首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present work, the potential of correlation methods applied to acoustic signals backscattered from suspended sediments, is examined with regard to the measurement of near-bed vertical profiles of the horizontal current velocity. The technique uses the cross-correlation of the backscattered signal between pairs of downward looking horizontally separated transducers, to measure the time taken for suspension structures to advect from one transducer to another. This approach requires a degree of spatial coherence in the suspension field, and advantage is taken of this coherence to measure the flow. To investigate the technique, backscattered data collected using an array of transducers has been examined. The array was deployed along stream in an estuarine environment, which was subject to strong rectilinear currents, and high levels of suspended sediment concentration. Using pairs of transducers with separations between 0.25–5.42 m, the structure of the suspension field has been assessed, the implication of these observations for measuring flow discussed, and nearbed measurements of current profiles obtained. The results show that in the estuarine environment investigated, if the transducer pair separation was of the order of a metre or less, and currents were sufficient to retain sediments in suspension, vertical profiles of the horizontal current could be measured. To assess the results conventional electromagnetic and impeller current meter measurements were collected at four heights above the bed. Comparison of the conventional reference measurements with the cross-correlation velocities show that the correlation method has the potential to provide reliable measurements of near-bed current profiles.  相似文献   

2.
With a booming development characterized by new urbanization in current China, urban water consumption attracts growing concerns. An efficient and probabilistic prediction of urban water consumption plays a vital role for urban planning toward sustainable development, especially in megacities limited by water resources. However, the data insufficiency issue commonly exists nowadays and seriously restricts further development of urban water simulation. In this article, we proposed a consolidated framework for probabilistic prediction of water consumption under an incompletely informational circumstance to deal with the challenge. The model was constructed based on a state-of-the-art Bayesian neural networks (BNNs) technique. Three dominated influencing factors were identified and included into the BNN model. Future impact factors were generated by using a variety of methods including a quadratic polynomial model, a regression and auto-regressive moving average combination model and a Grey Verhulst model. Thereafter, water consumption projection (2013–2020) and uncertainty estimates was done. Results showed that the model matched well with observations. Through reducing the dependence on large amount of information and constructing a probabilistic means incorporating uncertainty estimation, the new approach can work better than conventional means in support of water resources planning and management under an incompletely informational circumstance.  相似文献   

3.
In studies on heavy oil, shale reservoirs, tight gas and enhanced geothermal systems, the use of surface passive seismic data to monitor induced microseismicity due to the fluid flow in the subsurface is becoming more common. However, in most studies passive seismic records contain days and months of data and manually analysing the data can be expensive and inaccurate. Moreover, in the presence of noise, detecting the arrival of weak microseismic events becomes challenging. Hence, the use of an automated, accurate and computationally fast technique for event detection in passive seismic data is essential. The conventional automatic event identification algorithm computes a running‐window energy ratio of the short‐term average to the long‐term average of the passive seismic data for each trace. We show that for the common case of a low signal‐to‐noise ratio in surface passive records, the conventional method is not sufficiently effective at event identification. Here, we extend the conventional algorithm by introducing a technique that is based on the cross‐correlation of the energy ratios computed by the conventional method. With our technique we can measure the similarities amongst the computed energy ratios at different traces. Our approach is successful at improving the detectability of events with a low signal‐to‐noise ratio that are not detectable with the conventional algorithm. Also, our algorithm has the advantage to identify if an event is common to all stations (a regional event) or to a limited number of stations (a local event). We provide examples of applying our technique to synthetic data and a field surface passive data set recorded at a geothermal site.  相似文献   

4.
A hybrid neural network model for typhoon-rainfall forecasting   总被引:2,自引:0,他引:2  
A hybrid neural network model is proposed in this paper to forecast the typhoon rainfall. Two different types of artificial neural networks, the self-organizing map (SOM) and the multilayer perceptron network (MLPN), are combined to develop the proposed model. In the proposed model, a data analysis technique is developed based on the SOM, which can perform cluster analysis and discrimination analysis in one step. The MLPN is used as the nonlinear regression technique to construct the relationship between the input and output data. First, the input data are analyzed using a SOM-based data analysis technique. Through the SOM-based data analysis technique, input data with different properties are first divided into distinct clusters, which can help the multivariate nonlinear regression of each cluster. Additionally, the topological relationships among data are discovered from which more insight into the typhoon-rainfall process can be revealed. Then, for each cluster, the individual relationship between the input and output data is constructed by a specific MLPN. For evaluating the forecasting performance of the proposed model, an application is conducted. The proposed model is applied to the Tanshui River Basin to forecast the typhoon rainfall. The results show that the proposed model can forecast more precisely than the model developed by the conventional neural network approach.  相似文献   

5.
A design hyetograph which represents the time distribution of design rainfall depth corresponding to a duration and a return period is essential in hydrologic design. However, for locations without observed data (ungauged sites), construction of design hyetographs is a difficult task because of the lack of data. Hence, an approach based on self‐organizing map (SOM) is proposed in this paper to construct design hyetographs at ungauged sites. SOM, which is a special kind of artificial neural networks (ANNs), is a powerful technique for extracting and visualizing salient features of data and for solving classification problems. The proposed approach is composed of three steps: classification, assignment and construction. First, the SOM‐based classification is performed to analyse gauged sites' design hyetographs. Second, based on the concept of indicator kriging, a method is developed to assign an ungauged site of interest to a certain cluster. Third, based on the spatial information, the clustering results, and the design hyetographs of gauged sites, the design hyetograph at the site of interest is constructed using the reciprocal‐distance‐squared method. An application is conducted to assess the advantages of the proposed approach over the conventional approaches. Moreover, cross‐validation tests are applied to evaluate the performance of the accuracy and the robustness of the proposed approach. The results confirm the improvement in performance by using the proposed approach instead of conventional approaches. The proposed approach is useful for constructing design hyetographs at ungauged sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
瞬变电磁合成孔径成像方法研究   总被引:4,自引:1,他引:3       下载免费PDF全文
瞬变电磁法虽然广泛应用于资源勘探和工程勘察中,但仍存在一些亟待解决问题.迫切需要引进一些新的技术与方法,以进一步提高解释精度.由于瞬变电磁资料可以通过数学公式转换成虚拟波;多孔径瞬变电磁物理模拟证明TEM多孔径具有相干性;相邻位置上同一地质体的反射回波具有较好的相关性.所以,对于瞬变电磁资料可以进行多孔径合成成像.本文借助于合成孔径雷达的基本思想,提出一套新的数据处理方法,即采用相关叠加技术,实现多孔径数据合成.在完成瞬变电磁虚拟波提取后,将传统的以剖面为主的处理方式发展成为以测点为中心的多孔径合成,将传统的以单点处理方式发展成为逐点推移多次覆盖的处理方法.采用相关叠加的方法来进行合成孔径,由此大大提高瞬变电磁法的分辨率.从波场的角度拓展和丰富了瞬变电磁场的内涵,使得从实测资料中提取到常规瞬变电磁法提取不到的信息,对地下目标体成像更为有利.通过对所设计模型和实测资料处理,结果表明合成孔径成像效果较好.研究成果为发展瞬变电磁成像技术,提高分辨率提供了一条新途径.  相似文献   

7.
Fourier-based algorithms originally developed for the processing of seismic data are applied routinely in the Ground-penetrating radar (GPR) data processing, but these conventional methods of data processing may result in an abundance of spurious harmonics without any geological meaning. We propose a new approach in this study based essentially on multiresolution wavelet analysis (MRA) for GPR noise suppression. The 2D GPR section is similar to an image in all aspects if we consider each data point of the GPR section to be an image pixel in general. This technique is an image analysis with sub-image decomposition. We start from the basic image decomposition procedure using conventional MRA approach and establish the filter bank accordingly. With reasonable knowledge of data and noise and the basic assumption of the target, it is possible to determine the components with high S/N ratio and eliminate noisy components. The MRA procedure is performed further for the components containing both signal and noise. We treated the selected component as an original image and applied the MRA procedure again to that single component with a mother wavelet of higher resolution. This recursive procedure with finer input allows us to extract features or noise events from GPR data more effectively than conventional process.To assess the performance of the MRA filtering method, we first test this method on a simple synthetic model and then on experimental data acquired from a control site using 400 MHz GPR system. A comparison of results from our method and from conventional filtering techniques demonstrates the effectiveness of the sub-image MRA method, particularly in removing ringing noise and scattering events. Field study was carried out in a trenched fault zone where a faulting structure was present at shallow depths ready for understanding the feasibility of improving the data S/N ratio by applying the sub-image multiresolution analysis. In contrast to the conventional methods, the MRA sub-image filtering technique provides an overall improvement in image quality of the data as shown in the field study.  相似文献   

8.
Geological interpretation based on gravity gradiometry data constitutes a very challenging problem. Rigorous 3D inversion is the main technique used in quantitative interpretation of the gravity gradiometry data. An alternative approach to the quantitative analysis of the gravity gradiometry data is based on 3D smooth potential field migration. This rapid imaging approach, however, has the shortcomings of providing smooth images since it is based on direct integral transformation of the observed gravity tensor data. Another limitation of migration transformation is related to the fact that, in a general case, the gravity data generated by the migration image do not fit the observed data well. In this paper, we describe a new approach to rapid imaging that allows us to produce the density distribution which adequately describes the observed data and, at the same time, images the structures with anomalous densities having sharp boundaries. This approach is based on the basic theory of potential field migration with a focusing stabilizer in the framework of regularized scheme, which iteratively transfers the observed gravity tensor field into an image of the density distribution in the subsurface formations. The results of gravity migration can also be considered as an a priori model for conventional inversion subsequently. We demonstrate the practical application of migration imaging using both synthetic and real gravity gradiometry data sets acquired for the Nordkapp Basin in the Barents Sea.  相似文献   

9.
Two methods for computing spontaneous mineralization potentials in the region external to the source body are reviewed. The first of these is a long-established technique in which the causation is assumed to be a distribution of simple current source on the boundary of the mineralization. The second is a more recent technique which assumes a surface distribution of current dipole moment (double layer) along the boundary of the source body. The former technique is a special case of a more general spontaneous potential (SP) model in which the source is a density of current dipole moment (current polarization) distributed throughout the mineralization. As far as the potentials in the region external to the source body are concerned this current polarization can be simply related to an equivalent double layer source function, i.e. the potential discontinuity produced over the boundary of the mineralization by an equivalent double layer model. This simple relationship suggests an integral equation technique for the exact numerical solution of boundary value problems appropriate to the polarization model for spontaneous mineralization potentials. The technique is applied to exploring the justification of interpreting mineralization self-potentials by the traditional approach.  相似文献   

10.
Vertical geophone arrays in boreholes have been used for many years to study seismic velocities by investigating the first arrivals of records. The development of the vertical seismic profiling (VSP) technique shows possibilities of using the reflected events to close the gap between interpretation of conventional seismic data and physical observations made in the well. Reflected events recorded by vertical arrays (as in VSP) generally have higher signal-to-noise ratio, larger bandwidth and can easily be separated from multiples. The new Continuous Vertical Array (CVA) technique combines vertical arrays in several boreholes with a line of source points near the surface. The result is a multi-covered seismic line similar to that of a conventional seismic survey, but it retains the benefits of observations with vertical arrays. The possibilities of the new technique are discussed with the aid of theoretical considerations, model studies, and a first field case using nine boreholes 500 m apart with depths of 400 m. New data acquisition and processing techniques (mainly migration before stack) have been developed. The CVA-seismic method is still in the development stage but promises new possibilities for detailed surveys in difficult areas.  相似文献   

11.
机载探地雷达可能解决危险环境或广域条件下的近地表探测问题,用于解决环境、生态或军事方面的问题.然而由于种种原因,该技术的发展却显得比较慢.为了推进该技术的发展,本文介绍了目前世界范围内机载探地雷达的进展,并利用时间域有限差分法对一些典型模型进行数值模拟,并用特定的偏移成像方法对模拟结果进行成像.目前存在的机载探地雷达主要有三种类型:第一种为将常规探地雷达天线悬挂在直升飞机上,第二种为针对机载探地雷达开发的雷达系统,第三种为具有探地能力的合成孔径雷达.数值模拟结果表明,不管是水平地面的情况下,还是起伏界面的情况下,机载探地雷达都能清楚探测一定深度范围内的地下目标.可见,机载探地雷达是存满希望的一种方法.  相似文献   

12.
The study presents a fast imaging technique for the very low‐frequency data interpretation. First, an analytical expression was derived to compute the vertical component of the magnetic field at any point on the Earth's surface for a given current density distribution in a rectangular block on the subsurface. Current density is considered as exponentially decreasing with depth, according to the skin depth rule in a particular block. Subsequently, the vertical component of the magnetic field due to the entire subsurface was computed as the sum of the vertical component of the magnetic field due to an individual block. Since the vertical component of the magnetic field is proportional to the real part of very low‐frequency anomaly, an inversion program was developed for imaging of the subsurface conductors using the real very low‐frequency anomaly in terms of apparent current density distribution in the subsurface. Imaging results from the presented formulation were compared with other imaging techniques in terms of apparent current density and resistivity distribution using a standard numerical forward modelling and inversion technique. Efficacy of the developed approach was demonstrated for the interpretation of synthetic and field very low‐frequency data. The presented imaging technique shows improvement with respect to the filtering approaches in depicting subsurface conductors. Further, results obtained using the presented approach are closer to the results of rigorous resistivity inversion. Since the presented approach uses only the real anomaly, which is not sensitive to very small isolated near‐surface conducting features, it depicts prominent conducting features in the subsurface.  相似文献   

13.
A technique for reconstruction of the 2d surface velocity field from radar observations is proposed. The method consecutively employs two processing techniques: At the first stage raw radial velocity data are subject to EOF analysis, which enables to fill gaps in observations and provides estimates of the noise level and integral parameters characterizing small-scale variability of the sea surface circulation. These parameters are utilized at the second stage, when the cost function for variational interpolation is constructed, and the updated radial velocities are interpolated on the regular grid.Experiments with simulated and real data are used to assess the method's skill and compare it with the conventional 2d variational (2dVar) approach. It is shown that the proposed technique consistently improves performance of the 2dVar algorithm and becomes particularly effective when a radar stops operating for 1–2 days and/or a persistent gap emerges in spatial coverage of a basin by the HFR network.  相似文献   

14.
The voluminous gravity and magnetic data sets demand automatic interpretation techniques like Naudy, Euler and Werner deconvolution. Of these techniques, the Euler deconvolution has become a popular choice because the method assumes no particular geological model. However, the conventional approach to solving Euler equation requires tentative values of the structural index preventing it from being fully automatic and assumes a constant background that can be easily violated if the singular points are close to each other. We propose a possible solution to these problems by simultaneously estimating the source location, depth and structural index assuming nonlinear background. The Euler equation is solved in a nonlinear fashion using the optimization technique like conjugate gradient. This technique is applied to a published synthetic data set where the magnetic anomalies were modeled for a complex assemblage of simple magnetic bodies. The results for close by singular points are superior to those obtained by assuming linear background. We also applied the technique to a magnetic data set collected along the western continental margin of India. The results are in agreement with the regional magnetic interpretation and the bathymetric expressions.  相似文献   

15.
High-frequency (HF) surface wave radars provide the unique capability to continuously monitor the coastal environment far beyond the range of conventional microwave radars. Bragg-resonant backscattering by ocean waves with half the electromagnetic radar wavelength allows ocean surface currents to be measured at distances up to 200 km. When a tsunami propagates from the deep ocean to shallow water, a specific ocean current signature is generated throughout the water column. Due to the long range of an HF radar, it is possible to detect this current signature at the shelf edge. When the shelf edge is about 100 km in front of the coastline, the radar can detect the tsunami about 45 min before it hits the coast, leaving enough time to issue an early warning. As up to now no HF radar measurements of an approaching tsunami exist, a simulation study has been done to fix parameters like the required spatial resolution or the maximum coherent integration time allowed. The simulation involves several steps, starting with the Hamburg Shelf Ocean Model (HAMSOM) which is used to estimate the tsunami-induced current velocity at 1 km spatial resolution and 1 s time step. This ocean current signal is then superimposed to modelled and measured HF radar backscatter signals using a new modulation technique. After applying conventional HF radar signal processing techniques, the surface current maps contain the rapidly changing tsunami-induced current features, which can be compared to the HAMSOM data. The specific radial tsunami current signatures can clearly be observed in these maps, if appropriate spatial and temporal resolution is used. Based on the entropy of the ocean current maps, a tsunami detection algorithm is described which can be used to issue an automated tsunami warning message.  相似文献   

16.
波阻抗映射法外推   总被引:4,自引:1,他引:3       下载免费PDF全文
首先介绍了自适应滤波的方法和波阻抗映射法外推的基本原理.在小反射系数的假设条件下推导了对数波阻抗和地震道之间近似为线性映射的关系,应用自适应滤波的方法可以实现这种映射.实际资料的试算结果表明,该方法能够提供分辨率明显高于常规方法的波阻抗或层速度剖面,并与测井资料较吻合.因此,它作为测井约束反演的补充手段,是一种可用于开发地震的新方法.最后讨论了映射法波阻抗反演的局限性.  相似文献   

17.
High-resolution depth imaging with sparseness-constrained inversion   总被引:2,自引:0,他引:2  
An imaging technique is developed which exceeds the resolution limitation prescribed by conventional seismic imaging methods. The high‐resolution imaging is obtained by introducing a sparseness‐constrained least‐squares inversion into the imaging process of prestack depth migration. This is implemented by a proposed interference technique. In contrast to conventional depth migration, a decomposed signal or combined event, instead of the source wavelet, is needed in the proposed scheme. The proposed method aims to image a small local region with a higher resolution using the prestack data set. It should be applied following conventional depth imaging if a higher resolution is needed in a target zone rather than replacing the conventional depth imaging for the entire medium. Synthetic examples demonstrate the significant improvements in the resolution using the proposed scheme.  相似文献   

18.
This work presents a new approach to 3D spit simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional DInSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, a new application of using fuzzy B-spline algorithm is implemented with phase unwrapping technique. The study shows that the performance of DInSAR method using fuzzy B-spline is better than the DInSAR technique, which is validated by the coefficient of determination r 2 of 0.96, probability p of 0.002, and accuracy (RMSE) of ± 0.034 m, with 90% confidence intervals. In conclusion, integration of fuzzy B-spline with phase unwrapping produces an accurate 3D coastal geomorphology reconstruction.  相似文献   

19.
Gas-hydrate related processes in deep-water marine settings exist on spatial scales that challenge conventional seismic reflection profiling to successfully image them. The conventional approach to acoustic identification of buried hydrates is to use advanced, cost-prohibitive survey techniques and highly customized software to define subsurface structure wherein compositional changes may be modeled and/or interpreted. This study adopts a different approach derived from recent theoretical advancements in signal processing. The method consists in optimal filtering high resolution, single-channel seismic reflection data using the Empirical Mode Decomposition (EMD). The time series is decomposed in sub-components and the noisy portions are suppressed adopting the technique that we referred as Weighted Mode(s) EMD. The optimal filtering greatly improves the resolution and fidelity of the seismic data set.High Resolution single channel seismic profiles, acquired over a carbonate\hydrates site in the northern Gulf of Mexico, manipulated in such way, show a complex, shallow subsurface, and suggest potential evidence for buried gas hydrates.  相似文献   

20.
The estimation of carbon exchange between ecosystems and the atmosphere suffers unavoidable data gaps in eddy-covariance technique, especially for short-living and fast-growing croplands. In this study we developed a modified gap-filling scheme introducing a leaf area index factor as the vegetation status information based on the conventional light response function for two East-Asian cropland sites (rice and potatoes). This scheme’s performance is comparable to the conventional time window scheme, but has the advantage when the gaps are large compared to the total length of the time series. To investigate how the time binning approach performs for fast-growing croplands, we tested different widths of the time window, showing that a four-day window for the potato field and an eight-day time window for the rice field perform the best. The insufficiency of the conventional temperature binning approach was explained as well as the influence of vapor pressure deficit. We found that vapor pressure deficit plays a minor role in both the potato and the rice fields under Asian monsoon weather conditions with the exception of the early pre-monsoon growing stage of the potatoes. Consequently, we recommend using the conventional time-window scheme together with our new leaf-light response function to fill data gaps of net ecosystem exchange in fast-growing croplands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号