首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perch (Perca fluviatilis), were sampled from unpolluted and polluted areas in Swedish coastal waters. The level of aromatic/hydrophobic DNA adducts in liver tissue was analyzed using the nucleas P1 version of the32P-post-labeling assay. The level of total adducts measured in the individual fish from polluted areas was between 6 and 22 nmol of adducts/mol of nucleotides, and in the fish from the reference area between 0.2 and 0.6 nmol of adducts/mol of nucleotides.  相似文献   

2.
Hydrophobic DNA adducts were examined in liver, anterior kidney, spleen, and blood of tumor-prone mummichog (Fundulus heterclitus) from the creosote-contaminated Atlantic Wood (AW) site (Elizabeth River, Virginia). DNA adducts eluted in a diagonal radioactive zone, characteristic of polycyclic aromatic hydrocarbon exposure, in all examined tissues of AW fish. Mummichog demonstrated significantly higher levels of DNA adducts in spleen (394 +/- 109 nmol adducts/mol nucleotides) than in liver (201 +/- 77 nmol adducts/mol nucleotides) or anterior kidney (211 +/- 68 nmol adducts/mol nucleotides; P = 0.036). The levels of DNA adducts in the pooled blood (pool of four) were 142 nmol adducts/mol nucleotides. DNA adducts were not detected in the liver, anterior kidney, spleen and blood of fish collected from the reference site (< 2 nmol adducts/mol nucleotides). The high levels of DNA adducts detected in tissues of AW mummichog may be linked to the increased cancer incidence and immunosuppression in this population.  相似文献   

3.
This study was designed to determine whether contaminated sea-surface microlayer was toxic to marine fish embryos in its ntaive form and as a hexane extract. Developing embryos of Atlantic cod (Gadus morhua) and Baltic herring (Clupea harengus) were exposed to hexane extracts of sea-surface microlayer collected from five locations in the North Sea and Baltic Sea. Extracts from two of these locations produced significant embryos mortality as well as severe deformities in live hatched larvae. A control sample of bulk water collected from 20 cm under the surface and extracted in the same way produced no significant mortality or deformities. Significaant changes in timing of hatching were also observed in those samples which produced embryo toxic effects. A comparison of these data with those obtained from code embryos exposed to unextracted microlayer showed a similar biological effect with both unextracted samples and hexane extracts.Chemical analyses revealed the greatest biological effect in samples with petroleum hydrocarbon concentrations between 180 and > 200 μg liter−1. The bulk water control had 1 μg liter−1 while the three samples that showed no biological activity had 3 to 8 μg liter−1 petroleum hydrocarbons. Phthalic acid esters were detected in four samples and chlorinated hydrocarbons in one, but could not be positively correlated with any of the toxic responses. No other chemical contaminants were detected in the five samples.The data presented here show that some sites contain sea-surface microlayer which can be toxic to marine fish embryos: that Baltic herring and Atlantic cod embryos respond similarly to the toxic effects of contaminated microlayer: and that unextracted microlayer and hexane extract of microlayer produce essentially the same toxic effect(s) if only organic contaminants are considered.  相似文献   

4.
The principal features of the marine ecosystems in the Barents and Norwegian Seas and some of their responses to climate variations are described. The physical oceanography is dominated by the influx of warm, high-salinity Atlantic Waters from the south and cold, low-salinity waters from the Arctic. Seasonal ice forms in the Barents Sea with maximum coverage typically in March–April. The total mean annual primary production rates are similar in the Barents and Norwegian Seas (80–90 g C m−2), although in the Barents, the production is higher in the Atlantic than in the ice covered Arctic Waters. The zooplankton is dominated by Calanus species, C. finmarchicus in the Atlantic Waters of the Norwegian and Barents Seas, and C. glacialis in the Arctic Waters of the Barents Sea. The fish species in the Norwegian Sea are mostly pelagics such as herring (Clupea harengus) and blue whiting (Micromesistius poutassou), while in the Barents Sea there are both pelagics (capelin (Mallotus villosus Müller), herring, and polar cod (Boreogadus saida Lepechin)) and demersals (cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus)). The latter two species spawn in the Norwegian Sea along the slope edge (haddock) or along the coast (cod) and drift into the Barents Sea. Marine mammals and seabirds, although comprising only a relatively small percentage of the biomass and production in the region, play an important role as consumers of zooplankton and small fish. While top-down control by predators certainly is significant within the two regions, there is also ample evidence of bottom-up control. Climate variability influences the distribution of several fish species, such as cod, herring and blue whiting, with northward shifts during extended warm periods and southward movements during cool periods. Climate-driven increases in primary and secondary production also lead to increased fish production through higher abundance and improved growth rates.  相似文献   

5.
The Barents Sea ecosystem has been associated with large biomass fluctuations. If there is a hidden deterministic process behind the Barents Sea ecosystem, we may forecast the biomass in order to control it. This presentation concludes, for the first time, investigations of a long data series from North Atlantic water and the Barents Sea ecosystem. The analysis is based on a wavelet spectrum analysis from the data series of annual mean Atlantic sea level, North Atlantic water temperature, the Kola section water temperature, and species from the Barents Sea ecosystem.The investigation has identified dominant fluctuations correlated with the 9.3-yr phase tide, the 18.6-yr amplitude tide, and a 74-yr superharmonic cycle in the North Atlantic water, Barents Sea water, and Arctic data series. The correlation between the tidal cycles and dominant Barents Sea ecosystem cycles is estimated to be R=0.6 or better. The long-term mean fluctuations correlate with the 74-yr superharmonic cycle. The wavelets analysis shows that the long-term 74-yr cycle may introduce a phase reversal in the identified 18-yr periods of temperature and salinity. The present analysis suggests that forced vertical and horizontal nodal tides influence the ocean's thermohaline circulation, and that they behave as a coupled non-linear oscillation system.The Barents Sea ecosystem analysis shows that the biomass life cycle and the long-term fluctuations correlate better than R=0.5 to the lunar nodal tide spectrum. Barents Sea capelin has a life cycle related to a third harmonic of the 9.3-yr tide. The life cycles of shrimp, cod, herring, and haddock are related to a third harmonic of the 18.6-yr tide. Biomass growth was synchronized to the lunar nodal tide. The biomass growth of zooplankton and shrimp correlates with the current aspect of lunar nodal tidal inflow to the Barents Sea. The long-term biomass fluctuation of cod and herring is correlated with a cycle period of about 3×18.6=55.8 yr. This analysis suggests that we may understand the Barents Sea ecosystem dynamic as a free-coupled oscillating system to the forced lunar nodal tides. This free-coupled oscillating system has a resonance related to the oscillating long tides and the third harmonic and superharmonic cycles.  相似文献   

6.
Besides variable egg survival, previous studies suggested that the larval stage may be the most critical phase in determining Baltic cod recruitment variability, and that larvae need to conduct an ontogenetic vertical migration from hatching depths (>50 m) to upper layers with increased food availability in order to initiate first feeding, improve their nutritional condition and growth, and avoid starvation. Recently, detailed information on the stage-resolved vertical distribution of main Baltic copepod species, including the preferred larval Baltic cod prey species Pseudocalanus acuspes, has become available. Therefore, the vertical distribution of Baltic cod larvae in August 2007 and their depth-dependent nutritional condition and growth were investigated. RNA–DNA based methods were used to estimate growth, including a novel approach to estimate growth performance by relating observed specific growth rates (SGR) of field caught larvae to temperature-dependent reference growth rates (Gref) for fast-growing laboratory reared fish from the literature. This standardization to Gref was found to have a great potential to improve investigations on the growth and ecology of larval fish. The need for early larvae to migrate to shallower layers was corroborated, while larger size classes were found at increasingly greater depths. This may reflect a continuation of the ontogenetic vertical migration in order to follow increasingly larger prey items at greater depths and to save energy in cooler waters below the thermocline. Larval growth generally declined with increasing depth, but the decline in growth became less pronounced in larger size classes. This indicates that larger larvae were better in coping with the ambient environment and the available prey field at greater depths. Generally, Baltic cod larvae grew poorly compared to larvae from other studies, which is discussed in relation to differences in predation and a possible food–temperature trade-off for larvae in the highly stratified Baltic Sea. Comparison with earlier results showed a higher frequency of starving larvae and lower frequencies of larger larvae after the first-feeding stage in 1994 and 1995. As this was a period of low Baltic cod recruitment despite favourable conditions for egg survival, it is concluded that larval starvation mortality has a high potential to contribute to recruitment variability in Baltic cod.  相似文献   

7.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   

8.
The purpose of the study is to assess the role of trophic relations of the dominant pelagic fishes capelin and polar cod in the Barents Sea with regard to distribution and accessibility as prey for the Atlantic cod in warm years (2004–2005). Unlike in the previous period, during these warm years a dramatic increase of the polar cod population resulted in a northwards expansion of the feeding grounds where overlapping of polar cod and capelin concentrations was observed. This caused an increased competition for copepods, which are the main food item for young fish. In the areas dominated by polar cod the shortage of copepods forced immature capelin to switch to the chaetognath Sagitta, which affected their fatness negatively.During the warm years the feeding grounds of Atlantic cod also expanded, to a large degree caused by the shortage of their main food, the capelin. In 2004–2005 the cod formed feeding concentrations in the north and northeast Barents Sea where they fed on the capelin. In this area the consumption of polar cod by cod increased, and in some local areas the polar cod practically replaced the capelin in the diet of cod. In general polar cod in the diet of Atlantic cod were more important in the northern than in the southern part of the Barents Sea. The fatness of cod was extremely low during the whole spring–summer period (until August), and after the feeding period the fatness index of the Atlantic cod became lower than the average long-term autumn value.  相似文献   

9.
Food webs and carbon flux in the Barents Sea   总被引:6,自引:3,他引:6  
Within the framework of the physical forcing, we describe and quantify the key ecosystem components and basic food web structure of the Barents Sea. Emphasis is given to the energy flow through the ecosystem from an end-to-end perspective, i.e. from bacteria, through phytoplankton and zooplankton to fish, mammals and birds. Primary production in the Barents is on average 93 g C m−2 y−1, but interannually highly variable (±19%), responding to climate variability and change (e.g. variations in Atlantic Water inflow, the position of the ice edge and low-pressure pathways). The traditional focus upon large phytoplankton cells in polar regions seems less adequate in the Barents, as the cell carbon in the pelagic is most often dominated by small cells that are entangled in an efficient microbial loop that appears to be well coupled to the grazing food web. Primary production in the ice-covered waters of the Barents is clearly dominated by planktonic algae and the supply of ice biota by local production or advection is small. The pelagic–benthic coupling is strong, in particular in the marginal ice zone. In total 80% of the harvestable production is channelled through the deep-water communities and benthos. 19% of the harvestable production is grazed by the dominating copepods Calanus finmarchicus and C. glacialis in Atlantic or Arctic Water, respectively. These two species, in addition to capelin (Mallotus villosus) and herring (Clupea harengus), are the keystone organisms in the Barents that create the basis for the rich assemblage of higher trophic level organisms, facilitating one of the worlds largest fisheries (capelin, cod, shrimps, seals and whales). Less than 1% of the harvestable production is channelled through the most dominating higher trophic levels such as cod, harp seals, minke whales and sea birds. Atlantic cod, seals, whales, birds and man compete for harvestable energy with similar shares. Climate variability and change, differences in recruitment, variable resource availability, harvesting restrictions and management schemes will influence the resource exploitation between these competitors, that basically depend upon the efficient energy transfer from primary production to highly successful, lipid-rich zooplankton and pelagic fishes.  相似文献   

10.
The seasonal and interannual variability of the air–sea CO2 flux (F) in the Atlantic sector of the Barents Sea have been investigated. Data for seawater fugacity of CO2 (fCO2sw) acquired during five cruises in the region were used to identify and validate an empirical procedure to compute fCO2sw from phosphate (PO4), seawater temperature (T), and salinity (S). This procedure was then applied to time series data of T, S, and PO4 collected in the Barents Sea Opening during the period 1990–1999, and the resulting fCO2sw estimates were combined with data for the atmospheric mole fraction of CO2, sea level pressure, and wind speed to evaluate F.The results show that the Atlantic sector of the Barents Sea is an annual sink of atmospheric CO2. The monthly mean uptake increases nearly monotonically from 0.101 mol C m− 2 in midwinter to 0.656 mol C m− 2 in midfall before it gradually decreases to the winter value. Interannual variability in the monthly mean flux was evaluated for the winter, summer, and fall seasons and was found to be ± 0.071 mol C m− 2 month− 1. The variability is controlled mainly through combined variation of fCO2sw and wind speed. The annual mean uptake of atmospheric CO2 in the region was estimated to 4.27 ± 0.68 mol C m− 2.  相似文献   

11.
The species composition and trophic structure of the Barents Sea fish assemblage is analysed based on data from research survey trawls and diet analyses of various species. Atlantic cod was the dominant fish species encountered, accounting for more than 55% by abundance or biomass. Only five fish species (long rough dab, thorny skate, Greenland halibut, deepwater redfish and saithe) were sufficiently abundant to be considered as possible food competitors with cod in the Barents Sea. However, possible trophic competition is not high, due to low spatial and temporal overlap between cod and these other species. Analyses of fish assemblages and trophic structures of the Barents Sea and other areas (North Sea, Western Greenland, Newfoundland-Labrador shelf) suggest that Barents Sea cod is the only cod stock for which the ability to recover may not be restricted by trophic relations among fishes, due to a lack of other abundant predatory species and low potential for competition caused by spatial-temporal changes.  相似文献   

12.
The numerical analysis of the stationary field of current velocity on the upper boundary of the bottom boundary layer in the Barents Sea is performed on the basis of a simplified model taking into account the fields of wind velocity and density of water for the principal periods of the seasonal cycle and the bottom topography. The analysis is based on the climatic BarKode database and the data on the wind velocity over the Barents Sea for the last 50 yr. The numerical results demonstrate that the field of bottom currents is fairly nonuniform and the current velocities vary from several fractions of 1 cm/sec to 5 cm/sec in the zones with noticeable slopes of the bottom. The estimates of the thickness of the bottom boundary layer are obtained for the constant coefficient of bottom friction C f = 0.04. In the major part of the water area of the Barents Sea, the thickness of the bottom boundary layer is close to 1 m. In the regions with significant slopes of the bottom, it increases to 2–2.5 m and, in the two zones of intensification of the bottom currents, becomes as large as 5 m. The maximum estimate of the coefficient of turbulent viscosity is close to 5 cm2/sec. The mean value of the coefficient of vertical density diffusion K S is equal to 2.34 cm2/sec and its standard deviation is equal to 1.52 cm2/sec. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 31–49, September–October, 2007.  相似文献   

13.
《Journal of Sea Research》2003,49(3):187-201
Retention or dispersion of larvae from the spawning ground has been identified as one of the key processes influencing recruitment success in fish stocks. An exercise combining 3-D hydrodynamic model simulations and field data on spatial distributions of juvenile Baltic cod was utilised to investigate the potential drift of larvae from the centre of main spawning effort in the Bornholm Basin, Baltic Sea. In the simulations cod larvae were represented as Lagrangian drifters. Habitats in which larvae and juvenile cod potentially dwell and where juveniles settle were identified to ascertain the importance of predicting transport. The transport of Baltic cod larvae was investigated by detailed drift model simulations for the years 1986 to 1999. The results yielded a clear dependency on wind-induced drift of larval cod, which is mainly controlled by the local atmospheric conditions over the Baltic Sea. Seasonally averaged distributions of drifters were compared with actual distributions of 0-group cod, as determined from bottom and pelagic trawl surveys conducted in autumn of the years 1993 to 2000 in and around the Bornholm Basin. The results suggest that juveniles caught in different areas can be assigned to different times of the spawning season. Because of seasonal differences in the circulation patterns, the southern coastal environment is on average most important for early and late spawners, whereas larvae hatching in mid-summer were on average transported towards the north or to a higher degree remained in the spawning ground.  相似文献   

14.
《Marine Chemistry》1987,21(3):213-227
Filtered water from the Baltic Sea was analysed for uranium concentration and 234U/238U activity ratio with alpha-ray spectrometry. The uranium concentration shows a strong correlation to salinity, the correlation coefficient being close to 0.98. Consequently, the uranium concentration increases from 0.15 μg kg−1 in the northern part, dominated by fresh water, to above 1.0 μg kg−1 in the Belt Sea. However, the data also show that dissolved uranium is not strictly conservative in the Baltic. In deeper intermittently anoxic basins of the Baltic Proper, the element is removed from the water phase and incorporated into the sediment. This is most evident in the Gotland Deep, which has been anoxic below 200 m depth since 1979.  相似文献   

15.
Standard hydrological section data, collected in the eastern Barents Sea in September 1997, have been analyzed using a variational data assimilation technique. This method allows us to obtain temperature, salinity and velocity fields that are consistent with observations and dynamically balanced within the framework of a steady-state model describing large-scale nearly geostrophic circulation. Error bars of the optimized fields are computed by explicit inversion of the Hessian matrix. The optimized velocity field is in agreement with independent velocity observations derived from surface drifter trajectories in the southwestern part of the Barents Sea. Optimized fields provide the following estimates of integral characteristics of the circulation in the region: i) the North Cape current transport is 2.12 ± 0.25 Sv; ii) the Karskie Vorota Strait throughflow is 0.7 ± 0.06 Sv; iii) heat flux with Atlantic water is 4.7 ± 0.16⋅1011 W; iv) salt import from the Atlantic Ocean is 7.41 ± 0.46⋅103 kg/s. The imbalance of the heat budget in the eastern part of the Barents Sea indicates the presence of statistically insignificant surface heat fluxes which are less than 1 W/m2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
An analysis of the variations in the concentrations of 137Cs and 90Sr radionuclides in the Baltic Sea surface waters after the accident at the Chernobyl nuclear power plant was performed. An instability of the 137Cs concentration values during the short-term observations was found, when these values were differed 2-to 3-fold. The concentrations of 90Sr appeared to be more stable; meanwhile, their deviations sometimes exceeded the ranges of the experimental errors. By the variations in the monthly average values of the radionuclide concentrations in the surface waters of the Baltic Sea in 1989–1995, no trend of the water self-purification was observed. The theoretical results obtained confirmed the potential of the formation and propagation of patches with increased concentrations of 137Cs in the southeastern part of the Baltic Sea. The most reliable factor that controlled the process of self-purification of the Baltic Sea water appeared to be the mean annual value of the concentration of radionuclides. Pronounced divergences were obtained between the measured and calculated mean annual concentrations of 137Cs and 90Sr radionuclides in the surface waters of the Baltic Sea in 1989–2001. These divergences are explained by the potential influence of the waters from the Gulf of Bothnia and by other additional supplies of radionuclides to the marine environment, which were not included into the mathematical models.  相似文献   

17.
渤海小型底栖动物生物量的初步研究   总被引:15,自引:1,他引:15  
主要以线虫、桡足类、双壳类、多毛类和动吻5个类群对渤海小型底栖动物的生物量进行了估算,并对其水平分布进行了研究.结果表明,3个航次平均,渤海小型底栖动物年生物量为(干重)0.404g/(m2·a);1998年9~10月和1999年4~5月2个航次中小型底栖动物生物量的水平分布主要表现为渤海中东部和海峡口站位的生物量明显高于其他站位,但在1999年航次,海峡口靠近海岸的站位生物量下降,位于莱洲湾B1站位生物量明显上升.依据小型底栖动物的年生产力P=9B,估算渤海小型底栖动物的年平均生产力为(干重)3.636g/(m2·a).还对渤海小型底栖动物生物量与世界其他海域的进行了比较,认为渤海小型底栖动物生物量的数值与其他海域生物量的数值接近,但略偏低.就不同学者研究所得的线虫平均个体干重进行了比较研究.  相似文献   

18.
The Arctic is poorly described and understood compared to the North Sea and other boreal areas. We need to learn how knowledge obtained at boreal conditions may be applied at Arctic conditions. Increasing activity of the hydrocarbon industry may cause exposure stress from discharges. Within a joint industry research programme (Biosea) we studied how responses in fish from oil exposure may differ at North Sea boreal and Barents Sea Arctic conditions. Hydrocarbon uptake, metabolites, and enzymatic and genotoxic biomarker type of effect responses were measured in cod (Gadus morhua L.). Hydrocarbon metabolites remain longer in fish bile than original hydrocarbons, which are eliminated fast from tissues. The metabolites may be measured to background concentrations. They describe exposure and they constitute a link to other effects. Body burden, biliary polyaromatic hydrocarbon (PAH) metabolite concentration, and quantities of Cytochrome P-450 1A (CYP1A) and DNA adducts increased with oil in water concentration. The extent of biomarker expression was lower for some biomarkers and elimination was slower at the lowest temperature. The results show that several factors have to be accounted for if warm-water biomarker data are to be applied in cold water.  相似文献   

19.
The relationships between the linear dimensions and body weight and the ratio between the masses, growth, and production were studied for the bivalve Astarte borealis inhabiting the southeastern Baltic Sea. The maximal shell length was 21.09 mm, while the maximum age was 8+. The linear growth was described by the Bertalanffy equation L τ = (1 - e -0.0894(τ-(-0.7354))). The annual production was 7.60 kJ/m2 at a P s/B coefficient of 0.41. It was found that the A. borealis inhabiting the southeastern Baltic Sea was characterized by a lower linear growth rate compared to the mollusks of other parts of the geographical range due to the low salinity of the Baltic Sea.  相似文献   

20.
The dynamics controlling the response of the Baltic Sea to changed atmospheric and hydrologic forcing are reviewed and demonstrated using simple models. The response time for salt is 30 times longer than for heat in the Baltic Sea. In the course of a year, the Baltic Sea renews most of its heat but only about 3% of its salt. On the seasonal scale, surface temperature and ice-coverage are controlled by the atmospheric conditions over the Baltic Sea as demonstrated by e.g. the strong inter-annual variations in winter temperature and ice-coverage due to variations in dominating wind directions causing alternating mild and cold winters. The response of surface temperature and ice-coverage in the Baltic Sea to modest climate change may therefore be predicted using existing statistics. Due to the long response time in combination with complicated dynamics, the response of the salinity of the Baltic Sea cannot be predicted using existing statistics but has to be computed from mechanistic models. Salinity changes primarily through changes in the two major forcing factors: the supply of freshwater and the low-frequency sea level fluctuations in the Kattegat. The sensitivity of Baltic Sea salinity to changed freshwater supply is investigated using a simple mechanistic steady-state model that includes baroclinic geostrophic outflow from the Kattegat, the major dynamical factor controlling the freshwater content in the Kattegat and thereby the salinity of water flowing into the Baltic Sea. The computed sensitivity of Baltic Sea surface salinity to changes of freshwater supply is similar to earlier published estimates from time-dependent dynamical models with higher resolution. According to the model, the Baltic Sea would become fresh at a mean freshwater supply of about 60 000 m3 s−1, i.e. a 300% increase of the contemporary supply. If the freshwater supply in the different basins increased in proportion to the present-day supply, the Bothnian Bay would become fresh already at a freshwater supply of about 37 000 m3 s−1 and the Bothnian Sea at a supply of about 45 000 m3 s−1. The assumption of baroclinic geostrophic outflow from the Kattegat, crucial for the salinity response of the Baltic Sea to changed freshwater supply, is validated using daily salinity profiles for the period 1931–1977 from lightship Läsö Nord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号