首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionization yield in a two-phase liquid xenon dark-matter detector has been studied in keV nuclear recoil energy region. The newly obtained nuclear quenching as well as the average energy required to produce an electron–ion pair from the measurement in Seguinot (1992) are used to calculate the total electric charges produced. To estimate the fraction of the electron charges collected, the Thomas-Imel model is generalized to describe the field dependence for nuclear recoils in liquid xenon. With free parameters fitted to experimentally measured 56.5 keV nuclear recoils, the energy dependence of ionization yield for nuclear recoils is predicted, which increases as recoil energy decreases and reaches the maximum value at 2∼3 keV. This prediction agrees well with existing data and may help to lower the energy detection threshold for nuclear recoils to ∼1 keV.  相似文献   

2.
介绍将用于中国第一颗月球探测卫星主载荷之一的伽玛射线谱仪的结构设计, Monte Carlo模拟结果和原理样机性能测试结果等.该探测器采用CsI(T1)晶体作为闪烁体和反符合技术抑制本底,可探测的射线能量范围为0.3-9.0 MeV,仪器能量分辨率是9.0%(662 keV).  相似文献   

3.
The UVIS dark matter detector, proposed by Spooner and Smith (Phys. Lett. B 314 (1993) 430), consists of < 1000 ppm Tl doped NaI scintillator operated at 100-200 K, with measurement of UV and visible scintillation components used to discriminate between electrons (gammas) and Na or I recoils. Presented here are results of measurements of the gamma/nuclear recoil discrimination power of a Kyropolous NaI (0.5 ppm Tl) UVIS test detector operated at 160 K, with monoenergetic neutrons used to induce nuclear recoils via elastic scattering. Defining the statistical gain factor for N events as , the coefficient Cm was measured as a function of photoelectron pulse height. At 40 photoelectrons Cm was found to be 0.5 (corresponding to 90% rejection of gammas with 20% loss of neutron events). The scintillation efficiency for Na and I recoils relative to electrons was also measured at 160 K and found to be 35 ± 5% for Na recoils and 10 ± 2% for iodine.  相似文献   

4.
5.
The ionization deposited in a Ge crystal by the scattering of ≈ 1 MeV neutrons on Ge nuclei is measured and its lowenergy behavior is investigated down to recoil energies of 3 keV. This calibration study is fundamental for the discrimination of Weakly Interacting Massive Particles (WIMPs) from the radioactive background. Experimental results are compared with theoretical predictions.  相似文献   

6.
We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1?C200?keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1?C200?keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk?Cthermal emission?Ciron line?Ccomptonisation?Creflection?Cnon-thermal emission?Cjets. Neutron stars?Cmagnetic field?Ccyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines?Cdirect measurement of magnetic filed?Cequation of state constraints?Cshort bursts?Cgiant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN??s. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20?keV). Element formation?CSupernovae: The energy resolution achievable for this mission (<0.5?keV) and a large high energy effective area are ideally suited for the 44Ti line study (68 and 78?keV). This radioactive nuclei emission will give an estimate of their quantities and speed in their environment. In addition the study of the spatial structure and spectral emission of SNR will advance our knowledge of the dynamics of supernovae explosions, of particles acceleration mechanisms and how the elements are released in the interstellar medium. Instrumental design: The progress of X-ray focusing optics techniques allows a major step in the instrumental design: the collecting area becomes independent of the detection area. This drastically reduces the instrumental background and will open a new era. The optics will be based on depth-graded multi-layer mirrors in a Wolter I configuration. To obtain a significant effective area in the hundred of keV range a focal length in the 40?C50 meters range (attainable with a deployable mast) is needed. In addition such a mission could benefit from recent progress made on mirror coating. We propose to cover the 1?C200?keV energy range with a single detector, a double-sided Germanium strip detector operating at 80?K. The main features will be: (a) good energy resolution (.150?keV at 5?keV and <.5?keV at 100?keV), (b) 3 dimensional event localization with a low number of electronic chains, (c) background rejection by the 3D localization, (d) polarisation capabilities in the Compton regime.  相似文献   

7.
Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recently reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.  相似文献   

8.
Low energy precipitated electrons have been measured with high time resolution through an auroral display by a series of high geometrical factor particle counters on a ‘mother-daughter’ sounding rocket, launched during wintertime near 2100 LT from Andenes, Norway.The observations show that the 0·5–3 keV electron fluxes are anisotropically distributed, with a maximum in a direction parallel to the local geomagnetic field vector at all latitudes covered by the rocket, except within the visual auroral forms where the pitch-angle distributions are isotropic or slightly peaked in a direction normal to the geomagnetic field. The 1 and 3 keV electron fluxes are weakly anticorrelated in the vicinity of the arcs, where also the 3 keV electron flux displays a more structured variation than the 0.5 and 1 keV electron fluxes.  相似文献   

9.
Coherent synchrotron deceleration of 100 keV electrons is proposed as the mechanism by which type II and III solar radio bursts are generated. This mechanism directly excites the transverse electromagnetic radiation by a linear mechanism at the relativistic electron cyclotron frequency and at the first harmonic thereof if the energy spread of the exciting component is sufficiently narrow. Higher cyclotron harmonics are excluded by the energy spread in the 100 keV exciting electron component. This mechanism appears to fit the observational data concerning these emissions some-what better than the existing theory based on the non-linear interaction of electrostatic plasma waves.  相似文献   

10.
We perform a theoretical study of the scintillation efficiency of the low energy region crucial for liquid xenon dark matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from experimental data to the low energy region, and take into account the effects of electron escape from electron–ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoil energy drops below 3 keV.  相似文献   

11.
We have developed radiation detectors using the new synthetic diamonds. The diamond detector has an advantage for observations of “low/medium” energy gamma rays as a Compton telescope. The primary advantage of the diamond detector can reduce the photoelectric effect in the low energy range, which is background noise for tracking of the Compton recoil electron. A concept of the Diamond Compton Telescope (DCT) consists of position sensitive layers of diamond-striped detector and calorimeter layer of CdTe detector. The key part of the DCT is diamond-striped detectors with a higher positional resolution and a wider energy range from 10 keV to 10 MeV. However, the diamond-striped detector is under development. We describe the performance of prototype diamond detector and the design of a possible DCT evaluated by Monte Carlo simulations.   相似文献   

12.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

13.
Energetic solar electrons in the interplanetary medium   总被引:3,自引:0,他引:3  
R. P. Lin 《Solar physics》1985,100(1-2):537-561
ISEE-3 measurements extending down to 2 keV energy have provided a new perspective on energetic solar electrons in the interplanetary medium. Impulsive solar electron events are observed, on average, several times a day near solar maximum, with 40% detected only below 15 keV. The electron energy spectra have a nearly power-law shape extending smoothly down to 2 keV, indicating that the origin of these events is high in the corona. These coronal flare-like events often produced 3He-rich particle events.In large solar flares which accelerate electrons and ions to relativistic energies, the electron spectrum appears to be modified by a second acceleration which results in a double power-law shape above 10 keV with a break near 100 keV and flattening from 10–100 keV. Large flares result in long-lived (many days) streams of outflowing electrons which dominate the interplanetary fluxes at low energies. Even in the absence of solar activity, significant fluxes of low energy electrons flow out from the Sun.Solar type-III radio bursts are produced by the escaping 2–102 keV electrons through a beam-plasma instability. The detailed ISEE-3 measurements show that electron plasma waves are generated by the bump-on-tail distribution created by the faster electrons running ahead of the slower ones. These plasma waves appear to be converted into radio emission by nonlinear wave-wave interactions.  相似文献   

14.
Simultaneous measurements of keV ions and electrons with the ESRO 1A satellite have shown the following ion characteristics among others. Ions of about 6 keV energy are strongly field-aligned on the flanks of the inverted V events (mainly through the disappearance of the ion flux near 90° pitch angle). Field-aligned electron fluxes are often found in the same regions of the inverted V events where the ions are field-aligned. At the centre of inverted V events isotropization occurs (except in some small events). The 1 keV ion flux at large pitch angles (80°) is generally not reduced very much when the 6 keV, 80° ion flux shows strongly decreased values. The ratio of the 1 to 6 keV ion flux has a maximum near the centre of an inverted V event where the electron spectrum is hardest and the 6 keV ions are isotropic (or nearly isotropic).The observations are interpreted in terms of a model with two oppositely directed field-aligned electrostatic potential drops: one upper accelerating electrons downward and one lower, produced by the electron influx, which accelerates ions downward. Ion scattering in turbulent wave fields is proposed to be responsible for the observation that the 1 keV ion flux at large pitch angles does not decrease strongly where the 6 keV ion flux does and as an explanation of the isotropization at the centre of the event. The source problem for the ions is eliminated by the precipitating electrons ionizing continuously the thin neutral atmosphere even at altitudes of a few thousand kilometers.  相似文献   

15.
On 9 December 1981 rocket borne energetic electron spectrometers measured energy spectra over a stable auroral arc. An associated microprocessor accurately timed the electron detection pulses to calculate auto-correlation functions for each of 16 energy levels between 300 eV and 19 keV.Energy spectra measured up to 230 km altitude contained a secondary peak around 5 keV, corresponding to the auroral beam. Derived velocity distribution functions contain a plateau or table extending round from 0 to 90° pitch angle with a weak positive gradient (+ ve d?(ν)/dν) near zero pitch angle. Autocorrelation functions made at energy levels corresponding to the location of the positive gradient showed the electrons of this region of phase space to be strongly modulated (~ 30%) at a frequency of 2.65 MHz or approximately at twice the electron gyrofrequency.This observation provides the most direct measurement of the auroral beam/ionospheric plasma interaction to date. It provides hard experimental evidence to support the theories which have previously predicted that a major wave-particle interaction responsible for the evolution of the auroral distribution function occurs at heights where the upper hybrid frequency equals twice the local electron gyrofrequency.  相似文献   

16.
The discrimination capabilities of a 70 g heat and ionization Ge bolometer are studied. This first prototype has been used by the EDELWEISS dark matter experiment, installed in the Laboratoire Souterrain de Modane, for direct detection of WIMPs. Gamma and neutron calibrations demonstrate that this type of detector is able to reject more than 99.6% of the background while retaining 95% of the signal, provided that the background events distribution is not biased towards the surface of the Ge crystal. However, the 1.17 kg day of data taken in a relatively important radioactive environment show an extra population slightly overlapping the signal. This background is likely due to interactions of low energy photons or electrons near the surface of the crystal, and is somewhat reduced by applying a higher charge-collecting inverse bias voltage (−6 V instead of −2 V) to the Ge diode. Despite this contamination, more than 98% of the background can be rejected while retaining 50% of the signal. This yields a conservative upper limit of 0.7 event day−1 kg−1 keVrecoil−1 at 90% confidence level in the 15–45 keV recoil energy interval; the present sensitivity appears to be limited by the fast ambient neutrons. Upgrades in progress on the installation are summarized.  相似文献   

17.
《Astroparticle Physics》2010,33(6):286-293
In the past, there have been reports of the observation of decrease in the flux of secondary cosmic γ-rays during a total solar eclipse. We have measured the flux of secondary cosmic γ-rays during the total solar eclipse that occurred at Novosibirsk in Russia, on 1 August 2008. Highly sensitive measurements were carried out by using a detector system with built-in redundancy. The system consisted of two independent, large volume NaI(Tl) scintillator detectors for sensitive and reliable measurements. The data display significant variability in the flux of secondary γ-rays in the energy range 50–4600 keV. Just prior to the total solar eclipse a change ∼9% in the flux was observed, followed by a small but steady decrease ∼4% during the eclipse. The temporal variation in the observed flux of γ-rays were found to be nearly identical for the two detectors. The energy dependence of the variation was further studied by binning the yield in three energy ranges, namely, 100–200, 200–400 and 400–4600 keV. The nearly identical time variation observed in the two independent measurements provides confidence that the measured variation is real and not an artifact of the instrumentation. Systematic observations during the future eclipses are required to study this fascinating phenomenon which is not yet understood.  相似文献   

18.
1 INTRODUCTIONThe lower energy cutoff of nonthermal electron beams is an important quantity. Not only isit related to the acceleration mechanism, but it also determines the total number of acceleratedelectrons and the energy they carry. The power-law of electron beams cannot extend to lowerenergies indefinitely for if it did, it would imply an indeflnite1y large nuInber of electrons.A lower energy cutoff (E.), therefore, must exist, to keep the number of electrons within areasonable rang…  相似文献   

19.
The purpose of the paper is to present the statistical characterictics of mid-latitude VLF emissions (both unstructured hiss and structured emissions) based on the VLF data obtained at Moshiri in Japan (geomag. lat. 35°; L = 1.6) during the period January 1974–March 1984. Local time dependence of occurrence rate and the association with geomagnetic disturbances have been studied for both types of emissions. Both types (unstructured and structured) of mid-latitude VLF emissions are found to have definite correlations with geomagnetic disturbances. Then, the time delay of the emission event behind the associated geomagnetic disturbance has enabled us to estimate the resonant electron energy for VLF hiss to be 5 keV at L = 3–4 and that for structured VLF emissions to be considerably larger, such as 20 keV at L 4. Combined considerations of these estimated resonant energies, theoretical electron drift orbits and the local time dependences, allow us to construct the following model to explain the experimental results in a reasonable way. Electrons in a wide energy range are injected during disturbances around the midnight sector, followed by the eastward drift. Lower energy ( 5 keV) electrons tend to drift closer to the Earth, resulting in the dawnside enhancement of VLF hiss within the plasmasphere. Further, these lower energy electrons are allowed to enter the duskside asymmetric plasmaspheric bulge and to generate VLF hiss there. On the other hand, higher energy (20 keV) electrons tend to drift at L shells farther away from the Earth and those substorm electrons are responsible for the generation of structured VLF emissions around dawn due to an increase of plasma density from the sunlit ionosphere. However, such higher energy electrons are forbidden from entering the duskside of the magnetosphere and so we cannot expect a duskside peak in the occurrence of structured VLF emissions, which is in agreement with the experimental result.  相似文献   

20.
Dayside low altitude satellite observations of the pitch angle and energy distribution of electrons and protons in the energy range 1 eV to 100 eV during quite geomagnetic conditions reveal that at times there is a clear latitudinal separation between the precipitating low energy (keV) electrons and protons, with the protons precipitating poleward of the electrons. The high energy (100 keV) proton precipitation overlaps both the low energy (keV) electron and proton precipitation. These observations are consistent with a model where magnetosheath particles stream in along the cusp field lines and are at the same time convected poleward by an electric field.The electrons with energies of a few keV move fast and give the “ionospheric footprint” of the distant cusp. The protons are partly convected poleward of the cusp and into the polar cap. Here the mirroring protons populate the plasma mantle. Equatorward of the cusp the pitch angle distribution of both electrons and protons with energies above a few keV is pancake shaped indicating closed geomagnetic field lines. The 1 keV electrons, penetrate, however, into this region of closed field line structure maintaining an isotropic pitch angle distribution. The intensity is, however, reduced with respect to what it was in the cusp region. It is suggested that these electrons, the lowest energies measured on the satellite, are associated with the entry layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号