首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—The aeromagnetic data of the island of Crete were inverted to produce Curie point estimates. The data were high-pass filtered to remove components arising from topography and magnetic core fields which were not adequately modeled by IGRF. The depth to the centroid, z 0?, of the deepest distribution of the magnetic dipoles, was obtained by computing a least-squares fit to the lowest-fre quency segment of the azimuthally averaged log power spectrum. The depth to the top of the deepest crustal block was computed as the depth, z t ?, to the centroid of the second deepest distribution, using the second lowest-frequency segment of the spectrum. The depth to the bottom of the deepest dipoles, the inferred Curie point depth, is then z b = 2z 0?z t ?. The Curie depth estimates range between 24 and 28 km. This is in accordance with the depths inferred by extrapolating heat-flow values measured in boreholes.  相似文献   

2.
Ground total magnetic field data of Albania were used to produce estimates of the Curie point isotherm. The strategy followed was to estimate the depth to the bottom of the deepest magnetic sources. Firstly, the average depth to the top of the deepest crustal block, zt, was computed by linear fitting to the second lowest-frequency segment of the azimuthally averaged power spectrum of the total magnetic field data. Then, the depth to the centroid of the deepest crustal block, z0, was computed by linear fitting to the lowest-frequency segment of the azimuthally averaged power spectrum of a distribution of magnetic dipoles. Finally, the depth to the bottom, the inferred Curie point depth, zb, was calculated from zb=2z0zt. Curie depth estimates for Albania vary from about 17 to 25.5 km (below sea level). These results are consistent with the depths inferred by extrapolating geothermal gradient and heat-flow values, suggesting that the Curie point depth analysis is useful to estimate the regional thermal structure. It also suggests that the approach was valid and that ground total magnetic field data can be used for this purpose.  相似文献   

3.
4.
The magnetic map of Slovakia used in the paper was compiled as part of a project titled Atlas of Geophysical maps and profiles in 2001. The residual magnetic data were analyzed to produce Curie point estimates. To remove distortion of magnetic anomalies caused by the Earth’s magnetic field, reduction to pole transformation was applied to the magnetic anomalies using the magnetization angle of the induced magnetization. Anomalies reduced to the pole tend to be better correlated with tectonic structures. We applied a 3-km upward continuation to the residually compiled magnetic anomalies in order to remove effects of topography. The depth of magnetic dipoles was calculated by an azimuthally averaged power spectrum method for the entire area. Such estimates can be indicative of temperatures in the crust, since magnetic minerals lose their spontaneous magnetization according to Curie temperature of the dominant magnetic minerals in the rocks. The computed Curie point depths in the Slovakia region vary between 15.2 km and 20.9 km. Heat flow higher than 100 mWm−2 occurs at the central volcanics and eastern part of Slovakia, where the Curie point depths values are shallow. The correlation between Curie point depths, heat flow and crust depth was investigated for two E-W cross sections. Heat flow and Curie point depth values are correlated with each other however, these values could not be correlated with crust depth. The Curie point isotherm, which separates magnetic and non-magnetic parts of the crust, is represented in two cross sections.  相似文献   

5.
The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh–Taylor magnetic instability at loop footpoints, has been considered. During the τAl/V A ≈ 5?25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh–Taylor instability), a disturbance related to the magnetic field tension B ?(r,t), “escapes” the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz(z ? V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ? 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2I z 3 V A/c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.  相似文献   

6.
Various rock magnetic techniques were applied to characterize magnetically the samples of a soil profile taken from west-central Minnesota. There is a marked change in magnetic properties as a function of depth in the core. X-ray analysis and Curie temperature measurements carried out on the magnetic fractions indicate that magnetite is the dominant iron oxide in both the top soil and the subsoil. The intensity of anhysteretic remanent magnetization (ARM) decreases sharply as the depth increases. In contrast, the stability of ARM was found to be higher for the subsoil. The surface soil sample was capable of acquiring a significant amount of viscous remanent magnetization (VRM). The VRM acquisition coefficient (Sa) of the subsoil (Sa= 3.18 × 10?6emu g?1, 3.18 × 10?6A m2 kg?1) was about ten times weaker than that of the top soil sample (Sa = 3.868 × 10?7emu g?1, 3.868 × 10?7A m2 kg?1). The magnetic domain state indicator, the ratio of coercivity of remanence to coercive force, Hcr/Hc, was 1.5 and 3.85 for the top soil and subsoil, respectively. It appears that the observed variations in magnetic properties down the present soil core is due only to a difference in grain size. We conclude that the magnetic grains in surface soil samples were more single-domain (SD) like whereas the magnetite grains in the subsoil samples were more likely in pseudo-single-domain (PSD) or small multidomain (MD) range. The observed lower stability for the surface soil samples is attributed to the presence of superparamagnetic grains whose presence was confirmed by transmission electron micrographs.  相似文献   

7.
The stability of cohesive sediments from Venice lagoon has been measured in situ using the benthic flume Sea Carousel. Twenty four stations were occupied during summertime, and a sub-set of 13 stations was re-occupied during the following winter. Erosion thresholds and first-order erosion rates were estimated and showed a distinct difference between inter-tidal and sub-tidal stations. The higher values for inter-tidal stations are the result of exposure that influences consolidation, density, and organic adhesion. The thresholds for each state of sediment motion are well established. However, the rate of erosion once the erosion threshold has been exceeded has been poorly treated. This is because normally a time-series of sediment concentration (C) and bed shear stress (τ0(t)) is used to define threshold stress or cohesion (τcrit,z) and erosion rate (E). Whilst solution of the onset of erosion, τcrit,0, is often reported, the evaluation of the erosion threshold variation through the process of erosion (eroded depth) is usually omitted or not estimated. This usually leads to assumptions on the strength profile of the bed which invariably has no credibility within the topmost mm of the bed where most erosion takes place. It is possible to extract this information from a time-series through the addition of a step in data processing. This paper describes how this is done, and the impact of this on the accuracy of estimates of the excess stress (τ0(t)–τcrit,z) on E.  相似文献   

8.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

9.
A theoretical model of grain size variation of domain transitions in titanomagnetite (x = 0.6) as a function of oxidation (z) is presented. The superparamagnetic (SP) to single-domain (SD) transition ds, the SD to two-domain (TD) transition d0, the TD to three-domain (3D) transition and the pseudo-single domain (PSD) to multi-domain (MD) transition are calculated as a function of z. It is shown that all the transition grain sizes increase with z, except for the PSD-MD transition for z > 0.6. The calculations predict that ds increases from 0.044 to 0.197 μm, d0 increases from 0.54 to 13 μm, the TD-3D transition increases from 1.6 to 49 μm as z varies from 0 to 0.8. The PSD-MD transition increases from 42 μm at z = 0 to 150 μm at z = 0.6, whereas between z = 0.6 to z = 0.8, the PSD-MD transition decreases to 49 μm. Qualitatively, the model explains some of the trends in magnetic properties of submarine basalts with low-temperature oxidation. Quantitatively, the model does give reasonable estimates of the PSD-MD boundary and d0, which are close to the experimental values for x = 0.6 and z = 0. Furthermore, the model predicts that psarks or two-domain grains could be the major contributors to the remanence of oxidized submarine pillow basalts.  相似文献   

10.
The effect of auroral electrojets on the variations in the low-latitude geomagnetic disturbances and Dst during a strong magnetic storm of November 20–21, 2003, with Dst ≈ ?472 nT has been studied based on the global magnetic observations. It has been indicated that the magnetospheric storm expansive phase with Δt ≈ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 30–100 nT in the premidnight-dawn sector. A growth of negative low-latitude ΔH values and Dst is mainly caused by regular convection electrojets with Δt ≥ 10 h, the centers of which shift to latitudes of ~ 50°–55° during the storm development. It has been established that the maximal low-latitude values of the field ΔH component at 1800–2400 MLT are observed when the auroral luminosity equatorward boundary shifts maximally southward during an increase in the negative values of the IMF B z component. It has been assumed that, during this storm, a magnetic field depression at low latitudes was mainly caused by an enhancement of the partially-ring current which closes through field-aligned currents into the ionosphere at the equatorward boundary of the auroral luminosity zone.  相似文献   

11.
The mean tangential stresses at a corrugated interface between a solid, electrically insulating mantle and a liquid core of magnetic diffusivity λ are calculated for uniform rotation of both mantle and core at an angular velocity Ω in the presence of a corotating magnetic field B. The core and mantle are assumed to extend indefinitely in the horizontal plane. The interface has the form z = η(x, y), where z is the upward vertical distance and x, y are the zonal and latitudinal distances respectively. The function η(x, y) has a planetary horizontal length scale (i.e. of the order of the radius of the Earth) and small amplitude and vertical gradient. The liquid core flows with uniform mean zonal velocity U0 relative to the mantle. Ω and B possess vertical and horizontal components.The vertical (poloidal) component Bp is uniform and has a value of 5 G while the horizontal (toroidal) field BT = Bpαz, where α is a constant. When |α| ? 1, the mean horizontal stresses are found to have the same order of magnitude (10?2 N m?2) as those inferred from variations in the decade fluctuations in the length of the day, although the exact numerical values depend on the orientation of Ω as well as on the wavenumbers in the zonal and latitudinal directions.The influence of the steepness (as measured by α) of the toroidal field on the stresses is investigated to examine whether the constraint that the mean horizontal stresses at the core-mantle interface be of the order of 10?2 N m?2 might provide a selection mechanism for the behaviour of the toroidal field in the upper reaches of the outer core of the Earth. The results indicate that the restriction imposed on α is related to the value assigned to the toroidal field deep into the core. For example, if |α| ? 1 then the tangential stresses are of the right order of magnitude only if the toroidal field is comparable with the poloidal field deep in the core.  相似文献   

12.
In the steady state, the convective boundary layer (CBL) (the transition from the lithosphere to the convecting mantle, the lithosphere-asthenosphere boundary) is on the verge of stability. This determines its depth, thickness, and the steady-state temperature distribution in the lithosphere. Had the mantle been homogeneous, the base of the lithosphere at the current potential temperature would lie globally at the same depth H rh of 50 to 70 km. Actually, the regime of interaction of the mantle convection with the lithosphere is determined by the relationship between this depth and the thickness H depl of the chemical boundary layer including the crust and the layer of the depleted rock. If the thickness of the chemical boundary layer is small H depl < H rh, as it is the case in the present-day oceanic mantle, the suboceanic regime is established with the mantle convection that does not reach the base of the chemical boundary layer. In this case, the top of CBL is located at depth H rh, while the oceanic heat flow and the depth of the seafloor only depend on the potential temperature T p and, within the areas where the crust is older than 60 to 70 Ma, are the same everywhere far from the disturbed territories (the hot points and the subduction zones). The absence of noticeable distinctions between the heat flow in the different oceanic basins suggests a global constancy of the potential temperature. If H depl > H rh, the subcontinental regime of the interaction of the mantle convection with the lithosphere is established. In this case, the CBL is immediately adjacent to the depleted lithosphere, its top is located at depth H depl, and the surface heat flow q(T p, H depl) not only depends on the potential temperature T p but also on the the thickness of the depleted lithosphere H depl; it decreases with increasing H depl and, therefore, with the age of the lithosphere. Given the potential temperature, the dependence q(T p, H depl) agrees well with the envelope of the results of kimberlite xenolith thermobarometry presented in the diagram of the deepest xenolith depth as a function of the heat flow. It is likely that in the lowest part of the continental lithosphere there is a zone of horizontal shear deformation, from where kimberlites entrain the strongly deformed and, at the same time, the deepest xenoliths. Besides, the azimuthal anisotropy of seismic velocities can be associated with this zone. The change in its direction with depth can be observed as the Lehmann discontinuity.  相似文献   

13.
A simple new method is described for extracting, from magnetic observations taken at Earth's surface, the vertical growth rate of vertical motion, ?u/?r, at special isolated points on the top surface of Earth's liquid core. The technique utilizes only the radial component of the frozen-flux induction equation and it requires information only on the radial magnetic field, Br, its horizontal gradient, and its secular variations, ?Br/?t, at the core-mantle boundary.  相似文献   

14.
15.
The negative and positive fronts of the IMF B z component arrived at intervals of 3 h during a strong magnetic storm of May 15, 2005. The occurrence of Pc5 pulsations at these three characteristic instants has been considered based on the WIND satellite magnetic data. Pulsations originated not only during sudden compression SC of the magnetosphere but also during the B z sign reversal from positive to negative. The IMF B z sign reversal from negative to positive did not affect the development of pulsations. It is assumed that Pc5 pulsations observed after the negative IMF B z front are related to the development of surface waves at the magnetopause as a result of impulsive reconnection of field lines.  相似文献   

16.
This work investigated an interrelationship between the monthly means of time derivatives of horizontal geomagnetic field, dH/dt, sunspot number, R z , and aa index for the period of substorms (from ?90 to ?1800 nT) during the years 1990–2009. A total of 232 substorms were identified during the period of study. The time derivative of horizontal geomagnetic field, dH/dt, used as a proxy for geomagnetically induced current (GIC) exhibited high positive correlation with sunspot number (0.86) and aa index (0.8998). The obtained geomagnetic activity is in 92.665% explicable by the combined effect of sunspot number and aa index. The distribution of substorms as a function of years gives a strong support for the existence of geomagnetic activity increases, which implies that as the sunspot number increases the base level of geomagnetic activity increases too.  相似文献   

17.
Motivated by the high degree of correlation between the variable parts of the magnetic and gravitational potentials of the Earth discovered by Hide and Malin (using a harmonic analysis approach and utilizing the geomagnetic data) when one field is suitably displaced relative to the other, Moffatt and Dillon (1976) studied a simple planar model in an attempt to find a quantitative explanation for the suggestion that this high degree of correlation may be due to the influences produced by bumps on the core-mantle interface. Moffatt and Dillon assumed that the core-mantle interface was z = η(x) where |/| ? 1 and such that in the core [z < η(x)] a uniform flow (U0, 0, 0) prevails in the presence of a uniform ‘toroidal’ field (B0, 0, 0); (here z is the vertical coordinate and x is the eastward distance). The whole system rotates uniformly about the vertical with angular velocity Ω. The present work extends the model discussed by Moffatt and Dillon to include a horizontal component of angular velocity ΩH and a uniform small poloidal field Bp. In addition, the uniform toroidal field is here replaced by one which vanishes everywhere in the mantle and increases linearly, from zero on the interface, with z. It is shown that the presence of ΩH and Bp, together with the present choice of toroidal magnetic field, has a profound effect both on the correlation between the variable parts of the magnetic and gravitational fields of the Earth, and on how far the disturbances caused by the topography of the interface [which is necessarily three-dimensional i.e. z = η(x, y) here] can penetrate into the liquid core. In particular it is found that the highest value of the correlation function is +0.79 which corresponds to a situation in which the magnetic potential is displaced both latitudinally and longitudinally relative to the gravitational potential.  相似文献   

18.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   

19.
—?Modal summation technique is used to generate 5000, three-component theoretical seismograms of Love and Rayleigh waves, assuming modified PREM (PREM-C) and AK135F global earth models. The focal depth h and the geometrical fault parameters are randomly chosen so as to uniformly cover possible source mechanisms and obtain uniform distribution of log h in the interval 1?h?h?M s of the form:¶ΔM s (h)=0 forh< 20km, ΔM s (h)=0.314log(h)-0.409 for 20≠h< 60km, ΔM s (h)=1.351log(h)-2.253 for 60≠h< 100km, ΔM s (h)=0.400log(h)-0.350 for 100≠h< 600km .¶After applying the above correction, the relationship between the surface wave magnitude and the scalar seismic moment for the observational data set significantly improves, and becomes independent of the source depth. In relation to CTBT, no depth correction is needed for M S when the m b ???M S discriminant is computed, because the proposed correction is zero for earthquakes with foci above 20?km.  相似文献   

20.
The correlation discovered by Hide and Malin between the variable parts of the Earth's gravitational field and magnetic field (suitably displaced in longitude) was tentatively and qualitatively explained by them in terms of the influence on both fields of irregularities (or “surface bumps”) at the core-mantle interface. In this paper, a quantitative analysis of this phenomenon is developed, through study of an idealised problem in which conducting fluid occupying the region z < η(x) flows over the surface z = η(x) in the presence of a magnetic field (B0,0,0), the whole system rotating with angular velocity (0,0,Ω). It is assumed that |η′(x)| « 1 so that perturbation methods are applicable. Determination of the magnetic potential in the “mantle” region z < η(x) requires solution of the full hydromagnetic problem in the fluid. It is shown that three wave modes are excited, two of which (for values of the parameters of the problem of geophysical interest) have a boundary layer character. Phase interactions between these modes lead to a shift and a distortion of the magnetic pattern relative to the gravitational pattern. The correlation between the gravitational potential and the magnetic potential (shifted by a distance x0) is determined on the plane z = d (d a? |η|) as a function of x0/d and the curves obtained are qualitatively similar to that based on the observed data; the maximum correlation obtained varies between 0.67 and 1, depending on values of the parameters of the problem, and is about 0.72 for reasonable estimates of these parameters in the geophysical context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号