首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We studied the anisotropy of magnetic susceptibility (AMS) of 22 basaltic flow units, including S-type pahoehoe, P-type pahoehoe, toothpaste lava and 'a' emplaced over different slopes in two Hawaiian islands. Systematic differences occur in several aspects of AMS (mean susceptibility, degree of anisotropy, magnetic fabric and orientation of the principal susceptibilities) among the morphological types that can be related to different modes of lava emplacement. AMS also detects systematic changes in the rate of shear with position in a unit, allowing us to infer local flow direction and some other aspects of the velocity field of each unit. 'A' flows are subject to stronger deformation than pahoehoe, and also their internal parts behave more like a unit. According to AMS, the central part of pahoehoe commonly reveals a different deformation history than the upper and lower extremes, probably resulting from endogenous growth.  相似文献   

2.
秦祁接合带造山缝合带磁组构特征及其构造意义   总被引:5,自引:1,他引:4       下载免费PDF全文
结合构造及磁化率各向异性研究详细解剖了秦祁接合带唐藏—关子镇—武山和新阳—元龙造山缝合带的应变及岩组特征.41个采点168个构造岩样品的平均磁化率全部较低,磁化率椭球形态分析表明其以平面和压扁应变为主,磁化率各向异性度普遍较高,属强变形岩石组构类型,结合野外观察认为其与变形强度明显正相关.此外,磁化率各向异性参数T、P′可能受岩石类型一定程度的影响.磁化率椭球主轴方位与变形密切相关,提供了丰富的岩组信息.两构造带具有类似的岩组特征,磁面理大致分为呈共轭形态的两组,暗示高应变剪切带在平面上可能以网格状形态出露;高倾伏角磁面理与占优势的低倾伏角、近水平磁线理表明了构造带明显的走滑特征,部分高角度磁线理可能与构造带的挤压和(或)转换挤压相关;磁组方法不能简单用于判别复杂强变形带的运动指向,糜棱面理的复杂变化及Kmin与构造带夹角过高使其判别结果意义不明,而野外及显微构造观察都表明了构造带的右行走滑特征.上述结果表明,沿缝合带大规模的右行转换挤压形成了秦祁接合带反“S”型的平面构造形态,暗示在南北板块拼合过程中,西秦岭诸中、小块体一定程度的向西挤逸.  相似文献   

3.
The anisotropy of magnetic susceptibility (AMS) of lava flows is an innovative method which has been proved to be directly related to the shear history of lava. One of the advantages of this method is that it can be used in the absence of other morphological features commonly employed to study the mechanism of emplacement of lava flows. This feature of the AMS method makes it very attractive to gain insight into the mechanism of emplacement of massive, relatively featureless, long lava flows such as those forming flood basalt provinces. In this work, we report the results of the measurement of AMS as a function of vertical position within the Birkett lava flow, one of the Columbia River Basalt Group flows. The observed variation of AMS allows us to identify at least 16 discrete events of lava injection and to estimate the thickness of individual injection events. The AMS-estimated thickness of each injection event (in the range of 0.5-4.0 m) coincides with the range inferred for injected lava pulses in modern Hawaiian lava flows. Thus, the evidence provided by the AMS method supports the notion that at least some flood basalt lava flows were emplaced by the same mechanism as many present-day inflated pahoehoe flows. Regarding the orientation of the principal susceptibilities, in the central part of the flow they define a preferred orientation along an E-W trend, whereas in the outer parts of the flow they have a NNE-SSW trend. This difference in the orientation of the principal susceptibilities is interpreted as the result of a change of flow direction of the lava as emplacement progressed. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00445-002-0203-8.  相似文献   

4.
沂沭断裂带中段基底韧性剪切带   总被引:13,自引:1,他引:13       下载免费PDF全文
在沂沭断裂带中段的泰山群结晶基底中,存在着一系列北东、北北东走向的左行韧性剪切带。对其中发育糜棱岩的韧性剪切带的结构构造、应变测量、变形岩石的显微构造、显微组构以及长石粒度和含量的变化规律进行了观测分析。讨论了韧性剪切带的变形条件和机制。及其递进发展的趋势。指出基底韧性剪切带是沂沭断裂带元古宙时期断裂活动时在地壳较深层次上形成的构造表象。在此基础上,讨论了地壳不同层次上的断裂变形及断裂岩石的综合分类问题  相似文献   

5.
Shape-preferred orientation and imbrication structures of crystals have been measured on samples representative of the base, centre and top of a highly viscous lava flow on Salina (Aeolian Islands, southern Tyrrhenian Sea). The data allow zones with different deformation patterns to be identified. In the base and top of the flow, deformation leads to the development of discrete preferred orientation and imbrication of the elongate crystals. The sense of shear is right-lateral at the base and left-lateral at the top of the flow. Shear strain can be estimated by the analysis of crystal preferred orientation. Deformation increases from the flow centre to the outer, more viscous boundary layers. Random orientation of crystals in the inner zone supports the presence of plug flow in a pseudoplastic lava. The textural features of the studied lava may be related to different mechanisms (i.e. lateral expansion). We conclude that the observed crystal alignments and imbrication structures may be related to a plug flow moving between two non-deforming walls. The walls are represented by the solidified, broken upper and basal crust of the flow. The low shear strain values calculated in the outer margins of the flow are indicative of the last deformation event. Crystal preferred orientation and imbrication structures may be related to the occurrence of velocity gradients existing between the inner zone of the flow and its solidus or near-solidus outer margins.  相似文献   

6.
 The massive unit of a lava flow from Porri volcano (Salina, Aeolian Islands) displays many unusual structures related to the physical interaction between two different magmas. The magma A represents approximately 80% of the exposed lava surface; it has a crystal content of 51 vol.% and a dacitic glass composition (SiO2=63–64 wt.%). The magma B has a basaltic-andesite glass composition (SiO2=54–55 wt.%) and a crystal content of approximately 18 vol.%. It occurs as pillow-like enclaves, banding, boudin-like and rolling structures which are hosted in magma A. Structural analysis suggests that banding and boudin-like structures are the result of the deformation of enclaves at different shear strain. The linear correlation between strain and stratigraphic height of the measured elements indicates a single mode of deformation. We deduce that the component B deformed according to a simple shear model. Glass analyses of the A–B boundary indicate that A and B liquids mix together at high shear strain, whereas only mingling occurs at low shear strain. This suggests that the amount of deformation (i.e. forced convection) plays an important role in the formation of hybrid magmas. High shear strain may induce stretching, shearing and rolling of fluids which promote both forced convection and dynamical diffusion processes. These processes allow mixing of magmas with large differences in their physical properties. Received: 15 July 1995 / Accepted: 30 May 1996  相似文献   

7.
Anisotropy of magnetic susceptibility (AMS) has been used to interpret flow directions in ignimbrites, but no study has demonstrated that the AMS fabric corresponds to the flow fabric. In this paper, we show that the AMS and strain fabric coincide in a high-grade ignimbrite, the Nuraxi Tuff, a Miocene rhyolitic ignimbrite displaying a wide variability of rheomorphic features and a well-defined magnetic fabric. Natural remanent magnetization (NRM) data indicate that the magnetization of the tuff is homogeneous and was acquired at high temperatures by Ti-magnetite crystals. Comparison between the magnetic fabric and the deformation features along a representative section shows that AMS and anisotropy of isothermal remanent magnetization (AIRM) fabric are coaxial with and reproduce the shape of the strain ellipsoid. Magnetic tests and scanning electron microscopy observations indicate that the fabric is due to trails of micrometer-size, pseudo-single domain, magnetically interacting magnetite crystals. Microlites formed along discontinuities such as shard rims and vesicle walls mimicking the petrofabric of the tuff. The fabric was thus acquired after deposition, before late rheomorphic processes, and accurately mimics homogeneous deformation features of the shards during welding processes and mass flow.  相似文献   

8.
The degree of the anisotropy of magnetic susceptibility (AMS) of basaltic rocks, as is known from the large AMS database of these rocks, is generally very low, while in more acidic volcanic rocks such as andesites, trachytes and phonolites, which have been investigated much less frequently, it is in general much higher. In the present study, the AMS of various volcanic rocks including trachytic and phonolitic rocks was investigated in the Tertiary volcanic region of the eské stedohoí Mts. Viscosities of the respective lavas were calculated from the chemical composition using the KWARE program. A rough correlation was found between the degree of AMS and lava viscosities, probably resulting from different mechanisms orienting the magnetic minerals. In basaltic lava flows this mechanism is traditionally considered to be of a hydrodynamic nature, in trachytic and phonolitic bodies it can also be represented by quasi-intrusive flows resembling, at least partially, ductile flow deformation. This is in agreement with the AMS data predicted by the viscous (liquid flow) and line/plane (ductile flow) models.  相似文献   

9.
Anisotropy of magnetic susceptibility (AMS) data analysis is a convenient method used to investigate strain and flow during lava flow emplacement. In order to make a sound interpretation, the origin of the AMS signal must be verified. Two questions must be answered: 1) what phase, or phases carry the AMS signal and 2) when was the AMS fabric acquired? The verification steps themselves can provide extra data for interpreting lava flow conditions. Here, we present a methodology to answer the two questions in a 6 km-long Chaîne des Puys trachybasaltic lava flow that descended into the future site of Clermont Ferrand (France) 45,000 years ago. Knowledge of lava flow emplacement will be useful specifically to this site, if a reactivation of the volcanic chain occurs. The results are also of more general interest to understand lava flow emplacement dynamics.  相似文献   

10.
Andesitic–dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315?K, at low shear stress (0.085 to 0.42?MPa), low strain rate (between 1.1?×?10?8 and 1.9?×?10?5?s?1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226?K and strain rates lower than 1.8?×?10?4?s?1, is $ \log {\eta_{\text{app}}} = - 0.738 + 9.24 \times {10^3}{/}T(K) - 0.654 \cdot \log \dot{\varepsilon } $ where η app is apparent viscosity and $ \dot{\varepsilon } $ is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa?s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that internal shear heating may be significant ongoing heat source within these flows, enabling highly viscous lava to travel long distances.  相似文献   

11.
Magnetic properties of two apparently unrelated lava suites (one tholeiitic and the other alkalic) coexisting in the central parts of the Peninsula of Baja California, Mexico, were measured in this study. Macroscopic indicators and measurements of anisotropy of magnetic susceptibility (AMS) were combined to infer the flow direction on those lavas. These measurements were used to investigate the likelihood of the existence of an abnormally long tholeiitic lava flow in this part of the Peninsula. The obtained results indicate that the tholeiitic flows in the region constitute regular length flows, and are likely to have been issued through vents located within the area of study. Additionally, comparison of the magnetic signature of tholeiitic and alkalic lavas reveals a systematic difference in some of the magnetic parameters (bulk susceptibility and Curie temperatures). In particular, it is proposed that the narrow range of Curie temperatures characteristic of each lava type can be used as a reliable proxy for the identification of each lava type in the region. All of these findings show that the alkalic and tholeiitic lavas of the region are more closely related to each other than previously suspected.Editorial responsibility: R. Cioni  相似文献   

12.
The evaluation of shear strains under multi-directional shaking is an important issue in interpreting dynamic soil behavior for both laboratory physical modeling and in situ monitoring. Shear strain components evaluated from Cartesian coordinates in undrained conditions have limitations to fully capture the coupled shear strain-pore pressure responses with an individual expression. In the present study, radial and rotational shear strain components derived from particle motions described with cylindrical polar coordinates are proposed. The proposed radial and rotational shear strains are verified with data from a bi-directional laminar shear box and a free field downhole array. Comparison results show that the proposed expressions of shear strain effectively capture the coupled strain-pore pressure responses in terms of the frequency content, amplitude variation, phase difference, and oscillation behavior. Comparison results reveal that the radial shear strain is the dominant shearing mode and the amplitude of the rotational shear strain is only 6.5–14.5% of the radial component. This provides quantitative data for the correction factor for multi-directional shaking and suggests that a simple shear system capable of inducing the radial shear strain on the vertical plane is a better approach than other shearing modes for physically modeling the behavior of soil subjected to undrained seismic loadings.  相似文献   

13.
Frequency-dependent magnetic susceptibility, its anisotropy (AMS), its temperature variation, natural remanent magnetization and time-dependent isothermal remanent magnetization as well as M?ssbauer spectroscopy of a small collection of Celtic and Mediaeval graphitic pottery from Southern Bohemia were investigated. The mineral composition of the pottery is dominated by fragments of quartz, accompanied mainly by various silicates from granitoids and paragneisses, or by calcite, within the plastic component being probably illite but also graphite. No ferrimagnetic minerals were found in optical microscope, among Fe-oxides only limonite was observed, even though the bulk susceptibility of the pottery varies in the orders of 10?4 to 10?2 [SI]. This may indicate presence of ferromagnetic particles in the ultrafine (superparamagnetic, SP) state, which is confirmed by frequency-dependent susceptibility ranging from 3% to almost 16%. The low temperature susceptibility vs. temperature curves are only moderately sloped, showing the Verwey transition only in one case. The high temperature curves mostly show presence of two magnetic phases, maghemite and magnetite. Cooling curves show distinctly lower susceptibilities than the heating curves indicating instability of the assemblage of ferrimagnetic minerals, particularly in temperatures slightly under 700 °C. M?ssbauer spectroscopy confirmed the results of the frequency-dependent susceptibility, showing the increase of ferrimagnetic sextets in the spectra measured at 4.2K, likely indicating maghemite as the distinct ferrimagnetic phase. The frequency-dependent AMS indicates preferred orientation of SP1,16 particles, coaxiality between SP1,16 grain AMS and whole specimen AMS indicate that all grains, ultrafine and coarser ones, were oriented by the same process, i.e. copying the pottery structure created during wheel-turning.  相似文献   

14.
 A basaltic andesite lava flow from Porri Volcano (Salina, Southern Tyrrhenian Sea) is composed of two different magmas. Magma A (51 vol.% of crystals) has a dacitic glass composition, and magma B (18 vol.% of crystals), a basaltic glass composition. Magma B is hosted in A and consists of sub-spherical enclaves and boudin-like, banding and rolling structures (RS). Four types of RS have been recognized: σ–type;δ–type; complex σ-δ–types and transitional structures between sub-spherical enclaves and rolling structures. An analysis of the RS has been performed in order to reconstruct the flow kinematics and the mechanism of flow emplacement. Rolling structures have been selected in three sites located at different distances from the vent. In all sites most RS show the same sense of shear. Kinematic analysis of RS allows the degree of flow non-coaxiality to be determined. The non-coaxiality is expressed by the kinematic vorticity number Wk, a measure of the ratio Sr between pure shear strain rate and simple shear strain rate. The values of Wk calculated from the measured shapes of microscopic RS increase with increasing distance from the vent, from approximately 0.5 to 0.9. Results of the structural analysis reveal that the RS formed during the early–intermediate stage of flow emplacement. They represent originally sub-spherical enclaves deformed at low shear strain. At higher strain, RS deformed to give boudin-like and stretched banding structures. Results of the kinematic analysis suggest that high viscosity lava flows are heterogeneous non-ideal shear flows in which the degree of non-coaxiality increases with the distance from the vent. In the vent area, deformation is intermediate between simple shear and pure shear. Farther from the vent, deformation approaches ideal simple shear. Lateral extension processes occur only in the near-vent zone, where they develop in response to the lateral push of magma extruded from the vent. Lateral shortening processes develop in the distal zone and record the gravity-driven movement of the lava. The lava flow advanced by two main mechanisms, lateral translation and rolling motion. Lateral translation equals rolling near the vent, while rolling motion prevailed in the distal zones. Received: 6 November 1997 / Accepted: 29 November 1997  相似文献   

15.
横波各向异性在裂缝和应力分析中的应用   总被引:1,自引:0,他引:1  
针对裂缝性和低孔低渗地层的横波各向异性特征,反演得到横波各向异性参数,研究了裂缝的发育程度、方位和有效性,并对低孔低渗地层的应力场分布状态和方位进行了综合评价;通过对反演得到的快、慢弯曲波形进行频散分析以及计算单极横波各向异性大小,确定了引起横波各向异性的原因,并结合常规测井资料、岩心及FMI成像资料对分析结果进行了验证和对比,最后对研究区8口典型井的横波各向异性进行了综合处理和评价,得到了该区的横波各向异性特征以及和总的应力场走向.结果表明,利用横波的各向异性参数可以有效的评价裂缝的发育程度、走向及有效性,并能准确的确定地应力分布状态和最大水平应力方位.  相似文献   

16.
磁组构与构造变形   总被引:1,自引:0,他引:1       下载免费PDF全文
王开  贾东  罗良  董树文 《地球物理学报》2017,60(3):1007-1026
磁组构通常指磁化率各向异性,即AMS(Anisotropy of Magnetic Susceptibility),是一种重要的岩石组构,是弱变形沉积岩地区灵敏的应变指示计.近年来,AMS在造山带及前陆地区的广泛应用为构造变形研究提供了极大的帮助,同时提升了该方法的理论认识.本文在研读最新相关文献与著作的基础上,结合笔者及研究团队在龙门山地区获得的磁组构研究成果,综述了磁组构在沉积岩地区构造变形研究中的应用进展,并基于现有的研究认识对关键问题进行讨论,提出以下几点认识:(1)磁性矿物分析是AMS研究的关键,应结合多种岩石磁学实验及光学与电子显微构造研究手段展开详细的磁性矿物学分析;(2)磁化率椭球与应变椭球的对应主轴在绝大多数情况下相互平行,但在不同期次、不同种类复杂的磁性矿物组成,或者多期次构造变形的影响下,AMS与应变的关系相对复杂,应比对高场和低温AMS及非磁滞剩磁各向异性(AARM)测试结果,获得不同矿物的优选定向特征,并对获得的组构进行分期;(3)AMS可以揭示造山带及其前陆地区的构造演化历史,并且是分析断层相关褶皱的有限应变特征和变形机制的重要方法,同时也是厘定断裂带变形性状和期次及运动学分析的有效手段;(4)磁组构形成于成岩作用早期或构造变形的最早阶段,能很好地记录褶皱和逆冲作用之前的平行层缩短变形,因此可以揭示同沉积阶段的古构造应力方向.后期足够强烈的构造变形能局部改造或彻底掩盖先存AMS记录,构造流体有关的同构造期结晶矿物或先存矿物的重结晶导致的再定向被认为是其根本原因;(5)斜交磁线理是一种特殊的磁组构类型,反映了区域构造叠加或多期构造变形作用或隐伏斜向逆冲等可能的构造过程,有必要结合多方面的地质证据对其成因作出合理解释.  相似文献   

17.
Correlation of strain with anisotropy of magnetic susceptibility (AMS)   总被引:6,自引:0,他引:6  
Existing correlations between strain and anisotropy of low-field magnetic susceptibility (AMS) have been re-assessed using a single parameter to express both anisotropies. TheP parameter (Hrouda, 1982) shows potential as a powerful single expression of the intensity of strain and of AMS. Previous correlations are improved by use of this parameter. Cautious optimism is justified for correlations between strain and susceptibility in a certain strain window between a lower limit (excluding the incomplete overprint of predeformation anisotropy) and an upper limit (excluding the effects of saturation anisotropy). For successful correlations the influence of stress-controlled recrystallisation should be minimal and the mineralogical sources of susceptibility must predate deformation.  相似文献   

18.
Anisotrophy of magnetic susceptibility (AMS) results from 27 specimens drilled from the top and two sides of a single columnar basalt segment are presented. The magnetic foliation plane is nearly horizontal for all parts of the column, which is consistent with a primary magma flow pattern, without evidence of local convection or differentiative processes. The shape of AMS ellipsoids is however predominantly prolate, which may be indicative of increased magnetic grain elongation due to crystal growth or grain realignment normal to a vertical stress field (due to thermal contraction). Apparent systematic variations related to column shape are found in bulk susceptibility, anisotropy degree and degree of lineation and foliation; some of the variation may also be related to weathering effects. The results are consistent with a primary AMS pattern resulting from thermal contractive stresses during column formation. Comparison of results from previous studies of columnar basalts reveals that there is a relatively large variation in AMS properties. There appears to exist a number of factors which may locally control the magnetic anisotropy of columns and very likely some of their other characteristics.  相似文献   

19.
An understanding of dynamic properties of Municipal Solid Waste (MSW) is essential for seismic response analysis of MSW landfills in areas of moderate to high seismicity. A field testing program aimed at characterizing the dynamic properties of MSW was executed at two locations in a Subtitle D landfill in Austin, Texas. Shear and primary wave velocities were measured using small-scale crosshole and downhole seismic tests. The combination of these seismic methods allowed an assessment of the effect of waste composition on dynamic properties, anisotropy, and Poisson׳s ratio of the MSW. In addition, steady-state dynamic testing was performed using two mobile vibroseis shakers to evaluate in-situ the nonlinear relationship between shear modulus and shearing strain. Horizontal steady-state shaking at increasing stress level generated shearing strains from 0.001% to 0.2% allowing evaluation of shear modulus reduction curves over a wide shearing strain range. The effect of confining stress on the dynamic properties of the MSW was also evaluated using the substantial weight of the vibroseis as reaction to apply surcharge vertical loads at the surface of the MSW.  相似文献   

20.
A marine VSP is designed to estimate the orientation and density of fracturing within a gas-producing dolomite layer in the southern North Sea. The overburden anisotropy is firstly estimated by analysing shear waves converted at or just below the sea-bed, from airgun sources at four fixed offset azimuths. Full-wave modelling helps confirm that the background has no more than 3% vertical birefringence, originating from TIH anisotropy with a symmetry axis orientated perpendicular to the maximum horizontal compressive stress of NW–SE. This finding concurs with current hypotheses regarding the background rock matrix in the upper crust. More detailed anisotropy estimates reveal two thin zones with possible polarization reversals and a stronger anisotropy. The seismic anisotropy of the dolomite is then determined from the behaviour of locally converted shear waves, providing a direct link with the physical properties of its fractures. It is possible to utilize this phenomenon due to the large seismic velocity contrast between the dolomite and the surrounding evaporites. Two walkaway VSPs at different azimuths, recorded on three-component receivers placed inside the target zone, provide the appropriate acquisition design to monitor this behaviour. Anisotropy in the dolomite generates a transverse component energy which scales in proportion to the degree of anisotropy. The relative amplitudes, for this component, between the different walkaway azimuths relate principally to the orientation of the anisotropy. Full-wave modelling confirms that a 50% vertical birefringence from TIH anisotropy with a similar orientation to the overburden is required to simulate the field observations. This amount of anisotropy is not entirely unexpected for a fine-grained brittle dolomite with a potentially high fracture intensity, particularly if the fractures contain fluid which renders them compliant to the shear-wave motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号