首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
厌氧沉积的有孔虫组合中,底栖有孔虫主要由Bolivina诸种和Buliminella tenuata组成,同时含有少量厌氧标志种Suggrunda eckisi;浮游有孔虫中以Globigerrina bulloides和G.quingueloba为数较多。底栖有孔虫与浮游有孔虫数量相比,浮游有孔虫数量很少。  相似文献   

2.
为了解南海北部陆坡末次间冰期以来的古海洋沉积环境演化特征,对研究区ZSQD196PC柱状样有孔虫、硅藻及有孔虫氧同位素资料开展了分析。依据沉积有孔虫、硅藻主要属种的百分含量、丰度及组合特征,将有孔虫划分为3个组合,分别对应于氧同位素MIS1、2、3~4期;将硅藻划分为4个组合,大致对应于MIS1~4期。MIS1期有孔虫以暖水种占优势,Pulleniatina obliquiloculata百分含量显著升高;硅藻丰度低且以热性种占优势,其中冷期出现大量沿岸种,反映相对温暖的气候条件。MIS2~4期有孔虫以冷水种占优势,温跃层种含量相对较高;硅藻丰度高且以广布种占优势,出现沿岸种含量的升高,反映较冷的气候条件。通过对比浮游有孔虫氧同位素,分析讨论了末次盛冰期、Blling—Allerd暖期和新仙女木事件在ZSQD196PC柱状样的沉积响应,揭示了末次冰期中的气候波动。  相似文献   

3.
Environmental changes such as ocean warming or sea‐level rise have a profound impact on shallow‐water coastal environments. Benthic foraminifera have long been successfully used as indicators for ecologic responses. The propagule method is a useful tool to evaluate the reactions of entire assemblages of foraminifera when exposed to different environmental conditions. Here we present results from growth experiments of foraminiferal assemblages from three sites in coastal Georgia and Florida (USA) under different temperatures (18, 24 and 30 °C) and salinities (15 and 35). Results show that assemblages grown at the higher temperatures had greater abundances of foraminifera, whereas salinity was the primary factor in shaping the composition of the experimentally grown assemblages from the three sites. We also show that experimentally grown assemblages contain high numbers of ‘exotic’ species that result from successful propagule recruitment from outside of the original environments (e.g. the open shelf). Overall, opportunistic and previously termed ‘pioneer species’ proved to be the most successful constituents of the experimental assemblages, showing that reactions of foraminiferal assemblages to environmental changes can appear remarkably quickly (e.g. in the course of several weeks). Our observations on the faunal reactions to different temperatures and salinities indicate that ongoing environmental alterations of coastal areas will likely result in significant changes in the shallow‐water foraminiferal assemblages of the coasts of Georgia and Florida. As such, our study provides general insights into the ecologic effects of current climate change.  相似文献   

4.
Substrates associated with active hydrocarbon vents in bathyal Gulf of Mexico support numerous foraminiferal species, with a few of them showing unusually high relative abundances. In the 584- to 695-m-depth range,Bolivina ordinaria, Gavelinopsis translucens, andCassidulina neocarinata strongly dominate the vent community, whereasBolivina subaenariensis andUvigerina laevis play this role around a vent at 216 m water depth. The bathymetric imprint on the foraminiferal record is also seen in the 18O compositions of some species, includingUvigerina peregrina. The adaptation of foraminiferal communities to bacterial (Beggiatoa) mats, in which the redox boundary is very close to the sediment—water interface, and anomalous depletions of13C inU. peregrina (relative to the same species from nonventing sites) indicate that several species are probably facultative anaerobes and tolerant of H2S toxicity.  相似文献   

5.
New data support our previously published propagule dispersal hypothesis and show that propagules of some benthic foraminiferal species can survive for two years before growth commences. Following exposure to simulated shallow-water conditions, shallow-water species of benthic foraminifera appeared and grew in large numbers (commonly >100 ind/12 ml sediment) in the <32 µm-size sediment fraction collected from 320 m water depth in the Skagerrak basin (North Sea). None of the shallow-water species that grew abundantly (Planorbulina mediterranensis, Morulaeplecta bulbosa, Bolivina pseudoplicata, Cuneata arctica, Eggerelloides scaber, Gavelinopsis praegeri) seem to grow or reproduce at or in the vicinity of the sampling site. Consequently, they must have been transported there as <32 µm-sized individuals. Their sudden appearance when exposed to shallow-water conditions suggests that they had been transported to the sampling site as propagules and that they could survive in the sediments until conditions became suitable for growth and, for some, reproduction. The lack of agglutination on the proloculi of the agglutinated taxa that appeared in the growth-chambers may enhance their passive transport via currents and, thereby, dispersal. Of all the indigenous foraminiferal species that occur at the sampling site, only Textularia earlandi and Bolivinellina pseudopunctata continued to grow and reproduce when transferred from bathyal (320 m) to simulated shallow-water (0 m) conditions. The former is considered a highly opportunistic species. According to the literature, most of the morphospecies which grew in the experiments are cosmopolitan. Our results indicate substantial inter-specific differences in dispersal potential and support previous suggestions that among free-living species, some serial forms have the potential for long-distance dispersal. Still, oceanographic, physical and ecological boundaries and barriers constrain the distribution of most species. In addition to benthic foraminifera, Gromia spp. (rhizarian protists related to the foraminifera) grew in >60% of the experimental growth-chambers.  相似文献   

6.
This study characterized stormwater plume development and associated phytoplankton dynamics in a coastal marine ecosystem through shipboard monitoring. We focused on plumes within Santa Monica Bay, California (USA), a coastal system that is subject to rapid pulses of untreated runoff from the urbanized watershed of Los Angeles during the winter rainy season. The physical, chemical, and biological signatures of stormwater plumes were tracked over time after each of 4 precipitation events ranging in magnitude from 1.5 cm to 9 cm. Low salinity surface plumes persisted in Santa Monica Bay for at least 2 to 5 days over spatial scales of up to 15 km. This is consistent with a 6-day residence time for surface water plume parcels, which was estimated from a drifter trajectory in the bay. Shipboard sampling and salinity measurements in the surf zone showed that plumes often persisted even longer nearshore. Plume waters were generally characterized by higher concentrations of dissolved nitrogen, colored dissolved organic matter, and higher light attenuation than non-plume waters. The magnitude of the effect of stormwater runoff on phytoplankton dynamics was dependent on the size of each storm and subsequent residence time of runoff within the bay. Rain events led to increases in primary productivity, phytoplankton biomass, and specifically, increases in diatom biomass, as measured by concentrations of biogenic silica.  相似文献   

7.
Examination of a time series of foraminiferal assemblage distributions on the continental shelf and slope of Santa Monica Bay from 1955 to 1997-1998 suggests that the benthic microfauna have been greatly affected by the quality and character of the municipal sludge and wastewater discharged into the bay over the last half-century by the Hyperion Treatment Plant serving the greater Los Angeles area. Five species dominate both the living and dead foraminiferal assemblages of the 1997-1998 surface samples, including Eggerella advena, Trochammina pacifica, Bulimina denudata, Buliminella elegantissima, and Epistominella bradyana. Temporal patterns of relative species abundances for both living and dead assemblages, as well as toxicity tests measuring amphipod survival and sea urchin fertilization success, show improvement since the sewage treatment program was enhanced in 1986. None of these trends are evident 10 years earlier, coincident with the onset of a Pacific Decadal Oscillation warming trend. This fact suggests that remediation, and not climate change, is responsible for the faunal changes observed. Even with remediation, however, all foraminiferal faunal trends have not returned to early-outfall levels. The organic-waste indicating species T. pacifica shows a slow decline in abundance as sewage treatment and sludge disposal activities have improved, whereas a dramatic increase in the abundance of the pioneer colonizer of impacted regions, E. advena, has occurred, often with a reciprocal response by B. denudata. Also evident is a dramatic shift in the abundance of the once-dominant species Nonionella basispinata and Nonionella stella, which were unable to recolonize Santa Monica Bay since the two major outfalls (5- and 7-mile) began discharging. Temporal variations in species abundances, as well as range expansions, contractions, and the inability to recolonize areas previously, or presently, impacted, suggests that foraminifers are a useful tool in defining areas affected by waste discharge.  相似文献   

8.
In this paper, we investigate the ecology of live (rose Bengal stained) benthic foraminifera collected at 20 stations ranging from 15 to 100 m depth in the Rhône prodelta (Gulf of Lions, NW Mediterranean). These sites were sampled in September 2006, five months after the Rhône River annual flood. Statistical analyses based on foraminiferal communities (> 150 μm) divide our study area into six main biofacies directly related to environmental conditions. Miliolid species are abundant in the relict prodeltaic lobe which is characterised by sand with low organic matter content. Close to the river mouth, the limited oxygen penetration in the sediment combined with important hydro-sedimentary processes constitute stressful conditions for foraminiferal faunas dominated by opportunistic species (e.g. Leptohalysis scottii). With increasing distance from the river mouth, foraminiferal faunas (e.g. Nonionella turgida, Eggerella scabra) adapted to thrive in sediments enriched in Rhône-derived organic matter under more stable hydro-sedimentary conditions appear. In the distal part of the Rhône River influence, benthic species (e.g. Valvulineria bradyana, Textularia agglutinans) living in fine sediment enriched in both continental and marine organic compounds emerge. At the deepest stations located in the south-eastern part of our study area, benthic foraminiferal faunas (e.g. Bulimina aculeata, Melonis barleeanus, Bigenerina nodosaria) are highly diverse, underlining stable environmental conditions characterised by marine-derived organic matter supplies and relatively deep oxygen penetration depth in the sediment. We also compare foraminiferal faunas sampled in September 2006 with communities sampled in June 2005, one month after the Rhône River annual flood (Mojtahid et al., 2009). This comparison suggests that opportunistic species (e.g. B. aculeata, Cassidulina carinata, V. bradyana) have responded to organic matter inputs related to marine primary production in June 2005.  相似文献   

9.
《Journal of Sea Research》1999,41(3):163-178
The Koljö fjord on the Swedish west coast is a silled fjord characterised by strong stratification and stagnant bottom water, with periodically occurring hypoxic or anoxic conditions. In the Koljö fjord, renewal of the deep water generally occurs during winter. This study investigates how living benthic foraminifera react to hydrographic variations, periodic oxygen deficiency and variations in primary production. A series of monthly hydrographic measurements was made from August 1993 to December 1994, combined with sediment sampling along a (12–43 m) depth transect at five different sites. Monthly values of surface chlorophyll-a were available. Two periods of hypoxia to anoxia with one intervening period of oxic conditions, together with two autumn phytoplankton blooms and a spring phytoplankton bloom, made it possible to achieve the aims of this study. Below the pycnocline, three foraminiferal species: Elphidium excavatum clavatum, Elphidium incertum and Elphidium magellanicum represented more than 95% of the fauna. When oxygen content was very low, the foraminiferal fauna decreased but did not die out completely. A deep-water inflow in January 1994 caused the oxygen content to rise, but the foraminiferal population did not start to grow until three months later when the spring phytoplankton bloom sedimented out. Under oxic conditions, food availability seemed to limit the foraminiferal population. In itself, a very high organic content in the sediments does not seem to be a suitable food source; it is more likely that fresh phytoplankton is a potent food for these foraminifera. Reproduction of E. excavatum clavatum and E. incertum seems to have been triggered by increased food supply and sudden fluctuations in hydrographic variables. These foraminifera appear to grow from juvenile to adult in less than a month.  相似文献   

10.
Benthic foraminifera are increasingly used as environmental bio-indicators of pollution in coastal and marginal marine settings. Their community structure provides information on the general characteristics of the environment and some species are sensitive to specific environmental parameters. Among various criteria, the occurrence of test abnormalities may represent a useful bioindicator for monitoring environmental impacts in coastal regions. A study of living benthic foraminifera was carried out in 42 sediment samples collected from the central Adriatic coast of Italy. Benthic foraminiferal assemblages from this area are rich, well preserved, and dominated by Ammonia parkinsoniana, and subordinately by Ammonia tepida, Aubignyna perlucida, Eggerella scabra, and Nonionella turgida. Heavy metal concentrations have been analysed which indicate low polluted environmental conditions. Foraminiferal species and heavy metal concentrations were investigated both with bivariate (correlation matrix) and multivariate techniques of principal component analysis (PCA) and cluster analysis. Statistical analysis shows a possible control of these pollutants both on the taxonomic composition of the benthic foraminiferal assemblages and the development of test malformations. Increasing heavy metal contents lead to an increase in relative abundance of A. tepida A. perlucida, N. turgida and E. scabra, and a relative concurrent decrease in relative abundance of A. parkinsoniana and higher percentages of deformed specimens (FAI) and species (FMI). Our results confirm that A. parkinsoniana prefers clean to low polluted environments and show that it is a very sensitive and un-tolerant species to heavy metal pollution being deeply affected by heavy metal content even at low concentrations. Our findings also confirm the capacity of the A. tepida to tolerate increasing heavy metal concentrations, and highlights that A. perlucida, N. turgida and E. scabra can be considered as tolerant species at least in low polluted environments. Following this, A. parkinsoniana and A. tepida can be reciprocally considered good bioindicator of heavy metal pollution over the surveyed area. The development of test abnormalities with a variety of malformations is a noticeable feature over the study area where the living deformed assemblages are largely dominated by a few species. The low percentages of deformed specimens (Foraminiferal Abnormality Index up to 4.7, with 2 on average) match well with the low concentrations of heavy metals that lead to low polluted environmental conditions. This study confirms and supports the suitability of studying benthic foraminifera as a technique for the in situ continuous bio-monitoring of heavy metal pollution of coastal marine sediments.  相似文献   

11.
Recent benthonic foraminifera respond to even minor changes in environmental conditions. On the basis of statistical analyses of both foraminiferal population and bottom sediments, a new morphological terminology for the Lagoon of Venice is presented.The various geomorphic units are here differentiated on the basis of the relative occurrence of subpopulations that respond to local physicochemical and biological parameters. This reduces the need to evaluate the tolerance limits of each individual species, necessary to identify environments in terms of species or groups of species.  相似文献   

12.
Foraminiferal ecology at sewage outfalls has been investigated in numerous field studies over the last 30 years. Foraminifera have been frequently used as biomonitors of sewage pollution since they are both abundant and ubiquitous. Sewage outfalls have been demonstrated to have both positive and negative effects on adjacent foraminiferal populations, but it has never been shown conclusively why sewage affects foraminifera in these ways. Such information on the impact mechanisms of sewage pollution is essential if foraminifera are to be used as sewage pollution biomonitors, and also to understand the ecology of these important protists. One possible cause of a positive effect is the direct consumption of sewage-derived particulate organic matter (POM) by the foraminifera themselves. However this hypothesis has never been tested experimentally. Here, lipid (fatty acid and sterol) biomarker techniques were applied to study the ingestion of two potential food items by the foraminiferan Haynesina germanica in the laboratory. An experiment was conducted to confirm that the laboratory conditions were conducive to the survival and feeding of the foraminifera. In this experiment, foraminifera were provided with the pennate diatom Phaeodactylum tricornutum, which was considered to be a suitable food source. After 2 weeks, a four-fold increase in the levels of the diatom fatty acid biomarker, 20:5(n-3), in the foraminifera suggested that they had fed actively on the diatoms and survived under the experimental conditions. These experimental conditions were used in the main experiment, where foraminifera were fed the POM from sewage. Lipid biomarker analysis indicated that H. germanica did not consume secondary treated sewage-derived POM. Neither fatty acid profiles in the sewage nor coprostanol, the diagnostic human faecal sterol, were detected in foraminifera after exposure to the potential sewage food source. However, foraminifera may have consumed bacteria associated with the sewage in the experiment. The findings are discussed in terms of current EU legislation on sewage treatment that has affected the composition of sewage discharges, and therefore possibly reduced the nutritive value of sewage to the marine benthos.  相似文献   

13.
Benthic foraminifera can be used as environmental bioindicators, especially in polluted environments where their sensitivity to pollutants may be expressed by a modification in the assemblage. Nineteen sediment samples were collected in November 2002 from surficial sediments of the Gulf of Izmir (Turkey). The Gulf of Izmir is located in Western Turkey and surrounded by a densely populated community. The gulf has been contaminated by numerous heavy metals, but geochemical analyses have shown that metals are significant pollutants only in the inner part of the gulf. Outer and Middle Sections showed low levels of heavy metals, except the estuary of Gediz River. Eight heavy metals have been analyzed in all the sampling points. Sixty-seven foraminifer and 22 ostracod species were identified in 16 sediment samples. Statistical analysis shows that there is a significant correlation between foraminifera species and heavy metals. The most polluted Inner Sections are dominated by the tolerant species Ammonia tepida that may be used as pollution indicator. The gradient observed in heavy metal concentrations between the Outer and Inner Sections has a prevalent influence on the foraminiferal distribution. There is a gradient of the number of species, increasing from the Inner Section toward the Outer Section. The occurrence of test abnormalities among foraminifera may represent a useful biomarker for evaluating long-term environmental impacts in a coastal region.  相似文献   

14.
Live (Rose-Vengal stained) benthic foraminifera were studied along a transect across the main area of organic matter deposition in the Cape Blanc upwelling region. The faunal analyses suggest that at the shallowest station (1200 m) the benthic ecosystem is permanently influenced by the upwelling, whereas at the deepest stations (3010 and 2530 m depth) the ocean bottom is subject to significant organic influxes only in summer. The vertical zonation of foraminiferal species in the sediment shows a close correspondence with the depth distribution of oxic respiration, nitrate and sulphate reduction. It is suggested that this linkage is caused by the presence of various stocks of anaerobic and sulphate- and nitrate-reducing bacteria. Deep infaunal foraminiferal species are thought to feed selectively, either on the bacterial stocks or on nutritious particles produced by bacterial degradation of more refractory organic matter. As such, foraminiferal microhabitats are only indirectly controlled by pore water oxygen concentrations.  相似文献   

15.
An oxygen minimum zone (OMZ) currently exists at intermediate water depths on the northern Japanese margin in the northwestern Pacific. The OMZ results largely from a combination of high surface–water productivity and poor ventilation of intermediate waters. We investigated the late Quaternary history (last 27 kyr) of the intensity of this OMZ using changes in benthic foraminiferal carbon isotopes and assemblages in a sediment core taken on the continental slope off Shimokita Peninsula, northern Japan, at a water depth of 975 m. The core was located well within the region of the present-day OMZ and high surface–water productivity. The benthic foraminiferal δ13C values, which indicate millennial-scale fluctuations of nutrient contents at the sediment–water interface, were 0.48‰ lower during the last glacial maximum (LGM) than during the late Holocene. These results do not indicate the formation of glacial intermediate waters of subarctic Pacific origin, but rather the large contribution of high-nutrient water masses such as the Antarctic Intermediate Water, implying that the regional circulation pattern during the LGM was similar to that of modern times. Benthic foraminiferal assemblages underwent major changes in response to changes in dissolved oxygen concentrations in ocean floor sediments. The lowest oxygen and highest nutrient conditions, marked by dysoxic taxa and negative values of benthic foraminiferal δ13C, occurred during the Bølling/Allerød (B/A) and Pre-Boreal warming events. Dysoxic conditions in this region during these intervals were possibly caused by high surface–water productivity at times of reduced intermediate–water ventilation in the northwestern Pacific. The benthic assemblages show dysoxic events on approx. 100- to 200-year cycles during the B/A, reflecting centennial-scale productivity changes related to freshwater cycles and surface–water circulation in the North Pacific.  相似文献   

16.
方惠瑛 《台湾海峡》1998,17(1):43-49,T001
调查及综合研究了台湾海峡表层沉积物中底栖有孔虫的分布特征,调查海区根据优势种类组成可以划分出10个底栖有孔虫动物群,其经峡东侧所划分的6个义栖有孔虫生物相有机相连。动物群的分布与现代海洋环境有密切关系,从而对台湾海峡的古地理环境研究提供了依据。  相似文献   

17.
北黄海表层沉积物中的底栖有孔虫分布与海洋环境   总被引:1,自引:0,他引:1  
对2006年8月取自北黄海的302个表层沉积物样品中的底栖有孔虫群落进行了分析,结果表明:北黄海底栖有孔虫群落以适应低温、低盐的冷水种和广温、广盐种为主,胶结质壳底栖有孔虫含量明显高于我国其他海区。利用Q型因子分析提取了5个主因子,通过将主因子代表的底栖有孔虫组合与环境影响因子之间的对比印证,揭示了其内在联系,北黄海底栖有孔虫分布的决定性因素是表层沉积物的粒度,而温度和盐度则起到次要作用,该海区水深变化对底栖有孔虫分布的影响没有明显的规律性。  相似文献   

18.
Latitudinal gradients in biodiversity are found in both terrestrial and marine environments, but little agreement exists on the mechanisms or ecological causes creating these patterns. Marine biodiversity patterns have been particularly challenging to document, because of the lack of appropriate data sets from ocean basins. We document latitudinal patterns of North Atlantic deep-sea benthic foraminifera and show that seasonality of primary productivity, as estimated from SeaWiFS satellite imagery, has a significant effect on diversity indices, with generally lower values of H(S), species ?, and species equitability found with high seasonality between 40 and 60°N. High foraminiferal diversity is not found in areas with phytodetritus deposition in the North Atlantic basin, which indicates that patch dynamics, biological disturbance, and sediment heterogeneity resulting from phytodetritus deposits do not create high deep-sea foraminiferal diversity. Annual resource stability, reflecting the timing of organic carbon flux and the mode of sedimentation, accounts for the benthic foraminiferal patterns found in this study and is an important variable structuring the deep-sea benthic foraminiferal community.  相似文献   

19.
The capacity for ascidians to inhabit coastal sea floor worldwide relies on their peculiar tolerance to environmental variables and pollution, which is considered, together with high levels of genetic diversity, among the main drivers of their invasive potential. In spite of the continued interest in the genetics of invasive species, little attention has been paid toward the microevolutionary processes that drive structure and fate of ascidian populations over time under chemically polluted conditions. Understanding the interplay between environmental and population dynamics is critical to predict the biodiversity of marine coastal ecosystems. In the present study, a local population of the ascidian Ciona robusta living in the Fusaro Lagoon has been monitored over a 13‐month period of sampling. Physico‐chemical parameters (temperature, salinity, turbidity, dissolved oxygen, heavy metals), genetic composition (microsatellites, ITS‐2), abundance and biomass (wet and dry weight) were assessed with the aim to infer fine‐scale temporal variation of population structure with respect to rapid environmental change. Analysis of biomass showed that C. robusta is highly sensitive to salinity and oxygen concentrations. Further, genetic analysis suggested a highly dynamic population structure, likely due to the strong clustering of temporal samples and distinct responses to environmental conditions, including bioaccumulation of heavy metals. Here, we hypothesize that rapid variation in allele frequencies of neutral markers in C. robusta populations may increase the ability of the species to colonize habitats that are subject to strong variation and are under heavy human pressure.  相似文献   

20.
Detailed measurements of bubble composition, dissolved gas concentrations, and plume dynamics were conducted during a 9-month period at a very intense, shallow (22-m water depth) marine hydrocarbon seep in the Santa Barbara Channel, California. Methane, carbon dioxide, and heavier hydrocarbons were lost from rising seep bubbles, while nitrogen and oxygen were gained. Within the rising seawater bubble plume, dissolved methane concentrations were more than 4 orders of magnitude greater than atmospheric equilibrium concentrations. Strong upwelling flows were observed and bubble-rise times were ~40 s, demonstrating the rapid exchange of gases within the bubble plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号