. During these seasons a negative PNA generally leads to more extreme precipitation events.  相似文献   

13.
Climate models predict substantial summer precipitation reductions in Europe and the Mediterranean region in the twenty-first century, but the extent to which these models correctly represent the mechanisms of summertime precipitation in this region is uncertain. Here an analysis is conducted to compare the observed and simulated impacts of the dominant large-scale driver of summer rainfall variability in Europe and the Mediterranean, the summer North Atlantic Oscillation (SNAO). The SNAO is defined as the leading mode of July–August sea level pressure variability in the North Atlantic sector. Although the SNAO is weaker and confined to northern latitudes compared to its winter counterpart, with a southern lobe located over the UK, it significantly affects precipitation in the Mediterranean, particularly Italy and the Balkans (correlations of up to 0.6). During high SNAO summers, when strong anticyclonic conditions and suppressed precipitation prevail over the UK, the Mediterranean region instead is anomalously wet. This enhanced precipitation is related to the presence of a strong upper-level trough over the Balkans—part of a hemispheric pattern of anomalies that develops in association with the SNAO—that leads to mid-level cooling and increased potential instability. Neither this downstream extension nor the surface influence of the SNAO is captured in the two CMIP3 models examined (HadCM3 and GFDL-CM2.1), with weak or non-existent correlations between the SNAO and Mediterranean precipitation. Because these models also predict a strong upward SNAO trend in the future, the error in their representation of the SNAO surface signature impacts the projected precipitation trends. In particular, the attendant increase in precipitation that, based on observations, should occur in the Mediterranean and offset some of the non-SNAO related drying does not occur. Furthermore, the fact that neither the observed SNAO nor summer precipitation in Europe/Mediterranean region exhibits any significant trend so far (for either the full century or the recent half of the record) does not increase our confidence in these model projections.  相似文献   

14.
We investigate the large-scale forcing and teleconnections between atmospheric circulation (sea level pressure, SLP), sea surface temperatures (SSTs), precipitation and heat wave events over western Europe using a new dataset of 54 daily maximum temperature time series. Forty four of these time series have been homogenised at the daily timescale to ensure that the presence of inhomogeneities has been minimised. The daily data have been used to create a seasonal index of the number of heat waves. Using canonical correlation analysis (CCA), heat waves over western Europe are shown to be related to anomalous high pressure over Scandinavia and central western Europe. Other forcing factors such as Atlantic SSTs and European precipitation, the later as a proxy for soil moisture, a known factor in strengthening land–atmosphere feedback processes, are also important. The strength of the relationship between summer SLP anomalies and heat waves is improved (from 35%) to account for around 46% of its variability when summer Atlantic and Mediterranean SSTs and summer European precipitation anomalies are included as predictors. This indicates that these predictors are not completely collinear rather that they each have some contribution to accounting for summer heat wave variability. However, the simplicity and scale of the statistical analysis masks this complex interaction between variables. There is some useful predictive skill of summer heat waves using multiple lagged predictors. A CCA using preceding winter North Atlantic SSTs and preceding January to May Mediterranean total precipitation results in significant hindcast (1972–2003) Spearman rank correlation skill scores up to 0.55 with an average skill score over the domain equal to 0.28 ± 0.28. In agreement with previous studies focused on mean summer temperature, there appears to be some predictability of heat wave events on the decadal scale from the Atlantic Multidecadal Oscillation (AMO), although the long-term global mean temperature is also well related to western European heat waves. Combining these results with the observed positive trends in summer continental European SLP, North Atlantic SSTs and indications of a decline in European summer precipitation then possibly these long-term changes are also related to increased heat wave occurrence and it is important that the physical processes controlling these changes be more fully understood.  相似文献   

15.
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.  相似文献   

16.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   

17.
利用1961—1990年江淮流域逐日降水资料、NCEP/NCAR再分析资料和HadCM3 SRES A1B情景下模式预估资料,采用典型相关分析统计降尺度方法,评估降尺度模型对当前极端降水指数的模拟能力,并对21世纪中期和末期的极端降水变化进行预估。结果表明:通过降尺度能够有效改善HadCM3对区域气候特征的模拟能力,极端降水指数气候平均态相对误差降低了30%~100%,但降尺度结果仍然在冬季存在湿偏差、夏季存在干偏差;在SRES A1B排放情景下,该区域大部分站点的极端强降水事件将增多,强度增大,极端强降水指数的变化幅度高于平均降水指数,且夏季增幅高于冬季;冬季极端降水贡献率(R95t)在21世纪中期和末期的平均增幅分别为14%和25%,夏季则分别增加24%和32%。  相似文献   

18.
Climate extremes indices are evaluated for the northeast United States and adjacent Canada (Northeast) using gridded observations and twenty-three CMIP5 coupled models. Previous results have demonstrated observed increases in warm and wet extremes and decreases in cold extremes, consistent with changes expected in a warming world. Here, a significant shift is found in the distribution of observed total annual precipitation over 1981-2010. In addition, significant positive trends are seen in all observed wet precipitation indices over 1951-2010. For the Northeast region, CMIP5 models project significant shifts in the distributions of most temperature and precipitation indices by 2041-2070. By the late century, the coldest (driest) future extremes are projected to be warmer (wetter) than the warmest (wettest) extremes at present. The multimodel interquartile range compares well with observations, providing a measure of confidence in the projections in this region. Spatial analysis suggests that the largest increases in heavy precipitation extremes are projected for northern, coastal, and mountainous areas. Results suggest that the projected increase in total annual precipitation is strongly influenced by increases in winter wet extremes. The largest decreases in cold extremes are projected for northern and interior portions of the Northeast, while the largest increases in summer warm extremes are projected for densely populated southern, central, and coastal areas. This study provides a regional analysis and verification of the latest generation of CMIP global models specifically for the Northeast, useful to stakeholders focused on understanding and adapting to climate change and its impacts in the region.  相似文献   

19.
Climate change in the twenty-first century, projected by a large ensemble average of global coupled models forced by a mid-range (A1B) radiative forcing scenario, is downscaled to Climate Divisions across the western United States. A simple empirical downscaling technique is employed, involving model-projected linear trends in temperature or precipitation superimposed onto a repetition of observed twentieth century interannual variability. This procedure allows the projected trends to be assessed in terms of historical climate variability. The linear trend assumption provides a very close approximation to the time evolution of the ensemble-average climate change, while the imposition of repeated interannual variability is probably conservative. These assumptions are very transparent, so the scenario is simple to understand and can provide a useful baseline assumption for other scenarios that may incorporate more sophisticated empirical or dynamical downscaling techniques. Projected temperature trends in some areas of the western US extend beyond the twentieth century historical range of variability (HRV) of seasonal averages, especially in summer, whereas precipitation trends are relatively much smaller, remaining within the HRV. Temperature and precipitation scenarios are used to generate Division-scale projections of the monthly palmer drought severity index (PDSI) across the western US through the twenty-first century, using the twentieth century as a baseline. The PDSI is a commonly used metric designed to describe drought in terms of the local surface water balance. Consistent with previous studies, the PDSI trends imply that the higher evaporation rates associated with positive temperature trends exacerbate the severity and extent of drought in the semi-arid West. Comparison of twentieth century historical droughts with projected twenty-first century droughts (based on the prescribed repetition of twentieth century interannual variability) shows that the projected trend toward warmer temperatures inhibits recovery from droughts caused by decade-scale precipitation deficits.  相似文献   

20.
Strategic-scale assessments of climate change impacts are often undertaken using the change factor (CF) methodology whereby future changes in climate projected by General Circulation Models (GCMs) are applied to a baseline climatology. Alternatively, statistical downscaling (SD) methods apply climate variables from GCMs to statistical transfer functions to estimate point-scale meteorological series. This paper explores the relative merits of the CF and SD methods using a case study of low flows in the River Thames under baseline (1961–1990) and climate change conditions (centred on the 2020s, 2050s and 2080s). Archived model outputs for the UK Climate Impacts Programme (UKCIP02) scenarios are used to generate daily precipitation and potential evaporation (PE) for two climate change scenarios via the CF and SD methods. Both signal substantial reductions in summer precipitation accompanied by increased PE throughout the year, leading to reduced flows in the Thames in late summer and autumn. However, changes in flow associated with the SD scenarios are generally more conservative and complex than that arising from CFs. These departures are explained in terms of the different treatment of multidecadal natural variability, temporal structuring of daily climate variables and large-scale forcing of local precipitation and PE by the two downscaling methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号