首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
针对目前单孔稳定流求参存在的问题,本文在分析新生界松散含水层条件及三次降深抽水过程基础上,利用其抽水试验恢复阶段的数据,分别求得各含水层多个参数,其值真实反映了含水层的实际情况。利用多元回归方法,求得降深与流量关系,通过其系数值大小分析,间接得出各含水层的富水性程度,为地下水的勘探与评价提供一定借鉴。  相似文献   

2.
重锤试验是一种获得含水层水文地质参数的新方法。对北京及河北的9口地震地下水位观测井的试验表明,这一方法不仅可以求取含水层参数,还可用来确定井孔一含水层系统的振动特性、响应类型及响应能力等。  相似文献   

3.
鲁29井通过重锤试验求出了含水层的导水系数为10.8m~2/d,这比抽水试验给出的小一些,但数量级相同。这可能与试验时水位降深有关,水位降深越小,则得出的含水层的导水系数也越小。 重锤试验法比抽水试验法简单易行和经济迅速,用宋解释地下水微动态更合理,较易推广应用。  相似文献   

4.
《地震研究》2021,44(4)
分析地下水对气压和固体潮的响应可以获得多项水文地质参数和含水系统特性指标。通过收集国内外相关研究,系统论述了基于地下水对大气压和固体潮响应来获取含水层系统参数的方法。介绍了传递函数计算、谐波分析及回归反卷积等计算气压效率的方法;介绍了利用气压效率与固体潮响应模型计算含水层水力参数的方法。结果表明:相比于传统水文地质调查手段,地下水气压和固体潮响应方法更简便高效,能够深入了解水力特性的空间和时间变化规律,可用于水位校正、含水层性质评估、水力参数计算以及评估地震对含水层造成的影响等。  相似文献   

5.
重庆大足井水位对邻井抽水的奇异响应及其机理   总被引:1,自引:0,他引:1  
大足井位于重庆市大足县拾万镇,井深108.7m,观测含水层为J2S泥岩夹砂层的风化裂隙潜水层。多年的观测结果表明,每当相距仅14.6m的邻井抽水时,该井水位不仅不降,反而上升,是国内外罕见的奇异现象。通过对这一现象进行的观测资料分析、井区地质-水文地质条件调查、现场试验观测及理论分析等得出,大足井水位对邻井抽水的奇异响应是在特定的水文地质条件下,抽水降落漏斗外边界带上因水流速度较大引起的动水压力使该处的观测井产生的特殊井水位动态。  相似文献   

6.
一种测求水井含水层导水系数的新方法   总被引:1,自引:0,他引:1  
本文给出了一种测求水井含水层导水系数的新方法。利用Cooper理论和振动理论,通过简单的试验,可以测求出水井含水层的导水系数。用这种方法计算出珍珠泉井含水层的导水系数为2439m~2/d,用抽水试验法测得该系数为2618m~2/d,两者符合得较好。  相似文献   

7.
承压、封闭性好的井孔-含水层系统可以看作是安装在地表附近的高灵敏度的体应变仪,它能观测到固体潮、地震波、气压效应、降雨负荷、海潮负荷以及断层活动等多种应力应变变化现象。井水固体潮分析结果既反映了液态地核动力学效应造成的日波振幅比随频率的变化,还可确定含水层体积模量、孔隙度、渗透率等参数以及基岩裂隙参数,某些参数随时间的变化可能与构造活动有关。水震波分析结果可以确定井孔-含水层系统的频响特征。故井孔-含水层系统是一个探索地下信息的重要窗口。  相似文献   

8.
长期过量开采地下水,使地下水位持续下降、水质发生变化,动水位观测井断流;地面沉降造成井管上窜,观测管路系统被损坏等,这些现象对地震地下流体观测地震前兆异常的正确判断带来很大困难。应用水文地质理论与方法,分析含水层的水均衡状态、应力-应变状态及其与水位动态的关系,初步探讨了超采区井水位异常性质的理论与方法。结果表明,根据井孔所在区水位下降漏斗的扩散特征,结合以上所提到的理论和方法,依据资料多年变化特征,可以较准确地判断异常的性质。研究结果有助于区分单一集中抽水与长期地下水超采对水位观测的影响,有助于正确识别超采区水位前兆异常,有助于地震分析预报水平的提高  相似文献   

9.
张昭栋  冯在成 《地震地质》1993,15(3):207-212
这种测试水井含水层导水系数的新方法是利用井口水面空气压力阶变试验,计算出聊城井含水层的导水系数为14.4m2/d,而通过抽水试验得出的导水系数为43.6m2/d,二者有相同的数量级,但新方法比抽水试验简单易行和经济快速,用它来解释地下水微动态更合理,容易推广应用  相似文献   

10.
《地球》2016,(9)
本文在隧址区水文地质特征分析的基础上,对南山隧道的涌水机理进行了分析,同时利用现场抽水试验对水文地质参数进行了测试。在此基础上利用地下水迳流模数法和地下水动力学法计算隧道的涌水量,并对地下水疏降影响范围进行了预测,较好的解决了隧道水害防治等问题。  相似文献   

11.
The productivity and the water quality of coastal aquifers can be highly heterogeneous in a complex environment. The characterization of these aquifers can be improved by hydrogeological and complementary geophysical surveys. Such an integrated approach is developed in a non-consolidated coastal aquifer in Myanmar (previously named Burma).A preliminary hydrogeological survey is conducted to know better the targeted aquifers. Then, 25 sites are selected to characterize aquifers through borehole drillings and pumping tests implementation. In the same sites, magnetic resonance soundings (MRS) and vertical electrical soundings (VES) are carried out. Geophysical results are compared to hydrogeological data, and geophysical parameters are used to characterize aquifers using conversion equations. Finally, combining the analysis of technical and economical impacts of geophysics, a methodology is proposed to characterize non-consolidated coastal aquifers.Depth and thickness of saturated zone is determined by means of MRS in 68% of the sites (evaluated with 34 soundings). The average accuracy of confined storativity estimated with MRS is ± 6% (evaluated over 7 pumping tests) whereas the average accuracy of transmissivity estimation with MRS is ± 45% (evaluated using 15 pumping tests). To reduce uncertainty in VES interpretation, the aquifer geometry estimated with MRS is used as a fixed parameter in VES inversion. The accuracy of groundwater electrical conductivity evaluation from 15 VES is enough to estimate the risk of water salinity. In addition, the maximum depth of penetration of the MRS depends on the rocks' electrical resistivity and is between 20 and 80 m at the study area.  相似文献   

12.
Using the type-curve methods of Boulton (1963) and Neuman (1972), and comparisons, at various times, of the cumulative volume of water pumped to the volume of the water-table drawdown cone (volume-balance method), values of specific yield were obtained from pumping test data from numerous piezometers in an unconfined sand aquifer. The long-term value of specific yield for the aquifer was determined from measurements of the laboratory drainage curve of the aquifer material. The volume-balance method gave specific yield values of 0.02, 0.05, 0.12, 0.20, 0.23, and 0.25 at times of 0.25, 0.66, 10, 26, 45, and 65 hours, respectively, indicating a gradual increase in specific yield and an asymptotic approach to the long-term value of 0.30 determined from the laboratory method. The type-curve methods provided values of 0.07 and 0.08, which correspond to the volume-balance values at early times, but which are less than one-third of the value obtained from the laboratory method and from the volume-balance method applied at the end of the pumping test (2.7 days). The type-curve procedures therefore provide unrealistically low values of specific yield for application to problems concerning the long-term yield characteristics of the aquifer. The observed trend towards increasing values of specific yield with increasing duration of pumping, and the vertical hydraulic head profiles that were measured during the pumping test indicate that both delayed drainage from above the water table and downward hydraulic gradients in the saturated zone can be important hydraulic effects contributing to the delayed-drawdown segment that is characteristic of time-drawdown graphs for unconfined aquifers.  相似文献   

13.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

14.
Numerical hydrogeological models should ideally be based on the spatial distribution of hydraulic conductivity (K), a property rarely defined on the basis of sufficient data due to the lack of efficient characterization methods. Electromagnetic borehole flowmeter measurements during pumping in uncased wells can effectively provide a continuous vertical distribution of K in consolidated rocks. However, relatively few studies have used the flowmeter in screened wells penetrating unconsolidated aquifers, and tests conducted in gravel-packed wells have shown that flowmeter data may yield misleading results. This paper describes the practical application of flowmeter profiles in direct-push wells to measure K and delineate hydrofacies in heterogeneous unconsolidated aquifers having low-to-moderate K (10(-6) to 10(-4) m/s). The effect of direct-push well installation on K measurements in unconsolidated deposits is first assessed based on the previous work indicating that such installations minimize disturbance to the aquifer fabric. The installation and development of long-screen wells are then used in a case study validating K profiles from flowmeter tests at high-resolution intervals (15 cm) with K profiles derived from multilevel slug tests between packers at identical intervals. For 119 intervals tested in five different wells, the difference in log K values obtained from the two methods is consistently below 10%. Finally, a graphical approach to the interpretation of flowmeter profiles is proposed to delineate intervals corresponding to distinct hydrofacies, thus providing a method whereby both the scale and magnitude of K contrasts in heterogeneous unconsolidated aquifers may be represented.  相似文献   

15.
This paper reviews different borehole flowmeter analysis methods and evaluates their applicability to a test site composed of fluvial deposits. Results from tracer and aquifer tests indicate that the aquifer is highly heterogeneous and that low-K skin effects exist at the wells. Borehole flowmeter tests were performed at 37 wells. An appropriate method for calculating borehole flowmeter K values was developed based on results from multiwell pumping tests, single-well pumping tests, and slug tests. The flowmeter data produced 881 K values. The trends and the magnitude of the K values are consistent with results from geologic investigations, recirculating tracer tests, and large-scale multiwell pumping tests. The field tests illustrate that high-K deposits can significantly affect ground-water flows in some heterogeneous fluvial aquifers.  相似文献   

16.
Peiyue Li  Hui Qian  Jianhua Wu 《水文研究》2014,28(4):2293-2301
Accurate knowledge of hydrogeological parameters is essential for groundwater modeling, protection and remediation. Three methods (type curve fitting method, inflection point method and global curve‐fitting method (GCFM)) which are frequently applied in the estimation of leaky aquifer parameters were compared using synthetic pumping tests. The results revealed GCFM could provide best parameter estimation among the three methods with fewer uncertainties associated with the processes of parameter estimation. GCFM was also found to be both time saving and of low cost and is thus more preferable for hydrogeological parameter estimation than the other two methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration–time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.  相似文献   

18.
Abstract. A method to calculate aquifer transmissivity, storage coefficient, and the leakage coefficient from pumping test data for a leaky aquifer is presented. The method is carried out by a computer program and is based on a minimization of the sum of squares of differences between drawdown in the observation well and the theoretical values from the Hantush and Jacob formula. No user defined starting points are necessary. Random error estimates for the parameters are given. Applications of the method are illustrated using data from pumping tests performed in leaky aquifers at the Cauca River Valley, Colombia.  相似文献   

19.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号