首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Geology Review》2012,54(12):1419-1442
The Palaeogene deposits of the Thrace Basin have evolved over a basement composed of the Rhodope and Sakarya continents, juxtaposed in northwest Turkey. Continental and marine sedimentation began in the early Eocene in the southwest part, in the early-middle Eocene in the central part, and in the late Lutetian in the north-northeast part of the basin. Early Eocene deposition in the southern half of the present Thrace Basin began unconformably over a relict basin consisting of uppermost Cretaceous–Palaeocene pelagic sediments. The initial early-middle Eocene deposition began during the last stage of early Palaeogene transtension and was controlled by the eastern extension (the Central Thrace Strike–Slip Fault Zone) of the Balkan-Thrace dextral fault to the north. Following the northward migration of this faulting, the Thrace Palaeogene Basin evolved towards the north during the late Lutetian. From the late Lutetian to the early Oligocene, transpression caused the formation of finger-shaped, eastward-connected highs and sub-basins. The NW–SE-trending right-lateral strike–slip Strandja Fault Zone began to develop and the Strandja Highland formed as a positive flower structure that controlled the deposition of the middle-upper Eocene alluvial fans in the northern parts of the Thrace Palaeogene Basin. Also, in the southern half of the basin, the upper Eocene–lower Oligocene turbiditic series with debris flows and olistostrome horizons were deposited in sub-basins adjacent to the highs, while shelf deposits were deposited in the northern half and southeast margin of the basin. At least since the early Eocene, a NE-trending magmatic belt formed a barrier along the southeast margin of the basin. From the late Oligocene onwards, the Thrace Palaeogene Basin evolved as an intermontane basin in a compressional tectonic setting.  相似文献   

2.
The Coffs Harbour Association, New England Orogen, consists of thick, monotonous units of Late Palaeozoic greywacke, laminated siltstone and mudstone, and massive argillite. The rocks of the association have a common provenance, being derived predominantly from a volcanic arc source consisting of mainly dacite, with minor andesite and rhyolite. The Coramba beds in the Coffs Harbour Block are divided into four petrofacies based on QFL data and the occurrence of detrital hornblende. Upwards, the petrofacies are: A—volcanolithic, B—feldspathic, C—horn‐blende‐feldspathic, D—hornblende‐volcanolithic. The petrofacies and vertical variation in non‐volcanic detritus indicate minor erosion and exposure of a non‐volcanic source, followed first by recommencement of volcanism, penecontemporaneously with sedimentation, then further erosion of the non‐volcanic source area. There was little temporal change in the character of volcanic detritus shed from the source area. Equivalents of the four petrofacies are recognised in other blocks of the association, although because of structural complexity, a complete A‐D sequence has not been found. The Coffs Harbour sandstones are similar to sands in modern ocean basins derived from an arc system of either continental margin or island arc type. The sandstones are not similar to recycled orogenic provenances, such as found in accretionary prisms or trench‐slope basins; the compositions suggest that the sandstones were deposited in either a forearc or backarc setting.  相似文献   

3.
The provenance of Eocene–Oligocene turbidites from the Pindos Foreland Basin, SW Greece, has been constrained using petrographical and geochemical techniques. Modal petrographic analysis of the studied sandstones shows that the source area comprises sedimentary, metamorphic, and plutonic igneous rocks deposited in a recycled orogenic environment and in magmatic arc province. The relative proportions of the detrital components indicate that the Late Eocene–Early Oligocene sandstones of West Peloponnesus are quartz-rich and were primarily derived from granitic and metamorphic basement rocks typically of a tectonically active area. Major, trace, and rare earth element (REE) concentrations in both sandstones and mudstones complement the petrographical data indicating an active continental margin/continental island arc signature. All the samples are light REE, enriched relative to heavy REE (HREE), with flat HREE pattern and positive Eu anomalies, suggesting that the processes of intra-crustal differentiation (involving plagioclase fractionation) were not of great importance. The results derived from the multi-element diagrams also suggest an active margin character and a mafic/ultramafic source rock composition.  相似文献   

4.
砂岩碎屑成分分析是进行沉积物源岩石类型、构造属性和盆山演化分析的重要途径。准噶尔盆地南缘侏罗系物源构造属性以“再旋回造山带”、“弧造山带”和部分“岩浆弧”物源为特征,物源岩石类型主要为中酸性岩浆岩、变质岩和沉积岩,岩石成分、重矿物含量及其组合显示东、西剖面在物源上存在一定差异。天山内部侏罗系物源构造属性以“再旋回造山带”、“混合造山带”为主,物源岩石类型主要为中酸性岩浆岩和变质岩,但各剖面的岩石成分、重矿物组合特征及相对含量差异较大。综合天山内部与准噶尔盆地南缘野外剖面沉积特征、岩屑成分及钻井岩心分析表明,天山地区早、中侏罗世盆山格局以盆地沉积范围大、天山正地形较小为特征,不存在地理分割明显的天山山脉,侏罗纪盆地南缘至少存在三个物源体系(西准噶尔山、克拉麦里山和(古)天山);晚侏罗世一早白垩世早期,岩石成分成熟度偏低,砾岩等粗碎屑沉积明显增多,同时不稳定重矿物及其组合稍有增加可能与晚侏罗世天山构造格局分异、构造活动相对活跃有关,天山山脉明显隆升并造就天山南北沉积环境的巨大差异。  相似文献   

5.
通过详实的野外调查和室内研究,在西藏吉瓦地区新发现了砂岩型铜矿床,赋矿层位为渐新统日贡拉组,矿床类型为层控矿床。为探讨日贡拉组砂岩的物源特征及其构造背景、查明其含矿物质来源,通过碎屑矿物定量分析、元素地球化学方法及重矿物组合分析等一系列物源分析方法对日贡拉组的物质来源进行了研究。结果显示,研究区主要岩性为岩屑砂岩,岩屑主要成分为酸性火山岩,砂岩结构成熟度低,分选磨圆差。碎屑组分分析表明物源集中在火山弧物源区,地球化学特征为硅质含量高、LREE富集、HREE相对亏损、显示Eu负异常,均表明物源与酸性火山岩密切相关;日贡拉组砂岩的大地构造背景主要为大陆岛弧,砂岩碎屑来自上地壳长英质源区。重矿物组合以反映物源为中酸性岩浆岩成分的赤褐铁矿+磁铁矿、锆石、电气石、石榴子石为主,沉积环境为气候干旱、水体较浅的富氧环境。锆石形态特征指示物源距母岩区较近,重矿物的相关性分析也指示了物源与火山岩密切相关。研究区的日贡拉组砂岩与早白垩酸性火山岩微量元素及重矿物的对比表明,碎屑物质源区特点从岩石学特征、地球化学特征及重矿物组合特征上均表现出了亲缘关系,物源成分与火山作用紧密相关,很可能主要来自班公湖-怒江洋壳南向俯冲与雅鲁藏布江洋壳北向俯冲双重制约条件下产生于火山弧环境中的早白垩世火山岩。日贡拉组发现了砂岩型铜矿,火山岩提供了成矿物质来源,为寻找同类型的矿床开启思路。  相似文献   

6.
The Pirin-Pangaion Structural Zone occupies the south-western part of the Rhodope Massif. It consists of Proterozoic amphibolite facies metamorphic rocks of the Rhodopian Supergroup, and granitoids of Hercynian, Late Cretaceous and Palaeogene age. The pre-Hercynian structure of the zone is dominated by an interference pattern of three superimposed fold generations of NE-SW and NW-SE trends. These structures are cut by Hercynian granitoids, and the entire complex is affected by late Hercynian or early Alpine conical folds. The zone was overthrusted by the Ogražden and Kroussia Units (Serbo-Macedonian ‘Massif’) along the north-east vergent Mid-Cretaceous Strimon overthrust, and by the Central Rhodope Zone of the Rhodope Massif, along the south-west vergent Meso-Rhodopean Overthrust. With this thrusting event, the Pirin-Pangaion Structural Zone was brought together with the Serbo-Macedonian ‘Massif’ and the Central Rhodope Zone to form the Late Cretaceous Morava-Rhodope Zone, which acted as a ‘plateau’ along the southern edge of the Eurasian plate. Late Cretaceous granitoid magma of crustal origin intruded this zone, whereas north of it the Srednogorie volcanic island arc was the site of igneous activity with magmas originating in the upper mantle. The West Thrace Zone developed as a Palaeocene to Oligocene depression superimposed over the older basement obliquely to the southern periphery of the Rhodope Massif. In the Late Eocene and Early Oligocene, this depression represented a volcanic island arc with mantle-derived basic to intermediate magmas; contemporaneous granitoid magmas formed through crustal melting in the thickened crust of the Rhodope Massif (Pirin and Pangaion Units included). Early Miocene thrusting was most intense in the Pangaion Unit, and was followed by Late Miocene to Quaternary extension.  相似文献   

7.
The Western Irish Namurian Basin (WINB) preserves classic examples of basin floor sequences through to slope deposits and deltaic cyclothems. Despite over 50 years of research into the WINB, its sediment provenance remains highly contested. Sedimentological arguments, including palaeocurrent vectors and palaeoslope indicators have been invoked to propose a sediment source from the NW or the west (i.e. from within Laurentia). These same indicators have been subsequently reinterpreted to reflect a southern provenance. It is not clear from sedimentological arguments alone which interpretation more accurately reflects the infilling of the WINB. Regional‐scale constraints on WINB provenance may be obtained with detrital zircon U–Pb geochronology. U–Pb LA‐ICP‐MS detrital zircon analysis was undertaken on samples from three sandstone units at different stratigraphic levels within the WINB siliciclastic sedimentary fill (Ross Formation, Tullig Sandstone, Doonlicky Sandstone). The samples are dominated by 500–700 Ma zircons, which can be correlated with Cadomian–Avalonian orogenic activity within terranes to the south of the WINB (Avalonia/Ganderia, Armorica and Iberia). In contrast, Eastern Laurentia, to the north of the WINB, was devoid of orogenic activity at this time. WINB samples also yield age populations younger than 500 Ma, and older than 700 Ma. These are not diagnostic of a particular source terrane and thus could be derived from terranes north and/or south of the WINB. WINB detrital zircon age spectra can be reconciled by an Avalonian or combined Avalonian–Laurentian provenance for WINB sedimentary strata. Further research is required in order to distinguish between these two possibilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Despite abundant data on volcaniclastic sand(stone), the compositional, spatial and temporal distribution of volcanic detritus within the sedimentary record is poorly documented. One of the most intricate tasks in optical analysis of sand(stone) containing volcanic particles is to distinguish grains derived by erosion of ancient volcanic rocks (i.e. palaeovolcanic, noncoeval grains) from grains generated by active volcanism (subaqueous and/or subaerial) during sedimentation (neovolcanic, coeval grains). Deep-marine volcaniclastic sandstones of the Middle Topanga Group of southern California are interstratified with 3000-m-thick volcanic deposits (both subaqueous and subaerial lava and pyroclastic rocks, ranging from basalt, andesite to dacite). These rocks overlie quartzofeldspathic sandstones (petrofacies 1) of the Lower Topanga Group, derived from deep erosion of a Mesozoic magmatic arc. Changes in sandstone composition in the Middle Topanga Group provide an example of the influence of coeval volcanism on deep-marine sedimentation. Volcaniclastic strata were deposited in deep-marine portions of a turbidite complex (volcaniclastic apron) built onto a succession of intrabasinal lava flows and on the steep flanks of subaerially emplaced lava flows and pyroclastic rocks. The Middle Topanga Group sandstones are vertically organized into four distinctive petrofacies (2–5). Directly overlying basalt and basaltic-andesite lava flows, petrofacies 2 is a pure volcanolithic sandstone, including vitric, microlitic and lathwork volcanic grains, and neovolcanic crystals (plagioclase, pyroxene and olivine). The abundance of quenched glass (palagonite) fragments suggests a subaqueous neovolcanic provenance, whereas sandstones including andesite and minor basalt grains suggest subaerial neovolcanic provenance. This petrofacies probably was deposited during syneruptive Periods, testifying to provenance from both intrabasinal and extrabasinal volcanic events. Deposited during intereruptive periods, impure volcanolithic petrofacies 3 includes both neovolcanic (85%) and older detritus derived from plutonic, metamorphic and palaeovolcanic rocks. During post-eruptive periods, the overlying quartzofeldspathic petrofacies 4 and 5 testify to progressive decrease of neovolcanic detritus (48–14%) and increase of plutonic-metamorphic and palaeovolcanic detritus. The Upper Topanga Group (Calabasas Formation), conformably overlying the Middle unit, has dominantly plutoniclastic sandstone (petrofacies 6). Neovolcanic detritus is drastically reduced (4%) whereas palaeovolcanic detritus is similar to percentages of the Lower Topanga Group (petrofacies 1). In general, the volcaniclastic contribution represents a well-defined marker in the sedimentary record. Detailed compositional study of volcaniclastic strata and volcanic particles (including both compositional and textural attributes) provides important constraints on deciphering spatial (extrabasinal vs. intrabasinal) and temporal relationships between neovolcanic events (pre-, syn-, inter- and post-eruptive periods) and older detritus.  相似文献   

9.
This study deals with petrography and provenance of the Neogene reservoir sandstones encountered in the Kailas Tila, Titas, Bakhrabad and Shahbazpur Gas Fields of Bengal Basin. Framework grains are sand-sized to silt-sized particles of mainly detrital origin. The most common detrital grains are quartz, feldspars, and rock fragments. Mica occurred as minor and non-opaque heavy minerals found as minor accessories. Among the main detrital framework grains, quartz constitutes 51–60%, feldspar 3–15%, lithic fragments 8–22%. Sandstones encountered in the studied wells have been classified as sublithic arenite, feldspathic arenite and lithic arenite in order of abundance. Different triangular plots reveal that the Neogene sandstones of the studied wells exhibit a quartzolithic composition, low feldspar, very low volcanic grains and abundant sedimentary and low grade metamorphic lithic clasts indicating that the sands were derived from quartzose recycled orogen province, such as a fold thrust province or a collision suture zone. This study suggests that either the eastern Himalayas or Indo-Burman Ranges might act as the source of the sandstones of the studied wells of the Bengal Basin.  相似文献   

10.
The Mesta Basin in southwest Bulgaria is a graben that contains a Paleogene‐age siliciclastic and volcaniclastic succession deposited in alluvial and fluvial settings. A sedimentological analysis has shed light on conglomerate provenance, and the links between deposition and tectonic setting. Petrographical and chemical analysis of conglomerate clasts and matrix from the Dobrinishka, Gradinishka, Osikovo (or Osenovo) and Zlataritsa formations reveal both local, and more distal source provenance ages. The basal conglomerates are subdivided into three types, a lower and upper polymictic and a middle granitic conglomerate type. Petrographical and chemical analysis reveals granite, gneiss and amphibolite clasts that were sourced from the Sidironero–Mesta Unit of the Middle Allochthon of the Rhodope Metamorphic Complex, and the Rila–Rhodope Batholith to the east of the basin. Cathodoluminescence analysis of quartz sand grains reveals an increased input of red‐ and violet‐luminescent volcanic grains. Volcanic quartz in the oldest conglomerates indicates a hitherto unknown early (pre‐Oligocene) phase of volcanic activity in the vicinity of the Mesta Basin. The conglomerates were deposited in association with movement on the Ribnovo low‐angle normal fault during the Late Eocene, creating subsidence and the development of considerable accommodation space. The establishment of a fluvial environment followed subsequent Oligocene‐age volcanic activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A blueschist facies tectonic sliver, 9 km long and 1 km wide, crops out within the Miocene clastic rocks bounded by the strands of the North Anatolian Fault zone in southern Thrace, NW Turkey. Two types of blueschist facies rock assemblages occur in the sliver: (i) A serpentinite body with numerous dykes of incipient blueschist facies metadiabase (ii) a well‐foliated and thoroughly recrystallized rock assemblage consisting of blueschist, marble and metachert. Both are partially enveloped by an Upper Eocene wildflysch, which includes olistoliths of serpentinite–metadiabase, Upper Cretaceous and Palaeogene pelagic limestone, Upper Eocene reefal limestone, radiolarian chert, quartzite and minor greenschist. Field relations in combination with the bore core data suggest that the tectonic sliver forms a positive flower structure within the Miocene clastic rocks in a transpressional strike–slip setting, and represents an uplifted part of the pre‐Eocene basement. The blueschists are represented by lawsonite–glaucophane‐bearing assemblages equilibrated at 270–310 °C and ~0.8 GPa. The metadiabase dykes in the serpentinite, on the other hand, are represented by pumpellyite–glaucophane–lawsonite‐assemblages that most probably equilibrated below 290 °C and at 0.75 GPa. One metadiabase olistolith in the Upper Eocene flysch sequence contains the mineral assemblage epidote + pumpellyite + glaucophane, recording P–T conditions of 290–350 °C and 0.65–0.78 GPa, indicative of slightly lower depths and different thermal setting. Timing of the blueschist facies metamorphism is constrained to c. 86 Ma (Coniacian/Santonian) by Rb–Sr phengite–whole rock and incremental 40Ar–39Ar phengite dating on blueschists. The activity of the strike–slip fault post‐dates the blueschist facies metamorphism and exhumation, and is only responsible for the present outcrop pattern and post‐Miocene exhumation (~2 km). The high‐P/T metamorphic rocks of southern Thrace and the Biga Peninsula are located to the southeast of the Circum Rhodope Belt and indicate Late Cretaceous subduction and accretion under the northern continent, i.e. the Rhodope Massif, enveloped by the Circum Rhodope Belt. The Late Cretaceous is therefore a time of continued accretionary growth of this continental domain.  相似文献   

12.
The Eocene La Meseta Formation is the youngest exposed unit of the back-arc James Ross Basin, Antarctic Peninsula, cropping out in Seymour (Marambio) Island. The formation comprises 720 m of clastic sedimentary rocks of deltaic, estuarine and shallow marine origin. It was subdivided into six unconformity-based units (Valle de Las Focas, Acantilados, Campamento, Cucullaea I, Cucullaea II and Submeseta Allomembers) grouped into three main facies associations. Facies association I represents valley-confined deposition in a progradational/aggradational tide-dominated and wave-influenced delta front/delta plain environment. Facies association II includes tidal channels, mixed tidal flats, tidal inlets and deltas, washover and beach environments. Facies association III represents nonconfined tide- and storm-influenced nearshore environments. La Meseta Formation sandstones are quartzofeldspathic with some hybrid arenites (glauconite and carbonate bioclasts-rich). Sandstone detrital modes are subdivided into two distinctive petrofacies: the low quartz petrofacies (petrofacies I, Q<55% and L>12%), interpreted to retain the original provenance signal, and the high quartz petrofacies (petrofacies II, Q>55% and L<12%), representing the reworking product of the former after selective elimination of the more labile components. Petrofacies I sandstone framework grains were mainly derived from a dissected magmatic arc and an associated metamorphic belt. Textural evidence for recycling of some grains (e.g. garnet) from older sedimentary units during valley incision is not conclusive. Changes in the relative participation of source areas during the evolution of the incised-valley system are evaluated from the relative proportions of lithic fragments and monomineralic clasts derived from each rock type. Two lithic assemblages were recognized. The mixed lithic assemblage (Rv/Rm+Rp<1.4) shows participation of all rock types; it represented valley-confined environments, either during the initial stage of valley development, or after main episodes of incision. The volcanic lithic assemblage (Rv/Rm+Rp>1.4) is clearly dominated by volcanic-derived clasts; it developed at times of high sea level and/or during later stages of the valley fill, when an “energy fence” at the shoreline prevented delivery of sediment from the Antarctic Peninsula, thus enhancing the relative participation of local volcanic sources.  相似文献   

13.
The aim of this paper is to study the provenance of Late Cretaceous sandstones deposited along the south flank of the Golfo San Jorge Basin. For this purpose, detrital modes of three hundred thirty-seven sandstone samples collected in the Mina del Carmen, Bajo Barreal, and Cañadón Seco Formations were studied in ten oil fields. According to the modal composition of the sandstones, six petrofacies were defined allowing the identification of not only principal, but also secondary provenance areas. The QVM and VQM petrofacies are more than 20% metamorphic, sedimentary, and polycrystalline quartz clasts (Lm + Ls + Qpg > 20%), evidencing a secondary signal of basement supply masked by a predominant volcanic provenance. The petrofacies VP and VF are characterized by Lm + Ls + Qpg <20% and more than 20% total feldspar (Pm + Om >20%.), which indicate a supply of sediment from volcanic terrains and scarce derivation of materials from basement rocks. Based on the plagioclase/k-feldspar ratio, the VF petrofacies is interpreted to be dominated by the supply of sand grains from the Andean volcanic-arc, while VP is supposed have originated through the erosion of intermediate volcanic rock outcroppings in the Macizo del Deseado. Finally, both the VQ and QV petrofacies show Lm + Ls + Qpg <20% and Pm + Om<20%, indicating a provenance of volcanic areas coupled with minor contributions from basement rocks. During the Late Cretaceous, the Golfo San Jorge Basin underwent a sag phase that was characterized by very scarce volcanism and tectonic activity. Although these conditions did not favor defined patterns in the vertical stacking of petrofacies, the sandstones exhibit remarkable changes in their regional distribution, which were determined by the paleogeography of the basin and differences in basement composition within the source areas. Finally, a paleogeographic model for sediment circulation in the basin is proposed. This model recognizes the main fluvial dispersal trends that flowed northwest to southeast and transported large amounts of volcanic clasts (associated with petrofacies VF-VQ). To the extent that rivers flowed eastward, a secondary supply from the Precambrian basement, which were composed of low-to high-grade metamorphic rocks, was also important (petrofacies association VQM and QVM). The southwestern area of the basin is dominated by VP petrofacies that record the supply of plagioclase-rich volcanic clasts. This petrofacies likely corresponds to the erosion of Jurassic volcanic units that crop out in the Macizo del Deseado.  相似文献   

14.
Provenance and tectonic history of the late Eocene‐early Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece, were studied using sandstone framework composition, sedimentological data and sandstone and mudstone geochemistry. The resulting tectonic–sedimentological model is based on the late Eocene–early Oligocene Lemnos Island being in a forearc basin with the outer arc ridge as a major sediment source. Modal petrographic analysis of the studied sandstones shows that the source area comprises sedimentary, metamorphic and plutonic igneous rocks deposited in the studied area in a recycled orogenic environment. Moreover, within the above sediments, the minor occurrence of volcanic fragments suggests little or no influence of a volcanic source. Provenance results, based on major, trace and rare earth element (REE) data, suggest an active continental margin/continental island arc signature. All the samples are LREE, enriched relative to HREE, with a flat HREE pattern and positive Eu anomalies, suggesting that the processes of intracrustal differentiation (involving plagioclase fractionation) were not of great importance. Results derived from the multi‐element diagrams also suggest an active margin character, and a mafic/ultramafic source rock composition, while the positive anomaly of Zr that can be attributed to a passive continental margin source, is most likely associated with reworking and sorting during sediment transfer. Palaeocurrents, with a NE–NNE direction, indicate a northeast flow, towards the location of the late Eocene–early Oligocene magmatic belt in the north‐east Aegean region. Conglomerates are composed of chert, gneiss and igneous fragments, such as basalts and gabbros, suggesting this outer arc ridge as a likely source area. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A compositional study of sandstones belonging to the lower section of the Paganzo Group (Middle Carboniferous–Early Permian) in the Paganzo Basin (northwestern Argentina) helps unravel the stratigraphic and paleogeographic evolution of the basin. Three morphotectonic units constitute the complex basement of the basin: (1) to the east, the igneous–metamorphic basement of the Sierras Pampeanas and Famatina systems; (2) to the west, the Precordillera, made up of Early and Middle Paleozoic sedimentary rocks; and (3) the Upper Paleozoic volcanic arc along the western boundary with the Río Blanco Basin. On the basis of sandstone detrital modes of the Lagares, Malanzán, Loma Larga, Guandacol, Tupe, Punta del Agua, and Río del Peñón formations, seven petrofacies are distinguished: quartzofeldespathic (QF), quartzofeldespathic-metamorphic enriched (QF-Lm), quartzofeldespathic-sedimentary enriched (QF-Ls), mixed quartzolithic (QL), quartzolithic-volcanic (QLv), volcanolithic-quartzose (LvQ), and volcanolithic (Lv). The spatial and temporal distribution of these petrofacies suggest an evolutive model for the Upper Paleozoic sedimentary filling of the basin that includes three “petrosomes”: (1) the basement petrosome, a clastic wedge of arkosic composition that diachronically prograded and thinned from east to west; (2) the recycled orogen petrosome, revealing the Protoprecordillera as a positive element in the western Paganzo Basin during the Namurian; and (3) the volcanic arc petrosome, recording volcanic activity along the western margin of Gondwana during the Westphalian.  相似文献   

16.
U–Pb (SHRIMP) detrital zircon age patterns are reported for 12 samples of Permian to Cretaceous turbiditic quartzo‐feldspathic sandstone from the Torlesse and Waipapa suspect terranes of New Zealand. Their major Permian to Triassic, and minor Early Palaeozoic and Mesoproterozoic, age components indicate that most sediment was probably derived from the Carboniferous to Triassic New England Orogen in northeastern Australia. Rapid deposition of voluminous Torlesse/Waipapa turbidite fans during the Late Permian to Late Triassic appears to have been directly linked to uplift and exhumation of the magmatically active orogen during the 265–230 Ma Hunter‐Bowen event. This period of cordilleran‐type orogeny allowed transport of large volumes of quartzo‐feldspathic sediment across the convergent Gondwanaland margin. Post‐Triassic depocentres also received (recycled?) sediment from the relict orogen as well as from Jurassic and Cretaceous volcanic provinces now offshore from southern Queensland and northern New South Wales. The detailed provenance‐age fingerprints provided by the detrital zircon data are also consistent with progressive southward derivation of sediment: from northeastern Queensland during the Permian, southeastern Queensland during the Triassic, and northeastern New South Wales — Lord Howe Rise — Norfolk Ridge during the Jurassic to Cretaceous. Although the dextral sense of displacement is consistent with the tectonic regime during this period, detailed characterisation of source terranes at this scale is hindered by the scarcity of published zircon age data for igneous and sedimentary rocks in Queensland and northern New South Wales. Mesoproterozoic and Neoproterozoic age components cannot be adequately matched with likely source terranes in the Australian‐Antarctic Precambrian craton, and it is possible they originated in the Proterozoic cores of the Cathaysia and Yangtze Blocks of southeast China.  相似文献   

17.
GARY G. LASH 《Sedimentology》1987,34(2):227-235
Petrographic analysis of Middle Ordovician turbidite sandstones of the Greenwich slice of the Hamburg klippe (eastern Pennsylvania), inferred to be part of a fossil subduction complex, define three coeval petrofacies. The Jonestown petrofacies was derived from felsic plutonic and less abundant metasedimentary rocks, whereas the Windsor Township, the most extensive petrofacies, and Werleys Corner petrofacies were derived from sources characterized by various proportions of sedimentary/metasedimentary, plutonic, and volcanic rocks. The presence of minor but conspicuous extrabasinal carbonate and microlitic volcanic lithic fragments together with higher percentages of polycrystalline quartz, serve to distinguish the Werleys Corner from the Windsor Township petrofacies. It is conceivable that sandstones of the Greenwich slice were derived from microplates inferred to have existed to the southeast of the proto-North American plate in Early Palaeozoic time. The variations in sandstone composition along the length of the Greenwich slice may be explained by post-accretion tectonic juxtaposition of petrofacies derived from various sources. An equally plausible explanation involves transverse infilling of a channelized longitudinal transport system (Windsor Township petrofacies) by sediment derived from compositionally diverse source terranes orthogonal to the trench (Jonestown and Werleys Corner petrofacies).  相似文献   

18.
酒西盆地中新生代碎屑组分特征及指示意义   总被引:2,自引:0,他引:2       下载免费PDF全文
通过岩石碎屑成分分析,研究酒西盆地砂砾岩储集层沉积碎屑成分特征对物源属性、盆-山格局演化及油气成藏特征的指示意义。研究表明,酒西盆地下白垩统下沟组砂岩成分成熟度低,物源构造属性以再旋回造山带和部分岩浆弧为特征,物源岩石类型主要为中酸性岩浆岩和变质岩(沉积岩碎屑极少),岩石成分及其组合显示盆地东、西部的物源差异明显;古近系白杨河组在岩石成分、岩屑组成上与下白垩统下沟组砂岩有较大不同,显示物源属性的明显改变。物源属性的改变在一定程度上反映构造格局分异、盆-山格局的演变历程,控制了酒西盆地内油气富集和晚期成藏特征。碎屑成分特征在一定程度上决定了储集层的储集空间类型及裂缝发育规律,值得进一步深入研究。  相似文献   

19.
Sedimentary geochemistry of fine-grained strata of the Great Valley Group (GVG) in California documents a provenance signal that may better represent unstable, mafic minerals and volcanic clasts within sediment source regions than the provenance signal documented in the petrofacies and detrital zircon analysis of coarser sedimentary fractions. Geochemistry of the GVG provides an overall provenance framework within which to interpret sandstone petrofacies and detrital zircon age signatures. The geochemical signature for all Sacramento Valley samples records an overall continental arc source, with significant variation but no clear spatial or temporal trends, indicating that the geochemical provenance signal remained relatively consistent and homogenized through deposition of Sacramento basin strata. The San Joaquin basin records a distinct geochemical provenance signature that shifted from Early to Late Cretaceous time, with Lower Cretaceous strata recording the most mafic trace element geochemical signature of any GVG samples, and Upper Cretaceous strata recording the most felsic geochemical signature. These provenance results suggest that the early San Joaquin basin received sediment from the southern Sierran foothills terranes and intruding plutons during the Early Cretaceous, with sediment sources shifting east as the southern Sierran batholith was exhumed and more deeply eroded during the Late Cretaceous. The GVG provenance record does not require sediment sources inboard of the arc at any time during GVG deposition, and even earliest Cretaceous drainage systems may not have traversed the arc to link the continental interior with the margin. Because the GVG provenance signature is entirely compatible with sediment sources within the Klamath Mountains, the northern and western Sierran foothills belt, and the main Cretaceous Sierran batholith, the Klamath-Sierran magmatic arc may have formed a high-standing topographic barrier throughout the Cretaceous period.  相似文献   

20.
The sandstones of the Dhosa Sandstone Member of Late Callovian and Early Oxfordian age exposed at Ler have been analyzed for their petrofacies, provenance, tectonic setting and diagenetic history. These sandstones are fine to medium grained and poorly- to well sorted. The constituent mineral grains are subangular to subrounded. These sandstones were derived from a mixed provenance including granites, granite–gneisses, low- and high-grade metamorphic and some basic rocks of the Aravalli Range and Nagarparkar Massif. The petrofacies analysis reveals that these sandstones belong to the continental block-, recycled orogen- and rifted continental margin tectonic regime.The imprints of early and deep burial diagenesis of these sandstones include different stages of compaction, cementation, change in crystal boundaries, cement–cement boundaries, chertification and neomorphism. The sequence of cementation includes precipitation of calcite and its subsequent replacement by Fe calcite and silica cements. The typical intermediate burial (2–3 km depth) diagenetic signatures of these sandstones are reflected in the formation of suture and straight-line boundaries, and triple junctions with straight-line boundaries. The depositional environment, relatively low-energy environment that was below storm wave base but subjected to gentle currents, of the Dhosa Sandstone Member controlled the early diagenesis, which in turn influenced the burial diagenesis of these sandstones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号