首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 Raman spectra of diopside were collected from atmospheric pressure to 71 GPa. The pressure dependences of 22 modes were determined. Changes occurred in the spectra at three different pressures. First, at approximately 10 GPa, the two Raman modes at 356 and 875 cm−1 disappeared, while the mode at 324 cm−1 split into two modes, diverging at this pressure with significantly different pressure shifts; second, at approximately 15 GPa, a small (1 to 2 cm−1) drop in several of the frequencies was observed accompanied by changes in the pressure dependency of some of the modes; and third, above 55 GPa, the modes characteristic of chains of tetrahedrally coordinated silicon disappeared, while those for octahedrally coordinated silicon appeared. The first change at 10 GPa appears to be a C2/c to C2/c transition involving a change in the Ca coordination. The third change above 55 GPa appears to be a change in the silicon coordination. At 15 GPa, it is suggested that a change in compressional mechanism takes place. Received: 14 November 2000 / Accepted: 9 January 2002  相似文献   

2.
The blue-green color of amazonite has been assigned by various authors to ions Pb+ (6 s)2 (6 p) and/or Pb3+ (6 s) in site of K+ of microcline. Owing to the complex which forms between the ion Pb3+ and the lone pairs of the oxygen atoms surrounding it, the peripheral electron of Pb3+ passes on the levels (6 p) of the latter, which results in a great similarity of the spectra of Pb+ and Pb3+ in amazonite (the transition energies are multiplied by a factor greater than 1), whereas, in the isolated state, these spectra are completely different from one another. An analytical development of the crystal field around a site K+ is established. Under the effect of the crystal field, the transition 2 P 1/22 P 3/2 (6 p) is split into two double transitions. The lower transition only falls in the visible domain (1.6–1.8 eV for Pb+), the second in U−V. The green color would arise from the ion Pb+, whereas the blue one would be attributed to the ion Pb3+. Received: 23 January 1997 / Revised, accepted: 10 September 1997  相似文献   

3.
 The solubility of hydroxyl in coesite was investigated in multianvil experiments performed at 1200 °C over the nominal pressure range 5–10 GPa, at an f O2 close to the Ni-NiO buffer. The starting material for each experiment was a cylinder of pure silica glass plus talc, which dehydrates at high P and T to provide a source of water and hydrogen (plus enstatite and excess SiO2). Fourier-transform infrared (FTIR) spectra of the recovered coesite crystals show five sharp bands at 3606, 3573, 3523, 3459, and 3299 cm−1, indicative of structurally bonded hydrogen (hydroxyl). The concentration of hydrogen increases with pressure from 285 H/106 Si (at 5 GPa) to 1415 H/106 Si (at 10 GPa). Assuming a model of incorporation by (4H)Si defects, the data are fit well by the equation C OH=Af 2 H2<\INF>Oexp(−PΔV/RT), with A=4.38 H/106 Si/GPa, and ΔV=20.6 × 10−6 m3 mol−1. An alternative model entailing association of hydrogen with cation substitution can also be used to fit the data. These results show that the solubility of hydroxyl in coesite is approximately an order of magnitude lower than in olivines and pyroxenes, but comparable to that in pyropic garnet. However, FTIR investigations on a variety of ultrahigh pressure metamorphic rocks have failed in all cases to detect the presence of water or hydrogen in coesite, indicating either that it grew in dry environments or lost its hydrogen during partial transformation to quartz. On the other hand, micro-FTIR investigations of quartz crystals replacing coesite show that they contain varying amounts of H2O. These results support the hypothesis that preservation of coesite is not necessarily linked to fast exhumation rates but is crucially dependent on limited fluid infiltration during exhumation. Received: 23 August 1999 / Accepted: 10 April 2000  相似文献   

4.
We have determined Fe–Mg diffusion coefficients in olivines from different sources (Nanga Parbat, Pakistan and San Carlos, Arizona, USA) at atmospheric pressure as a function of composition, oxygen fugacity (10−5–10−12 Pa) and temperature (700–1200°C) using thin films produced by pulsed laser deposition and RBS to analyze the concentration profiles. We have characterized the nano-scale structure and composition of the thin films annealed at various conditions and shown that the nature of the film (e.g. crystallinity, wetting behavior) depends strongly on the annealing conditions. If these variations are not taken into account in the form of boundary conditions for modeling the diffusion profiles, artifacts would result in the diffusion data. The diffusion coefficients obtained from 75 experiments reveal that (i) between fO2 of 10−5 and 10−10 Pa, diffusion along all three principal crystallographic directions in olivine, [100], [010] and [001], are described by a constant activation energy of ∼200 kJ/mol, precluding any temperature dependence of diffusion anisotropy and change of mechanism of diffusion at temperatures between 950 and 1200°C, (ii) diffusion coefficients increase with oxygen fugacity at fO2 > 10−10 Pa, with an fO2 exponent that lies between 1/4 and 1/7, and (iii) at fO2 below 10−10 Pa, and consequently at temperatures below ∼900°C, diffusion becomes weakly dependent/independent of fO2, indicating a change of diffusion mechanism. Activation energy of diffusion at these conditions is slightly higher, ∼220 kJ/mol. The data, including the change of mechanism, are analyzed in terms of point defect chemistry in Part II of this work to derive an equation that allows calculation of diffusivities in olivine over its entire field of stability. Availability of directly measured data at temperatures down to 700°C imply that for the first time diffusion coefficients can be interpolated, rather than extrapolated, for modeling most natural systems.  相似文献   

5.
 The solubility of hydroxyl in the α, β and γ phases of (Mg,Fe)2SiO4 was investigated by hydrothermally annealing single crystals of San Carlos olivine. Experiments were performed at a temperature of 1000° or 1100 °C under a confining pressure of 2.5 to 19.5 GPa in a multianvil apparatus with the oxygen fugacity buffered by the Ni:NiO solid-state reaction. Hydroxyl solubilities were determined from infrared spectra obtained of polished thin sections in crack-free regions ≤100 μm in diameter. In the α-stability field, hydroxyl solubility increases systematically with increasing confining pressure, reaching a value of ∼20,000 H/106Si (1200 wt ppm H2O) at the α-β phase boundary near 13 GPa and 1100 °C. In the β field, the hydroxyl content is ∼400,000 H/106Si (24,000 wt ppm H2O) at 14–15 GPa and 1100 °C. In the γ field, the solubility is ∼450,000 H/106Si (27,000 wt ppm H2O) at 19.5 GPa and 1100 °C. The observed dependence of hydroxyl solubility with increasing confining pressure in the α phase reflects an increase in water fugacity with increasing pressure moderated by a molar volume term associated with the incorporation of hydroxyl ions into the olivine structure. Combined with published results on the dependence of hydroxyl solubility on water fugacity, the present results for the α phase can be summarized by the relation C OH = A(T)fnH2Oexp(−PΔV/RT), where A(T) = 1.1 H/106Si/MPa at 1100 °C, n = 1, and ΔV = 10.6×10–6 m3/mol. These data demonstrate that the entire present-day water content of the upper mantle could be incorporated in the mineral olivine alone; therefore, a free hydrous fluid phase cannot be stable in those regions of the upper mantle with a normal concentration of hydrogen. Free hydrous fluids are restricted to special tectonic environments, such as the mantle wedge above a subduction zone. Received: 10 February 1995 / Accepted: 23 October 1995  相似文献   

6.
The crystal structure of orthorhombic (Pbnm) ScAlO3 perovskite has been refined to 5 GPa using single-crystal X-ray diffraction. The compression of the structure if anisotropic with β a =1.39(3)×10−3 GPa−1, β b =1.14(3)×10−3 GPa−1 and β c =1.84(3)×10−3 GPa−1. The isothermal bulk modulus of ScAlO3, K T , determined from fitting a Birch-Murnaghan equation of state (K T =4) to the volume compression data is 218(1) GPa. The interoctahedral angles to not vary significantly with pressure, and the compression of the structure is entirely attributable to compression of the AlO6 octahedra. The compressibilities of the constituent AlO6 and ScO12 are well matched: βAl−O=1.6×10−3 GPa−1 and βSc−O=1.5×10−3 GPa−1. Therefore the distortion of the structure shows no significant change with increasing pressure. Received: 18 August 1997 / Revised, accepted: 11 November 1997  相似文献   

7.
Results of JHKLM photometry for the protoplanetary nebula candidate V1027 Cyg obtained in 1991–2008 are reported. In all bands, the brightness variations did not exceed 0.2 m . Estimated linear trends demonstrate no significant changes in the mean brightness and color indices of the object, with the possible exception of the L-M color index, which showed a small decrease. A search for possible periodicities in the brightness variations yielded the most probable period of 237d. A model for a spherically-symmetric dust shell has been calculated based on the photometric results supplemented with data on the mid- and far-infrared fluxes. The estimated mass-loss rate of the star is 1.3 × 10−5 M /year.  相似文献   

8.
The effects of pressure on the dehydration of gypsum materials were investigated up to 633 K and 25 GPa by using Raman spectroscopy and synchrotron X-ray diffraction with an externally heated diamond anvil cell. At 2.5 GPa, gypsum starts to dehydrate around 428 K, by forming bassanite, CaSO4 hemihydrate, which completely dehydrates to γ-anhydrite at 488 K. All the sulphate modes decrease linearly between 293 and 427 K with temperature coefficients ranging from −0.119 to −0.021 cm−1 K−1, where an abrupt change in the ν3 mode and in the OH-stretching region indicates the beginning of dehydration. Increasing the temperature to 488 K, the OH-stretching modes completely disappear, marking the complete dehydration and formation of γ-anhydrite. Moreover, the sample changes from transparent to opaque to transparent again during the dehydration sequence gypsum-bassanite-γ-anhydrite, which irreversibly transforms to β-anhydrite form at 593 K. These data compared with the dehydration temperature at room pressure indicate that the dehydration temperature increases with pressure with a ΔPT slope equal to 230 bar/K. Synchrotron X-ray diffraction experiments show similar values of temperature and pressure for the first appearance of bassanite. Evidence of phase transition from β-anhydrite structure to the monazite type was observed at about 2 GPa under cold compression. On the other hand at the same pressure (2 GPa and 633 K), β-anhydrite was found, indicating a positive Clausis-Clayperon slope of the transition. This transformation is completely reversible as showed by the Raman spectra on the sample recovered after phase transition.  相似文献   

9.
The high-pressure behavior of three synthetic amphiboles crystallized with space group P21/m at room conditions in the system Li2O–Na2O–MgO–SiO2–H2O has been studied by in situ synchrotron infrared absorption spectroscopy. The amphiboles have compositions ANa B(Na x Li1 − x Mg1) CMg5 Si8 O22(OH)2 with = 0.6, 0.2 and 0.0, respectively. The high-P experiments up to 32 GPa were carried out on the U2A beamline at Brookhaven National Laboratory (NY, USA) using a diamond anvil cell under non-hydrostatic or quasi-hydrostatic conditions. The two most intense absorption bands in the OH-stretching infrared spectra can be assigned to two non-equivalent O–H dipoles in the P21/m structure, bonded to the same local environment M1M3Mg3–OH–ANa, and pointing toward two differently kinked tetrahedral rings. In all samples these bands progressively merge to give a unique symmetrical absorption with increasing pressure, suggesting a change in symmetry from P21/m to C2/m. The pressure at which the transition occurs appears to be linearly correlated to the aggregate B-site dimension. The infrared spectra collected for amphibole B(Na0.2Li0.8Mg1) in the frequency range 50 to 1,400 cm−1 also show a series of changes with increasing pressure. The data reported here support the inference of Iezzi et al. (Am Miner 91:479–482, 2006a) regarding a new high-pressure amphibole polymorph.  相似文献   

10.
Potentiometric measurements were performed in the Cd(NO3)2-KCl-H2O system at 25°C and 1–1000 bar using an isothermal cell with a liquid junction and equipped with a solid contact Cd-selective electrode. At 1 bar, the stepwise equilibrium constant of the fourth cadmium chloride complex CdCl42− has been determined (log K40 = −0.88 ± 0.25). The pressure-dependent stability constants for all cadmium chloride complexes have been experimentally established for the first time. As pressure increases from 1 to 1000 bar, the stability constants for the first, third, and fourth complexes change by less than 0.05 logarithmic units, whereas that for the second complex decreases by 0.33 logarithmic units. On the basis of these data, the partial molar volumes of four cadmium chloride complexes have been determined under standard state conditions: V 0(CdCl+) = 2.20 ± 3, V 0(CdCl2 (aq)) = 42.21 ± 5, V 0(CdCl3) = 63.47 ± 10, and V 0(CdCl42−) = 81.35 ± 15 cm3mol−1. The linear correlation between the nonsolvation contributions of molar volumes and the number of ligands corresponds to the change in coordination from octahedral in Cd2+ and CdCl+ to tetrahedral in CdCl2 (aq), CdCl3, and CdCl42− complexes. Using theoretical correlations, the HKF parameters allowing calculation of the volumetric properties of cadmium chloride complexes in a wide range of temperature and pressure have been obtained. The pressure effect on cadmium concentration in sphalerite in equilibrium with the H2O-NaCl hydrothermal fluid has been estimated. It is shown that the Cd content in sphalerite increases with pressure.  相似文献   

11.
The unique bright bluish-green color of turquoise as a high-grade jade has long received wide attention. The relationship between the color of turquoise and its composition and structure is described in this paper on the basis of chemical data, EPR, magnetic susceptibility, absorption and Mössbauer spectra. The results show that the basic color of turquoise (bright blue) is related to the existence of octahedrally on the amount of iron. EPR, magnetic susceblue through green to earth-yellow is dependentcoordinated Cu2+ and the shade variation from ptibility, and crystal-field spectra of Cu2+ have been analyzed and compared with the theoretical calculations. A preliminary discussion is also made of the color change as a function of temperature.  相似文献   

12.
Hydraulic properties of the crystalline basement   总被引:1,自引:1,他引:1  
Hydraulic tests in boreholes, up to 4.5 km deep, drilled into continental crystalline basement revealed hydraulic conductivity (K) values that range over nine log-units from 10−13−10−4 m s−1. However, K values for fractured basement to about 1 km depth are typically restricted to the range from 10−8 to 10−6 m s−1. New data from an extended injection test at the KTB research site (part of the Continental Deep Drilling Program in Germany) at 4 km depth provide K=5 10−8 m s−1. The summarized K-data show a very strong dependence on lithology and on the local deformation history of a particular area. In highly fractured regions, granite tends to be more pervious than gneiss. The fracture porosity is generally saturated with Na–Cl or Ca–Na–Cl type waters with salinities ranging from <1 to >100 g L−1. The basement permeability is well within the conditions for advective fluid and heat transport. Consequently, fluid pressure is hydrostatic and a Darcy flow mechanism is possible to a great depth. Topography-related hydraulic gradients in moderately conductive basement may result in characteristic advective flow rates of up to 100 L a−1 m−2 and lead to significant advective heat and solute transfer in the upper brittle crust. An erratum to this article can be found at  相似文献   

13.
 Models for estimating the pressure and temperature of igneous rocks from co-existing clino-pyroxene and liquid compositions are calibrated from existing data and from new data obtained from experiments performed on several mafic bulk compositions (from 8–30 kbar and 1100–1475° C). The resulting geothermobarometers involve thermodynamic expressions that relate temperature and pressure to equilibrium constants. Specifically, the jadeite (Jd; NaAlSi2O6)–diopside/hedenbergite (DiHd; Ca(Mg, Fe) Si2O6) exchange equilibrium between clinopyroxene and liquid is temperature sensitive. When compositional corrections are made to the calibrated equilibrium constant the resulting geothermometer is (i) 104 T=6.73−0.26* ln [Jdpx*Caliq*FmliqDiHdpx*Naliq*Alliq] −0.86* ln [MgliqMgliq+Feliq]+0.52*ln [Caliq] an expression which estimates temperature to ±27 K. Compared to (i), the equilibrium constant for jadeite formation is more sensitive to pressure resulting in a thermobarometer (ii) P=−54.3+299*T104+36.4*T104 ln [Jdpx[Siliq]2*Naliq*Alliq] +367*[Naliq*Alliq] which estimates pressure to ± 1.4 kbar. Pressure is in kbar, T is in Kelvin. Quantities such as Naliq represent the cation fraction of the given oxide (NaO0.5) in the liquid and Fm=MgO+FeO. The mole fractions of Jd and diopside+hedenbergite (DiHd) components are calculated from a normative scheme which assigns the lesser of Na or octahedral Al to form Jd; any excess AlVI forms Calcium Tschermak’s component (CaTs; CaAlAlSiO6); Ca remaining after forming CaTs and CaTiAl2O6 is taken as DiHd. Experimental data not included in the regressions were used to test models (i) and (ii). Error on predictions of T using model (i) is ±40 K. A pressure-dependent form of (i) reduces this error to ±30 K. Using model (ii) to predict pressures, the error on mean values of 10 isobaric data sets (0–25 kbar, 118 data) is ±0.3 kbar. Calculating thermodynamic properties from regression coefficients in (ii) gives VJd f of 23.4 ±1.3 cm3/mol, close to the value anticipated from bar molar volume data (23.5 cm3/mol). Applied to clinopyroxene phenocrysts from Mauna Kea, Hawaii lavas, the expressions estimate equilibration depths as great as 40 km. This result indicates that transport was sufficiently rapid that at least some phenocrysts had insufficient time to re-equilibrate at lower pressures. Received: 16 May 1994/Accepted: 15 June 1995  相似文献   

14.
Diffusion couples made from homogeneous gem quality natural pyrope and almandine garnets were annealed within graphite capsules under anhydrous conditions at 22–40 kbar, 1057–1400 °C in a piston-cylinder apparatus. The concentration profiles that developed in each couple were modeled to retrieve the self diffusion coefficients [D(I)] of the divalent cations Fe, Mg, Mn and Ca. Because of their usually low concentrations and lack of sufficient compositional change across the interface of the diffusion couples, only a few reliable data can be obtained for D(Ca) and D(Mn) from these experiments. However, nine sets of D(Fe) and D(Mg) data were retrieved in the above P-T range, and cast in the form of Arrhenian relation, D=D 0exp{−[Q(1 bar)+PΔV +]/RT}. The values of the activation energy (Q) and activation volume (ΔV +) depend on whether f O2 is constrained by graphite in the system C-O or held constant. For the first case, we have for Fe:Q(1 bar)=65,532±10,111 cal/mol, D 0=3.50 (±2.30)×10−5 cm2/s, ΔV +=5.6(±2.9) cm3/mol, and for Mg:Q(1 bar)=60,760±8,257 cal/mol, D 0=4.66 (±2.48)×10−5 cm2/s, ΔV +=5.3(±3.0) cm3/mol. Here the ΔV + values have been taken from Chakraborty and Ganguly (1992). For the condition of constant f O2, the Q values are ∼9 kcal lower and ΔV + values are ∼4.9 cm3/mol larger than the above values. Lower temperature extrapolation of the Arrhenian relation for D(Mg) is in good agreement with the Mg tracer diffusion data (D * Mg) of Chakraborty and Rubie (1996) and Cygan and Lasaga (1985) at 1 bar, 750–900 °C, when all data are normalized to the same pressure and to f O2 defined by graphite in the system C-O. The D * Mg data of Schwandt et al. (1995), on the other hand, are lower by more than an order of magnitude than the low temperature extrapolation of the present data, when all data are normalized to the same pressure and to f O2 defined by the graphite buffer. Comparison of the D(Fe), D(Mg) and D(Mn) data in the pyrope-almandine diffusion couple with those in the spessartine-almandine diffusion couple of Chakraborty and Ganguly (1992) shows that the self diffusion of Fe and Mn are significantly enhanced with the increase in Mn/Mg ratio; the enhancement effect on D(Mg) is, however, relatively small. Proper application of the self diffusion data to calculate interdiffusion coefficient or D matrix elements for the purpose of modeling of diffusion processes in natural garnets must take into account these compositional effects on D(I) along with the effects of thermodynamic nonideality, f O2, and pressure. Received: 8 May 1997 / Accepted: 2 October 1997  相似文献   

15.
 Powder diffraction measurements at simultaneous high pressure and temperature on samples of 2M1 polytype of muscovite (Ms) and paragonite (Pg) were performed at the beamline ID30 of ESRF (Grenoble), using the Paris-Edinburgh cell. The bulk moduli of Ms, calculated from the least-squares fitting of VP data on each isotherm using a second-order Birch–Murnaghan EoS, were: 57.0(6), 55.1(7), 51.1(7) and 48.9(5) GPa on the isotherms at 298, 573, 723 and 873 K, respectively. The value of (∂K T /∂T) was −0.0146(2) GPa K−1. The thermal expansion coefficient α varied from 35.7(3) × 10−6 K−1 at P ambient to 20.1(3) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −3.9(1) × 10−6 GPa−1 K−1]. The corresponding values for Pg on the isotherms at 298, 723 and 823 K were: bulk moduli 59.9(5), 55.7(6) and 53.8(7) GPa, (∂K T /∂T) −0.0109(1) GPa K−1. The thermal expansion coefficient α varied from 44.1(2) × 10−6 K−1 at P ambient to 32.5(2) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −2.9(1) × 10−6 GPa−1 K−1]. Thermoelastic coefficients showed that Pg is stiffer than Ms; Ms softens more rapidly than Pg upon heating; thermal expansion is greater and its variation with pressure is smaller in Pg than in Ms. Received: 28 January 2002 / Accepted: 5 April 2002  相似文献   

16.
A compressional study of (Na,Ca)(Ti3+,Mg)Si2O6-clinopyroxenes was carried out at high pressures between 10−4 and 10.2 GPa using in situ single-crystal X-ray diffraction, Raman spectroscopy and optical absorption spectroscopy. Compressional discontinuities accompanied by structural changes, in particular, the appearance of two distinct Ti3+–Ti3+ distances within the octahedral chains at 4.37 GPa, provide evidence for the occurrence of a phase transition in NaTi3+Si2O6. Equation-of-state parameters are K 0 = 115.9(7) GPa with K′ = −0.9(3) and K 0 = 102.7(8) GPa with K′ = 4.08(5) for the low- and high-pressure range, respectively. The transition involves a C2/c–P [`1] \overline{1} symmetry change, which can be confirmed by the occurrence of new modes in Raman spectra. Since no significant discontinuity in the evolution of the unit-cell volume with pressure has been observed, the transition appears to be second-order in character. The influence of the coupled substitution Na+Ti3+↔Ca2+Mg2+ on the static compression behavior and the structural stability has been investigated using a sample of the intermediate composition (Na0.54Ca0.46)(Mg0.46Ti0.54)Si2O6. No evidence for a deviation from continuous compression behavior has been found, neither in lattice parameter nor in structural data and the fit of a third-order Birch–Murnaghan equation-of-state to the pressure–volume data yields a bulk modulus of K 0 = 109.1(5) GPa and K′ = 5.02(13). Raman and polarized absorption spectra have been compared to NaTiSi2O6 and reveal major similarities. The main driving force for the phase transition in NaTi3+Si2O6 is the localization of the Ti3+ d-electron and the accompanying distortion, which is suppressed in the (Na,Ca)(Ti3+,Mg)Si2O6-clinopyroxene.  相似文献   

17.
 Using lattice dynamic modelling of pure MgSiO3 clinopyroxenes, we have be able to simulate the properties of both the low-clino (P21/c) and a high-density-clino (C2/c) phases and our results are comparable with the high pressure (HP) X-ray study of these phases (Angel et al. 1992). The transition between the two phases is predicted to occur at 6GPa. The volume variation with pressure for both phases is described by a third-order Birch-Murnaghan equation of state with the parameters V 0 low=31.122 cm3·mol−1, K T0 low= 107.42 GPa, K′ T0 low=5.96, V 0 high=30.142 cm3·mol–1, K T0 high102.54 GPa and K′ T0  high=8.21. The change in entropy between the two modelled phases at 6GPa is ΔS 6 Gpa=−1.335 J·mol−1·K−1 and the equivalent change in volume is ΔV 6 GPa=−0.92 cm3·mol−1, from which the gradient of the phase boundary δPT is 0.0014 GPa·K−1. The variation of the bulk modulus with pressure was also determined from the modelled elastic constants and compares very well with the EOS data. The reported Lehmann discontinuity, ∼220 km depth and pressure of 7.11Gpa, has an increase in the seismic compressional wave velocity, v p , of 7.14% using the data given for PREM (Anderson 1989). At a pressure of 7GPa any phase transition of MgSiO3 pyroxene would be between ortho (Pbca) and high-clino. We find the value of v p at 7GPa, for modelled orthoenstatite (Pbca), is 8.41 km·sec−1 and that for the modelled high-clino phase at 7GPa is 8.93 km·sec−1, giving a dv p /v p of 6.18%. Received: July 26, 1996 / Revised, accepted: September 27, 1996  相似文献   

18.
A suite of more than 200 garnet single crystals, extracted from 150 xenoliths, covering the whole range of types of garnet parageneses in mantle xenoliths so far known from kimberlites of the Siberian platform and collected from nearly all the kimberlite pipes known in that tectonic unit, as well as some garnets found as inclusions in diamonds and olivine megacrysts from such kimberlites, were studied by means of electron microprobe analysis and single-crystal IR absorption spectroscopy in the v OH vibrational range in search of the occurrence, energy and intensity of the v OH bands of hydroxyl defects in such garnets and its potential use in an elucidation of the nature of the fluid phase in the mantle beneath the Siberian platform. The v OH single-crystal spectra show either one or a combination of two or more of the following major v OH bands, I 3645–3662 cm−1, II 3561–3583 cm−1, III 3515–3527 cm−1, and minor bands, Ia 3623–3631 cm−1, IIa 3593–3607 cm−1. The type of combination of such bands in the spectrum of a specific garnet depends on the type of the rock series of the host xenolith, Mg, Mg-Ca, Ca, Mg-Fe, or alkremite, on the xenolith type as well as on the chemical composition of the respective garnet. Nearly all garnets contain band systems I and II. Band system III occurs in Ti-rich garnets, with wt% TiO2 > ca. 0.4, from xenoliths of the Mg-Ca and Mg-Fe series, only. The v OH spectra do not correspond to those of OH defects in synthetic pyropes or natural ultra-high pressure garnets from diamondiferous metamorphics. There were no indications of v OH from inclusions of other minerals within the selected 60 × 60 μm measuring areas in the garnets. The v OH spectra of pyrope-knorringite- and pyrope-knorringite-uvarovite-rich garnets included in diamonds do not show band systems I to III. Instead, they exhibit one weak, broad band (Δv OH 200–460 cm−1) near 3570 cm−1, a result that was also obtained on pyrope-knorringite-rich garnets extracted from two olivine megacrysts. The quantitative evaluation, on the basis of relevant existing calibrational data (Bell et al. 1995), of the sum of integral intensities of all v OH bonds of the garnets studied yielded a wide range of “water” concentrations within the set of the different garnets, between values below the detection limit of our single-crystal IR method, near 2 × 10−4 wt%, up to 163 × 10−4 wt%. The “water” contents vary in a complex manner in garnets from different xenolith types, obviously depending on a large number of constraints, inherent in the crystal chemistry as well as the formation conditions of the garnets during the crystallization of their mantle host rocks. Secondary alteration effects during uplift of the kimberlite, play, if any, only a minor role. Despite the very complex pattern of the “water” contents of the garnets, preventing an evaluation of a straightforward correlation between “water” contents of the garnets and the composition of the mantle's fluid phase during garnet formation, at least two general conclusions could be drawn: (1) the wide variation of “water” contents in garnets is not indicative of regional or local differences in the composition of the mantle's fluid phase; (2) garnets formed in the high-pressure/high-temperature diamond-pyrope facies invariably contain significantly lower amounts of “water” than garnets formed under the conditions of the graphite-pyrope facies. This latter result (2) may point to significantly lower f H2O and f O2 in the former as compared to the latter facies. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

19.
 The partitioning of Mg and Fe between magnesiowüstite and ringwoodite solid solutions has been measured between 15 and 23 GPa and 1200–1600 C using both Fe and Re capsule materials to vary the oxidation conditions. The partitioning results show a clear dependence on the capsule material used due to the variation in Fe3+ concentrations as a consequence of the different oxidation environments. Using results from experiments performed in Fe capsules, where metallic Fe was also added to the starting materials, the difference in the interaction parameters for the two solid solutions (W FeMg mwW FeMg ring) is calculated to be 8.5±1 kJ mol−1. Similar experiments performed in Re metal capsules result in a value for W FeMg mwW FeMg ring that is apparently 4 kJ higher, if all Fe is assumed to be FeO. Electron energy-loss near-edge structure (ELNES) spectroscopic analyses, however, show Fe3+ concentrations to be approximately three times higher in magnesiowüstite produced in Re capsules than in Fe capsules and that Fe3+ partitions preferentially into magnesiowüstite, with K D Fe3+ ring/mw estimated between 0.1 and 0.6. Using an existing activity composition model for magnesiowüstite, a least–squares fit to the partitioning data collected in Fe capsules results in a value for the ringwoodite interaction parameter (W FeMg ring) of 3.5±1 kJ mol−1. The equivalent regular interaction parameter for magnesiowüstite (W FeMg mw) is 12.1±1.8 kJ mol. These determinations take into account the Fe3+ concentrations that occur in both phases in the presence of metallic Fe. The free energy change in J mol−1 for the Fe exchange reaction can be described, over the range of experimental conditions, by 912 + 4.15 (T−298)+18.9P with T in K, P in kbar. The estimated volume change for this reaction is smaller than that predicted using current compilations of equation of state data and is much closer to the volume change at ambient conditions. These results are therefore a useful test of high pressure and temperature equation of state data. Using thermodynamic data consistent with this study the reaction of ringwoodite to form magnesiowüstite and stishovite is calculated from the data collected using Fe capsules. Comparison of these results with previous studies shows that the presence of Fe3+ in phases produced in multianvil experiments using Re capsules can have a marked effect on apparent phase relations and determined thermodynamic properties. Received: 13 September 2000 / Accepted: 25 March 2001  相似文献   

20.
Polarized near-UV spectra have been recorded on 20 μm diameter spots on oriented crystals of microprobe-analyzed olivines from Baikhal Rift, Fa8.8 (I) and Seberget, Fa9.3 (II), which have formed under different fO2 and, therefore, are expected to contain Fe3+-bearing point defects in different concentrations. These should be reflected in the UV-spectra of such minerals (Cemic et al. 1986). The spectra obtained confirm these predictions: The difference in α Y, 26500 in both samples indicates a difference in Fe3+-site fractions of ΔXFe. = 1.78-10−4, which may be related to an fO2 about ten times higher for the formation of olivine II compared to I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号