首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Ensemble methods present a practical framework for parameter estimation, performance prediction, and uncertainty quantification in subsurface flow and transport modeling. In particular, the ensemble Kalman filter (EnKF) has received significant attention for its promising performance in calibrating heterogeneous subsurface flow models. Since an ensemble of model realizations is used to compute the statistical moments needed to perform the EnKF updates, large ensemble sizes are needed to provide accurate updates and uncertainty assessment. However, for realistic problems that involve large-scale models with computationally demanding flow simulation runs, the EnKF implementation is limited to small-sized ensembles. As a result, spurious numerical correlations can develop and lead to inaccurate EnKF updates, which tend to underestimate or even eliminate the ensemble spread. Ad hoc practical remedies, such as localization, local analysis, and covariance inflation schemes, have been developed and applied to reduce the effect of sampling errors due to small ensemble sizes. In this paper, a fast linear approximate forecast method is proposed as an alternative approach to enable the use of large ensemble sizes in operational settings to obtain more improved sample statistics and EnKF updates. The proposed method first clusters a large number of initial geologic model realizations into a small number of groups. A representative member from each group is used to run a full forward flow simulation. The flow predictions for the remaining realizations in each group are approximated by a linearization around the full simulation results of the representative model (centroid) of the respective cluster. The linearization can be performed using either adjoint-based or ensemble-based gradients. Results from several numerical experiments with two-phase and three-phase flow systems in this paper suggest that the proposed method can be applied to improve the EnKF performance in large-scale problems where the number of full simulation is constrained.  相似文献   

2.
集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)作为一种有效的数据同化方法,在众多数值实验中体现优势的同时,也暴露了它使用小集合估计协方差情况下精度较低的缺陷。为了降低取样噪声对协方差估计的干扰并提高滤波精度,应用局域化函数对小集合估计的协方差进行修正,即在协方差矩阵中以舒尔积的形式增加空间距离权重以限制远距离相关。在一个二维理想孔隙承压含水层模型中的运行结果表明,局域化对集合卡尔曼滤波估计地下水参数的修正十分有效,局域化可以很好地过滤小集合估计中噪声的影响,节省计算量的同时又可以防止滤波发散。相关长度较小的水文地质参数(如对数渗透系数)更容易受到噪声的干扰,更有必要进行局域化修正。  相似文献   

3.
The ensemble Kalman filter (EnKF), an efficient data assimilation method showing advantages in many numerical experiments, is deficient when used in approximating covariance from an ensemble of small size. Implicit localization is used to add distance-related weight to covariance and filter spurious correlations which weaken the EnKF??s capability to estimate uncertainty correctly. The effect of this kind of localization is studied in two-dimensional (2D) and three-dimensional (3D) synthetic cases. It is found that EnKF with localization can capture reliably both the mean and variance of the hydraulic conductivity field with higher efficiency; it can also greatly stabilize the assimilation process as a small-size ensemble is used. Sensitivity experiments are conducted to explore the effect of localization function format and filter lengths. It is suggested that too long or too short filter lengths will prevent implicit localization from modifying the covariance appropriately. Steep localization functions will greatly disturb local dynamics like the 0-1 function even if the function is continuous; four relatively gentle localization functions succeed in avoiding obvious disturbance to the system and improve estimation. As the degree of localization of the L function increases, the parameter sensitivity becomes weak, making parameter selection easier, but more information may be lost in the assimilation process.  相似文献   

4.
Sampling errors can severely degrade the reliability of estimates of conditional means and uncertainty quantification obtained by the application of the ensemble Kalman filter (EnKF) for data assimilation. A standard recommendation for reducing the spurious correlations and loss of variance due to sampling errors is to use covariance localization. In distance-based localization, the prior (forecast) covariance matrix at each data assimilation step is replaced with the Schur product of a correlation matrix with compact support and the forecast covariance matrix. The most important decision to be made in this localization procedure is the choice of the critical length(s) used to generate this correlation matrix. Here, we give a simple argument that the appropriate choice of critical length(s) should be based both on the underlying principal correlation length(s) of the geological model and the range of the sensitivity matrices. Based on this result, we implement a procedure for covariance localization and demonstrate with a set of distinctive reservoir history-matching examples that this procedure yields improved results over the standard EnKF implementation and over covariance localization with other choices of critical length.  相似文献   

5.
In this paper, we discuss several possible approaches to improving the performance of the ensemble Kalman filter (EnKF) through improved sampling of the initial ensemble. Each of the approaches addresses a different limitation of the standard method. All methods, however, attempt to make the results from a small ensemble as reliable as possible. The validity and usefulness of each method for creating the initial ensemble is based on three criteria: (1) does the sampling result in unbiased Monte Carlo estimates for nonlinear flow problems, (2) does the sampling reduce the variability of estimates compared to ensembles of realizations from the prior, and (3) does the sampling improve the performance of the EnKF? In general, we conclude that the use of dominant eigenvectors ensures the orthogonality of the generated realizations, but results in biased forecasts of the fractional flow of water. We show that the addition of high frequencies from remaining eigenvectors can be used to remove the bias without affecting the orthogonality of the realizations, but the method did not perform significantly better than standard Monte Carlo sampling. It was possible to identify an appropriate importance weighting to reduce the variance in estimates of the fractional flow of water, but it does not appear to be possible to use the importance weighted realizations in standard EnKF when the data relationship is nonlinear. The biggest improvement came from use of the pseudo-data with corrections to the variance of the actual observations.  相似文献   

6.
Improving the Ensemble Estimate of the Kalman Gain by Bootstrap Sampling   总被引:1,自引:1,他引:0  
Using a small ensemble size in the ensemble Kalman filter methodology is efficient for updating numerical reservoir models but can result in poor updates following spurious correlations between observations and model variables. The most common approach for reducing the effect of spurious correlations on model updates is multiplication of the estimated covariance by a tapering function that eliminates all correlations beyond a prespecified distance. Distance-dependent tapering is not always appropriate, however. In this paper, we describe efficient methods for discriminating between the real and the spurious correlations in the Kalman gain matrix by using the bootstrap method to assess the confidence level of each element from the Kalman gain matrix. The new method is tested on a small linear problem, and on a water flooding reservoir history matching problem. For the water flooding example, a small ensemble size of 30 was used to compute the Kalman gain in both the screened EnKF and standard EnKF methods. The new method resulted in significantly smaller root mean squared errors of the estimated model parameters and greater variability in the final updated ensemble.  相似文献   

7.
赖锡军 《水科学进展》2009,20(2):241-248
为减少非恒定水流计算中的不确定性,在水流随机运动系统状态空间模型基础上,应用集合卡尔曼滤波(EnKF)技术建立了非恒定水流分析的实时更新(校正)方法。该方法适用于非线性的随机微分方程,过程和观测噪声可以是非正态分布。同时,为充分利用水位、流量等误差量级相差巨大的观测中所蕴含的有效信息,导出了EnKF多变量分析格式。以明渠单峰洪水过程的合成数据为例,考察了运用建立的实时更新方法分析预报一维洪水演进的性能。重点对比了采用不同精度等级下的水位和流量观测资料进行滤波的效果。在中国现行标准规定的允许观测误差范围内,以水位观测进行一维洪水动力学模型的滤波分析可有效地控制误差、估计流量、识别水流运动系统状态。长江干流清溪场至万县江段实际洪水计算还证实:该方法通过插入即时观测,可实时更新模型状态,给出与实际更为接近的计算。  相似文献   

8.
In this paper we present an extension of the ensemble Kalman filter (EnKF) specifically designed for multimodal systems. EnKF data assimilation scheme is less accurate when it is used to approximate systems with multimodal distribution such as reservoir facies models. The algorithm is based on the assumption that both prior and posterior distribution can be approximated by Gaussian mixture and it is validated by the introduction of the concept of finite ensemble representation. The effectiveness of the approach is shown with two applications. The first example is based on Lorenz model. In the second example, the proposed methodology combined with a localization technique is used to update a 2D reservoir facies models. Both applications give evidence of an improved performance of the proposed method respect to the EnKF.  相似文献   

9.
In recent years, data assimilation techniques have been applied to an increasingly wider specter of problems. Monte Carlo variants of the Kalman filter, in particular, the ensemble Kalman filter (EnKF), have gained significant popularity. EnKF is used for a wide variety of applications, among them for updating reservoir simulation models. EnKF is a Monte Carlo method, and its reliability depends on the actual size of the sample. In applications, a moderately sized sample (40–100 members) is used for computational convenience. Problems due to the resulting Monte Carlo effects require a more thorough analysis of the EnKF. Earlier we presented a method for the assessment of the error emerging at the EnKF update step (Kovalenko et al., SIAM J Matrix Anal Appl, in press). A particular energy norm of the EnKF error after a single update step was studied. The energy norm used to assess the error is hard to interpret. In this paper, we derive the distribution of the Euclidean norm of the sampling error under the same assumptions as before, namely normality of the forecast distribution and negligibility of the observation error. The distribution depends on the ensemble size, the number and spatial arrangement of the observations, and the prior covariance. The distribution is used to study the error propagation in a single update step on several synthetic examples. The examples illustrate the changes in reliability of the EnKF, when the parameters governing the error distribution vary.  相似文献   

10.
水文集合预报是一种既可以给出确定性预报值,又能提供预报值的不确定性信息的概率预报方法。简述了水文集合预报试验(Hydrologic Ensemble Prediction Experiment,HEPEX)国际计划的主要研究内容,回顾了HEPEX研究进展,分析了对水文预报发展有重要意义的3个HEPEX前沿研究:降尺度研究、集合预报系统研究以及不确定性研究。研究表明,动力-统计降尺度法和高分辨率"单一"模式及低分辨率集合相结合是HEPEX未来研究的方向。  相似文献   

11.
In this work, we present an efficient matrix-free ensemble Kalman filter (EnKF) algorithm for the assimilation of large data sets. The EnKF has increasingly become an essential tool for data assimilation of numerical models. It is an attractive assimilation method because it can evolve the model covariance matrix for a non-linear model, through the use of an ensemble of model states, and it is easy to implement for any numerical model. Nevertheless, the computational cost of the EnKF can increase significantly for cases involving the assimilation of large data sets. As more data become available for assimilation, a potential bottleneck in most EnKF algorithms involves the operation of the Kalman gain matrix. To reduce the complexity and cost of assimilating large data sets, a matrix-free EnKF algorithm is proposed. The algorithm uses an efficient matrix-free linear solver, based on the Sherman–Morrison formulas, to solve the implicit linear system within the Kalman gain matrix and compute the analysis. Numerical experiments with a two-dimensional shallow water model on the sphere are presented, where results show the matrix-free implementation outperforming an singular value decomposition-based implementation in computational time.  相似文献   

12.
In the past years, many applications of history-matching methods in general and ensemble Kalman filter in particular have been proposed, especially in order to estimate fields that provide uncertainty in the stochastic process defined by the dynamical system of hydrocarbon recovery. Such fields can be permeability fields or porosity fields, but can also fields defined by the rock type (facies fields). The estimation of the boundaries of the geologic facies with ensemble Kalman filter (EnKF) was made, in different papers, with the aid of Gaussian random fields, which were truncated using various schemes and introduced in a history-matching process. In this paper, we estimate, in the frame of the EnKF process, the locations of three facies types that occur into a reservoir domain, with the property that each two could have a contact. The geological simulation model is a form of the general truncated plurigaussian method. The difference with other approaches consists in how the truncation scheme is introduced and in the observation operator of the facies types at the well locations. The projection from the continuous space of the Gaussian fields into the discrete space of the facies fields is realized through in an intermediary space (space with probabilities). This space connects the observation operator of the facies types at the well locations with the geological simulation model. We will test the model using a 2D reservoir which is connected with the EnKF method as a data assimilation technique. We will use different geostatistical properties for the Gaussian fields and different levels of the uncertainty introduced in the model parameters and also in the construction of the Gaussian fields.  相似文献   

13.
Ensemble Kalman filtering with shrinkage regression techniques   总被引:1,自引:0,他引:1  
The classical ensemble Kalman filter (EnKF) is known to underestimate the prediction uncertainty. This can potentially lead to low forecast precision and an ensemble collapsing into a single realisation. In this paper, we present alternative EnKF updating schemes based on shrinkage methods known from multivariate linear regression. These methods reduce the effects caused by collinear ensemble members and have the same computational properties as the fastest EnKF algorithms previously suggested. In addition, the importance of model selection and validation for prediction purposes is investigated, and a model selection scheme based on cross-validation is introduced. The classical EnKF scheme is compared with the suggested procedures on two-toy examples and one synthetic reservoir case study. Significant improvements are seen, both in terms of forecast precision and prediction uncertainty estimates.  相似文献   

14.
An iterative ensemble Kalman filter for reservoir engineering applications   总被引:1,自引:0,他引:1  
The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the distribution’s normality. Besides, it is based on the linear update of the analysis equations. These facts may cause problems when filter is used in reservoir applications and result in sampling error. The situation becomes more problematic if the a priori information on the reservoir structure is poor and initial guess about the, e.g., permeability field is far from the actual one. The above circumstance explains a reason to perform some further research concerned with analyzing specific modification of the EnKF-based approach, namely, the iterative EnKF (IEnKF) scheme, which allows restarting the procedure with a new initial guess that is closer to the actual solution and, hence, requires less improvement by the algorithm while providing better estimation of the parameters. The paper presents some examples for which the IEnKF algorithm works better than traditional EnKF. The algorithms are compared while estimating the permeability field in relation to the two-phase, two-dimensional fluid flow model.  相似文献   

15.
To more correctly estimate the error covariance of an evolved state of a nonlinear dynamical system, the second and higher-order moments of the prior error need to be known. Retrospective optimal interpolation (ROI) may require relatively less information on the higher-order moments of the prior errors than an ensemble Kalman filter (EnKF) because it uses the initial conditions as the background states instead of forecasts. Analogous to the extension of a Kalman filter into an EnKF, an ensemble retrospective optimal interpolation (EnROI) technique was derived using the Monte Carlo method from ROI. In contrast to the deterministic version of ROI, the background error covariance is represented by a background ensemble in EnROI. By sequentially applying EnROI to a moving limited analysis window and exploiting the forecast from the average of the background ensemble of EnROI as a guess field, the computation costs for EnROI can be reduced. In the numerical experiment using a Lorenz-96 model and a Model-III of Lorenz with a perfect-model assumption, the cost-effectiveness of the suboptimal version of EnROI is demonstrated to be superior to that of EnKF using perturbed observations.  相似文献   

16.
Over the last years, the ensemble Kalman filter (EnKF) has become a very popular tool for history matching petroleum reservoirs. EnKF is an alternative to more traditional history matching techniques as it is computationally fast and easy to implement. Instead of seeking one best model estimate, EnKF is a Monte Carlo method that represents the solution with an ensemble of state vectors. Lately, several ensemble-based methods have been proposed to improve upon the solution produced by EnKF. In this paper, we compare EnKF with one of the most recently proposed methods, the adaptive Gaussian mixture filter (AGM), on a 2D synthetic reservoir and the Punq-S3 test case. AGM was introduced to loosen up the requirement of a Gaussian prior distribution as implicitly formulated in EnKF. By combining ideas from particle filters with EnKF, AGM extends the low-rank kernel particle Kalman filter. The simulation study shows that while both methods match the historical data well, AGM is better at preserving the geostatistics of the prior distribution. Further, AGM also produces estimated fields that have a higher empirical correlation with the reference field than the corresponding fields obtained with EnKF.  相似文献   

17.
The ensemble Kalman filter (EnKF) has been shown repeatedly to be an effective method for data assimilation in large-scale problems, including those in petroleum engineering. Data assimilation for multiphase flow in porous media is particularly difficult, however, because the relationships between model variables (e.g., permeability and porosity) and observations (e.g., water cut and gas–oil ratio) are highly nonlinear. Because of the linear approximation in the update step and the use of a limited number of realizations in an ensemble, the EnKF has a tendency to systematically underestimate the variance of the model variables. Various approaches have been suggested to reduce the magnitude of this problem, including the application of ensemble filter methods that do not require perturbations to the observed data. On the other hand, iterative least-squares data assimilation methods with perturbations of the observations have been shown to be fairly robust to nonlinearity in the data relationship. In this paper, we present EnKF with perturbed observations as a square root filter in an enlarged state space. By imposing second-order-exact sampling of the observation errors and independence constraints to eliminate the cross-covariance with predicted observation perturbations, we show that it is possible in linear problems to obtain results from EnKF with observation perturbations that are equivalent to ensemble square-root filter results. Results from a standard EnKF, EnKF with second-order-exact sampling of measurement errors that satisfy independence constraints (EnKF (SIC)), and an ensemble square-root filter (ETKF) are compared on various test problems with varying degrees of nonlinearity and dimensions. The first test problem is a simple one-variable quadratic model in which the nonlinearity of the observation operator is varied over a wide range by adjusting the magnitude of the coefficient of the quadratic term. The second problem has increased observation and model dimensions to test the EnKF (SIC) algorithm. The third test problem is a two-dimensional, two-phase reservoir flow problem in which permeability and porosity of every grid cell (5,000 model parameters) are unknown. The EnKF (SIC) and the mean-preserving ETKF (SRF) give similar results when applied to linear problems, and both are better than the standard EnKF. Although the ensemble methods are expected to handle the forecast step well in nonlinear problems, the estimates of the mean and the variance from the analysis step for all variants of ensemble filters are also surprisingly good, with little difference between ensemble methods when applied to nonlinear problems.  相似文献   

18.
Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique history matching inverse problem. It has been shown that the ensemble Kalman filter (EnKF) is an adequate method for predicting the dynamics of the reservoir. The EnKF is a sequential Monte-Carlo approach that uses an ensemble of reservoir models. For realistic, large-scale applications, the ensemble size needs to be kept small due to computational inefficiency. Consequently, the error space is not well covered (poor cross-correlation matrix approximations) and the updated parameter field becomes scattered and loses important geological features (for example, the contact between high- and low-permeability values). The prior geological knowledge present in the initial time is not found anymore in the final updated parameter. We propose a new approach to overcome some of the EnKF limitations. This paper shows the specifications and results of the ensemble multiscale filter (EnMSF) for automatic history matching. EnMSF replaces, at each update time, the prior sample covariance with a multiscale tree. The global dependence is preserved via the parent–child relation in the tree (nodes at the adjacent scales). After constructing the tree, the Kalman update is performed. The properties of the EnMSF are presented here with a 2D, two-phase (oil and water) small twin experiment, and the results are compared to the EnKF. The advantages of using EnMSF are localization in space and scale, adaptability to prior information, and efficiency in case many measurements are available. These advantages make the EnMSF a practical tool for many data assimilation problems.  相似文献   

19.
重质非水相有机污染物(DNAPL)泄漏到地下后,其运移与分布特征受渗透率非均质性影响显著。为刻画DNAPL污染源区结构特征,需进行参数估计以描述水文地质参数的非均质性。本研究构建了基于集合卡尔曼滤波方法(EnKF)与多相流运移模型的同化方案,通过融合DNAPL饱和度观测数据推估非均质介质渗透率空间分布。通过二维砂箱实际与理想算例,验证了同化方法的推估效果,并探讨了不同因素对同化的影响。研究结果表明:基于EnKF方法同化饱和度观测资料可有效地推估非均质渗透率场;参数推估精度随观测时空密度的增大而提高;观测点位置分布对同化效果有所影响,布置在污染集中区域的观测数据对于参数估计具有较高的数据价值。  相似文献   

20.
The ensemble Kalman filter (EnKF) has become a popular method for history matching production and seismic data in petroleum reservoir models. However, it is known that EnKF may fail to give acceptable data matches especially for highly nonlinear problems. In this paper, we introduce a procedure to improve EnKF data matches based on assimilating the same data multiple times with the covariance matrix of the measurement errors multiplied by the number of data assimilations. We prove the equivalence between single and multiple data assimilations for the linear-Gaussian case and present computational evidence that multiple data assimilations can improve EnKF estimates for the nonlinear case. The proposed procedure was tested by assimilating time-lapse seismic data in two synthetic reservoir problems, and the results show significant improvements compared to the standard EnKF. In addition, we review the inversion schemes used in the EnKF analysis and present a rescaling procedure to avoid loss of information during the truncation of small singular values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号