首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interaction of freshly precipitated silica gel with aqueous solutions was studied at laboratory batch experiments under ambient and near neutral pH-conditions. The overall process showed excellent reversibility: gel growth could be considered as an opposite process to dissolution and a linear rate law could be applied to experimental data. Depending on the used rate law form, the resulting rate constants were sensitive to errors in parameters/variables such as gel surface area, equilibrium constants, Si-fluxes, and reaction quotients. The application of an Integrated Exponential Model appeared to be the best approach for dissolution data evaluation. It yielded the rate constants k dissol ∼ (4.50 ± 0.68) × 10−12 and k growth ∼ (2.58 ± 0.39) × 10−9 mol m−2 s−1 for zero ionic strength. In contrast, a Differential Model gave best results for growth data modeling. It yielded the rate constants k dissol ∼ (1.14 ± 0.44) × 10−11 and k growth ∼ (6.08 ± 2.37) × 10−9 mol m−2 s−1 for higher ionic strength (I ∼ 0.04 to 0.11 mol L−1). The found silica gel solubility at zero ionic strength was somewhat lower than the generally accepted value. Based on the and standard Gibbs free energy of silica gel formation was calculated as and −850,318 ± 20 J mol−1, respectively. Activation energies for silica gel dissolution and growth were determined as and respectively. An universal value for growth of any silica polymorph, is not consistent with the value for silica gel growth, which questions the hypothesis about one unique activated complex controlling the silica polymorph growth.  相似文献   

2.
The diffusion of water in a peralkaline and a peraluminous rhyolitic melt was investigated at temperatures of 714–1,493 K and pressures of 100 and 500 MPa. At temperatures below 923 K dehydration experiments were performed on glasses containing about 2 wt% H2O t in cold seal pressure vessels. At high temperatures diffusion couples of water-poor (<0.5 wt% H2O t ) and water-rich (~2 wt% H2O t ) melts were run in an internally heated gas pressure vessel. Argon was the pressure medium in both cases. Concentration profiles of hydrous species (OH groups and H2O molecules) were measured along the diffusion direction using near-infrared (NIR) microspectroscopy. The bulk water diffusivity () was derived from profiles of total water () using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between and Both methods consistently indicate that is proportional to in this range of water contents for both bulk compositions, in agreement with previous work on metaluminous rhyolite. The water diffusivity in the peraluminous melts agrees very well with data for metaluminous rhyolites implying that an excess of Al2O3 with respect to alkalis does not affect water diffusion. On the other hand, water diffusion is faster by roughly a factor of two in the peralkaline melt compared to the metaluminous melt. The following expression for the water diffusivity in the peralkaline rhyolite as a function of temperature and pressure was obtained by least-squares fitting:
where is the water diffusivity at 1 wt% H2O t in m2/s, T is the temperature in K and P is the pressure in MPa. The above equation reproduces the experimental data (14 runs in total) with a standard fit error of 0.15 log units. It can be employed to model degassing of peralkaline melts at water contents up to 2 wt%.  相似文献   

3.
Dissolution Kinetics of Dolomite in Water at Elevated Temperatures   总被引:1,自引:0,他引:1  
Kinetic experiments of dolomite dissolution in water over a temperature range from 25 to 250°C were performed using a flow through packed bed reactor. Authors chose three different size fractions of dolomite samples: 18–35 mesh, 35–60 mesh, and 60–80 mesh. The dissolution rates of the three particle size samples of dolomite were measured. The dissolution rate values are changed with the variation of grain size of the sample. For the sample through 20–40 mesh, both the release rate of Ca and the release rate of Mg increase with increasing temperature until 200°C, then decrease with continued increasing temperature. Its maximum dissolution rate occurs at 200°C. The maximum dissolution rates for the sample through 40–60 mesh and 60–80 mesh happen at 100°C. Experimental results indicate that the dissolution of dolomite is incongruent in most cases. Dissolution of fresh dolomite was non-stoichiometric, the Ca/Mg ratio released to solution was greater than in the bulk solid, and the ratio increases with rising temperatures from 25 to 250°C. Observations on dolomite dissolution in water are presented as three parallel reactions, and each reaction occurs in consecutive steps as
where the second part is a slow reaction, and also the reaction could occur as follows:
The following rate equation was used to describe dolomite dissolution kinetics
where refers to one of each reaction among the above reactions; k ij is the rate constant for ith species in the jth reaction, a i stands for activity of ith aqueous species, n is the stoichimetric coefficience of ith species in the jth reaction, and define . The experiments prove that dissolved Ca is a strong inhibitor for dolomite dissolution (release of Ca) in most cases. Dissolved Mg was found to be an inhibitor for dolomite dissolution at low temperatures. But dissolution rates of dolomite increase with increasing the concentration of dissolved Mg in the temperature range of 200–250°C for 20–40 mesh sample, and in the temperature range of 100–250°C for 40–80 mesh sample, whereas the Mg2+ ion adsorption on dolomite surface becomes progressively the step controlling reaction. The following rate equation is suitable to dolomite dissolutions at high temperatures from 200 to 250°C.
where refers to dissolution rate (release of Ca), and are molar concentrations of dissolved Ca and Mg, k ad stands for adsorption reaction rate constant, K Mg refers to adsorption equilibrium constant. At 200°C for 40–60 mesh sample, the release rate of Ca can be described as:
  相似文献   

4.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010), and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100). [001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned.  相似文献   

5.
This paper presents a design approach for strip footings upon glacier ice. Safety against ultimate limit state is proved by the geotechnical slip-line field solution by Prandtl. Glacier ice at 0°C can be modelled as purely cohesive material. Statistical evaluation of uniaxial compression tests with high strain rate revealed a mean value of the cohesion of 600 kPa and a characteristic value c k = 355 kPa (5% fractile). With a coefficient of variation V c = 0.3, the partial safety factor turns out to be γ c = 1.9. An approximate solution for estimating the creep settlement rate is presented to check the serviceability limit state: with the width b of the strip foundation, p the foundation pressure and for ice at 0°C. Experiences on Stubai glacier with grate shaped footings showed that creep settlements occurring per year due to maximum foundation pressures 250 kPa did not influence the operation and the maintenance of the cable cars.  相似文献   

6.
Fractionation of yttrium (Y) and the rare earth elements (REEs) begins in riverine systems and continues in estuaries and the ocean. Models of yttrium and rare earth (YREE) distributions in seawater must therefore consider the fractionation of these elements in both marine and riverine systems. In this work we develop a coupled riverine/marine fractionation model for dissolved rare earths and yttrium, and apply this model to calculations of marine YREE fractionation for a simple two-box (riverine/marine) geochemical system. Shale-normalized YREE concentrations in seawater can be expressed in terms of fractionation factors ( ij ) appropriate to riverine environments ( ) and seawater ( ):
where and are input-normalized total metal concentrations in seawater and is the ratio of total dissolved Y in riverwater before and after commencement of riverine metal scavenging processes. The fractionation factors ( ij ) are calculated relative to the reference element, yttrium, and reflect a balance between solution and surface complexation of the rare earths and yttrium.  相似文献   

7.
The impact of land-use change on the quality of groundwater in the Xiaotjiang watershed, China was assessed for the period 1982–2004. Groundwater samples were collected from 30 monitoring points across the watershed, and were representative of the various changes, determined by remote sensing and geographical information systems. The results indicate that 610 km2 (60% of the total watershed area) were subject to land-use change during the period. The most important changes were the conversion of 135 km2 of forested land to cultivated land, and 211 km2 of unused land to cultivated land. The main impact was ascribed to diffuse pollution from fertilizers applied to newly cultivated land, and from building development. Overall the groundwater pH value was significantly increased, as were the concentrations of ions , , , , and Cl in groundwater whilst the concentrations of Ca2+ and declined. More precisely, in the regions where forested land and unused land were converted into cultivated land, the pH value and the concentrations of Mg2+, , , , , Cl increased whilst the concentrations of Ca2+ and declined. However in the region where cultivated land was converted into construction land, the pH value and the concentrations of Ca2+, Mg2+, , , , , , Cl increased.
Résumé  L’impact des changements de l’utilisation du territoire sur la qualité de l’eau souterraine dans le bassin versant de Xiaojiang, en Chine, a été évalué de 1982 à 2004. Des échantillons d’eau souterraine ont été récoltés à partir de 30 points d’observation éparpillés sur le bassin, représentant les divers changements déterminés par télédétection et système d’information géographique. Les résultats indiquent que 610 km2 (soit 60% de la surface du bassin) ont été sujets à des modifications de l’utilisation du territoire sur cette période. Les changements les plus importants furent la conversion de 135 km2 de forêt et 211 km2 de terres inutilisées en terres cultivées. Le principal impact est attribué à la pollution diffuse des engrais utilisés en agriculture et pour les batiments. De manière générale le pH de l’eau souterraine a augmenté significativement, ainsi que les concentrations des ions , , , , et Cl, tandis que les concentration en Ca2+ et ont diminué. Plus précisément dans les régions transformées en terres cultivées, la valeur du pH et les concentrations en Mg2+, , , , , Cl ont augmenté tandis que les concentrations en Ca2+ et ont diminué. Toutefois dans les régions cultivées converties en zones de construction, le pH et les concentrations en Ca2+, Mg2+, , , , , , Cl ont augmenté.

Resumen  El impacto del cambio en uso de la tierra en la calidad del agua en la cuenca Xiaojiang, China fue evaluado para el periodo 1982–2004. Muestras de agua subterránea fueron tomadas de 30 puntos de monitoreo a través de la cuenca, y fueron representativas de los múltiples cambios, determinados por sensores remotos y sistemas de información geográfica. Los resultados indican que 610 km2 (60% del área total de la cuenca) estaban sujetos a cambios de uso de la tierra durante el periodo estudiado. Los cambios más importantes fueron la conversión de 135 km2 de bosques a tierra cultivada, y 211 km2 de tierra sin uso (ociosa) a tierra cultivada. El impacto principal fue causado por contaminación difusa de fertilizantes aplicados a la tierra recientemente cultivada, y a desarrollo de construcciones. En general el pH en agua subterránea creció significantemente, al igual que las concentraciones de los iones , , , , y Cl en agua subterránea mientras que las concentraciones de Ca2+ y decrecieron. Mas precisamente, en las regiones donde bosque y tierra ociosa fueron convertidas en tierra cultivada, el valor de pH y las concentraciones de Mg2+, , , , , Cl crecieron mientras las concentraciones de Ca2+ y decrecieron. Sin embargo en la región donde tierra cultivada fue convertida en construcciones, el valor de pH y las concentraciones de Ca2+, Mg2+, , , , , , Cl crecieron.
  相似文献   

8.
The objective of this study was to describe the proton promoted disproportion of synthetic manganite (γ-MnOOH) and to characterise the resulting phase transformations. The solution and remaining solid phase after disproportionation was analysed by techniques including atomic absorbance spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). In suspensions with pH between 5 and 7, −log[H+] was monitored for 17 months and equilibrium constants were determined at 9, 12 and 17 months of reaction time for the following reaction (25 °C, 0.1 M (Na)NO3):
The formed MnO2 ages with time and the equilibrium constant for a metastable phase (ramsdellite or nsutite) as well as the most stable phase, pyrolusite (β-MnO2), was determined. Furthermore, combined pH and pe (Eh) measurements were performed to study the equilibrium;
Real-time AFM measurements of the dissolution showed shrinkage of the length of the manganite needles with time (2 hours). After 1 week SEM images showed that this decreased length also was followed by a reduced thickness of the manganite needles. From the SEM images the morphology of the formed Mn(IV) oxides was studied. At pH 2.6, pyrolusite (β-MnO2) and MnCl2 were found in the XRD patterns. Throughout the pH range there were indications of ramsdellite (MnO1.97) in the XRD patterns, which coincided with the existence of a fraction of needle shaped crystals with smaller dimensions (compared to manganite) in the SEM images. These observations together with the long term dissolution experiments suggest that the dissolution of manganite initially forms a ramsdellite or nsutite phase that over time rearranges to form pyrolusite.  相似文献   

9.
The density ρ of Caspian Sea waters was measured as a function of temperature (273.15–343.15) K at conductivity salinities of 7.8 and 11.3 using the Anton-Paar Densitometer. Measurements were also made on one of the samples (S = 11.38) diluted with water as a function of temperature (T = 273.15–338.15 K) and salinity (2.5–11.3). These latter results have been used to develop an equation of state for the Caspian Sea (σ = ±0.007 kg m−3)
where ρ0 is the density of water and the parameters A, B and C are given by
Measurements of the density of artificial Caspian Sea water at 298.15 K agree to ± 0.012 kg m−3 with the real samples. These results indicate that the composition of Caspian Sea waters must be close to earlier measurements of the major components. Model calculations based on this composition yield densities that agree with the measured values to ± 0.012 kg m−3. The new density measurements are higher than earlier measurements. This may be related to a higher concentration of dissolved organic carbon found in the present samples (500 μM) which is much higher than the values in ocean waters (~65 μM).  相似文献   

10.
Solubility experiments were conducted for the dissolution reaction of brucite, Mg(OH)2 (cr): Experiments were conducted from undersaturation in deionized (DI) water and 0.010–4.4 m NaCl solutions at 22.5°C. In addition, brucite solubility was measured from supersaturation in an experiment in which brucite was precipitated via dropwise addition of 0.10 m NaOH into a 0.10 m MgCl2 solution also at 22.5°C. The attainment of the reversal in equilibrium was demonstrated in this study. The solubility constant at 22.5°C at infinite dilution calculated from the experimental results from the direction of supersaturation by using the specific interaction theory (SIT) is: with a corresponding value of 17.0 ± 0.2 (2σ) when extrapolated to 25°C. The dimensionless standard chemical potential (μ°/RT) of brucite derived from the solubility data in 0.010 m to 4.4 m NaCl solutions from undersaturation extrapolated to 25°C is −335.76 ± 0.45 (2σ), with the corresponding Gibbs free energy of formation of brucite, , being −832.3 ± 1.1 (2σ) kJ mol−1. In combination with the auxiliary thermodynamic data, the is calculated to be 17.1 ± 0.2 (2σ), based on the above Gibbs free energy of formation for brucite. This study recommends an average value of 17.05 ± 0.2 in logarithmic unit as solubility constant of brucite at 25°C, according to the values from both supersaturation and undersaturation. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.  相似文献   

11.
The temperature dependences of the crystal structure and intensities of the (113) and (211) reflections in calcite, CaCO3, were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction data. Calcite transforms from to at about T c = 1,240 K. A CO3 group occupies, statistically, two positions with equal frequency in the disordered phase, but with unequal frequency in the partially ordered phase. One position for the CO3 group is rotated by 180° with respect to the other. The unequal occupancy of the two orientations in the partially ordered phase is obtained directly from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x − 1. The a cell parameter shows a negative thermal expansion at low T, followed by a plateau region at higher T, then a steeper contraction towards T c, where the CO3 groups disorder in a rapid process. Using a modified Bragg–Williams model, fits were obtained for the order parameter S, and for the intensities of the (113) and (211) reflections. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Interdiffusion of Fe and Mg in (Mg,Fe)O has been investigated experimentally under hydrous conditions. Single crystals of MgO in contact with (Mg0.73Fe0.27)O were annealed hydrothermally at 300 MPa between 1,000 and 1,250°C and using a Ni–NiO buffer. After electron microprobe analyses, the dependence of the interdiffusivity on Fe concentration was determined using a Boltzmann–Matano analysis. For a water fugacity of ∼300 MPa, the Fe–Mg interdiffusion coefficient in Fe x Mg1−x O with 0.01 ≤ x ≤ 0.25 can be described by with and C = −80 ± 10 kJ mol−1. For x = 0.1 and at 1,000°C, Fe–Mg interdiffusion is a factor of ∼4 faster under hydrous than under anhydrous conditions. This enhanced rate of interdiffusion is attributed to an increased concentration of metal vacancies resulting from the incorporation of hydrogen. Such water-induced enhancement of kinetics may have important implications for the rheological properties of the lower mantle.
Sylvie DemouchyEmail:
  相似文献   

13.
The models recognize that ZrSiO4, ZrTiO4, and TiSiO4, but not ZrO2 or TiO2, are independently variable phase components in zircon. Accordingly, the equilibrium controlling the Zr content of rutile coexisting with zircon is ZrSiO4 = ZrO2 (in rutile) + SiO2. The equilibrium controlling the Ti content of zircon is either ZrSiO4 + TiO2 = ZrTiO4 + SiO2 or TiO2 + SiO2 = TiSiO4, depending whether Ti substitutes for Si or Zr. The Zr content of rutile thus depends on the activity of SiO2 as well as T, and the Ti content of zircon depends on and as well as T. New and published experimental data confirm the predicted increase in the Zr content of rutile with decreasing and unequivocally demonstrate that the Ti content of zircon increases with decreasing . The substitution of Ti in zircon therefore is primarily for Si. Assuming a constant effect of P, unit and that and are proportional to ppm Zr in rutile and ppm Ti in zircon, [log(ppm Zr-in-rutile) + log] = A1 + B1/T(K) and [log(ppm Ti-in-zircon) + log − log] = A2 + B2/T, where the A and B are constants. The constants were derived from published and new data from experiments with buffered by either quartz or zircon + zirconia, from experiments with defined by the Zr content of rutile, and from well-characterized natural samples. Results are A1 = 7.420 ± 0.105; B1 = −4,530 ± 111; A2 = 5.711 ± 0.072; B2 = −4,800 ± 86 with activity referenced to α-quartz and rutile at P and T of interest. The zircon thermometer may now be applied to rocks without quartz and/or rutile, and the rutile thermometer applied to rocks without quartz, provided that and are estimated. Maximum uncertainties introduced to zircon and rutile thermometry by unconstrained and can be quantitatively assessed and are ≈60 to 70°C at 750°C. A preliminary assessment of the dependence of the two thermometers on P predicts that an uncertainty of ±1 GPa introduces an additional uncertainty at 750°C of ≈50°C for the Ti-in-zircon thermometer and of ≈70 to 80°C for the Zr-in-rutile thermometer.  相似文献   

14.
We evaluate balanced metasomatic reactions and model coupled reactive and isotopic transport at a carbonatite-gneiss contact at Alnö, Sweden. We interpret structurally channelled fluid flow along the carbonatite-gneiss contact at ~640°C. This caused (1) metasomatism of the gneiss, by the reaction: ${\hbox{biotite} + \hbox{quartz} + \hbox{oligoclase} + \hbox{K}_{2} \hbox{O} +\,\hbox{Na}_{2}\hbox{O} \pm \hbox{CaO} \pm \hbox{MgO} \pm \hbox{FeO} = \hbox{albite} + \hbox{K-feldspar} + \hbox{arfvedsonite} + \hbox{aegirene-}\hbox{augite} + \hbox{H}_{2} \hbox{O} + \hbox{SiO}_{2}}We evaluate balanced metasomatic reactions and model coupled reactive and isotopic transport at a carbonatite-gneiss contact at Aln?, Sweden. We interpret structurally channelled fluid flow along the carbonatite-gneiss contact at ∼640°C. This caused (1) metasomatism of the gneiss, by the reaction: , (2) metasomatism of carbonatite by the reaction: calcite + SiO2 = wollastonite + CO2, and (3) isotopic homogenization of the metasomatised region. We suggest that reactive weakening caused the metasomatised region to widen and that the metasomatic reactions are chemically (and possibly mechanically) coupled. Spatial separation of reaction and isotope fronts in the carbonatite conforms to a chromatographic model which assumes local calcite–fluid equilibrium, yields a timescale of 102–104 years for fluid–rock interaction and confirms that chemical transport towards the carbonatite interior was mainly by diffusion. We conclude that most silicate phases present in the studied carbonatite were acquired by corrosion and assimilation of ijolite, as a reactive by-product of this process and by metasomatism. The carbonatite was thus a relatively pure calcite–H2O−CO2–salt melt or fluid.  相似文献   

15.
A modified cross-twinning growth mechanism is put forward to explain the anomalous morphology of a spinel multiple-twin from Sri Lanka, flattened crosswise the twin planes. Cross-twinning in spinel was found also in other specimens from Pegu (Myanmar), and the results were published in a previous paper. This particular type of twinning is derived from the combination of cyclic twinning with lamellar twinning, so that these samples may be thought of as partial fivelings (cubic cyclic {111} twins with five components sharing a common <110> pseudo-fivefold axis). In the present paper, the sample from Sri Lanka has been suitably cut with the aim of focusing the study on the cross-twinning region. The transformation matrices that link the orientation states of each couple of twin components have been determined by means of White Beam Synchrotron Radiation Topography. They showed that the specimen is made up of four twin components (A, B, C and D), with three twin planes: and They also showed that the cross-twinned individuals (B and D) actually are not twinned to each other, and that a simple crystallographic relationship holds between them. X-ray diffraction topography by conventional source allowed to image the crossing-region and to determine that the cross-twinned individuals are in contact through a semi-coherent boundary, with twinning dislocations contributing to relieve the coherency strains. Electron probe microanalyses with wave dispersive spectroscopy showed that the chemical composition is almost homogeneous, at least within the spatial resolution limit of this technique. The similar growth features observed in the spinel sample from Sri Lanka and in those from Myanmar are interpreted as growth marks, indicators of a similar origin: in both cases they are found in impure dolomitic marbles. In particular, the specimen from Sri Lanka results from the interaction of thermal and metasomatic effects due to contact metamorphism. An unusual stepped morphology of the face close to the twin boundary, possibly due to corrosion and re-growth processes acted preferentially at a re-entrant corner by metasomatic fluids, is interpreted as indicator of a metasomatic event that succeeded to the crystal growth, the latter occurred by thermal effect.
Rosa Anna FregolaEmail:
  相似文献   

16.
The Chemical Speciation of Fe(III) in Freshwaters   总被引:1,自引:0,他引:1  
Dialysis and chemical speciation modelling have been used to calculate activities of Fe3+ for a range of UK surface waters of varying chemistry (pH 4.3–8.0; dissolved organic carbon 1.7–40.3 mg l−1) at 283 K. The resulting activities were regressed against pH to give the empirical model: . Predicted Fe3+ activities are consistent with a solid–solution equilibrium with hydrous ferric oxide, consistent with some previous studies on Fe(III) solubility in the laboratory. However, as has also sometimes been observed in the laboratory, the slope of the solubility equation is lower than the theoretical value of 3. The empirical model was used to predict concentrations of Fe in dialysates and ultrafiltrates of globally distributed surface and soil/groundwaters. The predictions were improved greatly by the incorporation of a temperature correction for , consistent with the temperature dependence of previously reported hydrous ferric oxide solubility. The empirical model, incorporating temperature effects, may be used to make generic predictions of the ratio of free and complexed Fe(III) to dissolved organic matter in freshwaters. Comparison of such ratios with observed Fe:dissolved organic matter ratios allows an assessment to be made of the amounts of Fe present as Fe(II) or colloidal Fe(III), where no separate measurements have been made. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
Multivariate statistical analyses have been extensively applied to geochemical measurements to analyze and aid interpretation of the data. Estimation of the covariance matrix of multivariate observations is the first task in multivariate analysis. However, geochemical data for the rare elements, especially Ag, Au, and platinum-group elements, usually contain observations the below detection limits. In particular, Instrumental Neutron Activation Analysis (INAA) for the rare elements produces multilevel and possibly extremely high detection limits depending on the sample weight. Traditionally, in applying multivariate analysis to such incomplete data, the observations below detection limits are first substituted, for example, each observation below the detection limit is replaced by a certain percentage of that limit, and then the standard statistical computer packages or techniques are used to obtain the analysis of the data. If a number of samples with observations below detection limits is small, or the detection limits are relatively near zero, the results may be reasonable and most geological interpretations or conclusions are probably valid. In this paper, a new method is proposed to estimate the covariance matrix from a dataset containing observations below multilevel detection limits by using the marginal maximum likelihood estimation (MMLE) method. For each pair of variables, sayY andZ whose observations containing below detection limits, the proposed method consists of three steps: (i) for each variable separately obtaining the marginal MLE for the means and the variances, , , , and forY andZ: (ii) defining new variables by and and lettingA=C+D andB=CD, and obtaining MLE for variances, and forA andB; (iii) estimating the correlation coefficient YZ by and the covariance YZ by . The procedure is illustrated by using a precious metal geochemical data set from the Fox River Sill, Manitoba, Canada.  相似文献   

19.
The atomic scale structure and chemistry of (111) twins in MgAl2O4 spinel crystals from the Pinpyit locality near Mogok (Myanmar, formerly Burma) were analysed using complementary methods of transmission electron microscopy (TEM). To obtain a three-dimensional information on the atomic structure, the twin boundaries were investigated in crystallographic projections and Using conventional electron diffraction and high-resolution TEM (HRTEM) analysis we have shown that (111) twins in spinel can be crystallographically described by 180° rotation of the oxygen sublattice normal to the twin composition plane. This operation generates a local hcp stacking in otherwise ccp lattice and maintains a regular sequence of kagome and mixed layers. In addition to rotation, no other translations are present in (111) twins in these spinel crystals. Chemical analysis of the twin boundary was performed by energy-dispersive X-ray spectroscopy (EDS) using a variable beam diameter (VBD) technique, which is perfectly suited for analysing chemical composition of twin boundaries on a sub-nm scale. The VBD/EDS measurements indicated that (111) twin boundary in spinel is Mg-deficient. Quantitative analyses of HRTEM (phase contrast) and HAADF-STEM (Z-contrast) images of (111) twin boundary have confirmed that Mg2+ ions are replaced with Be2+ ions in boundary tetrahedral sites. The Be-rich twin boundary structure is closely related to BeAl2O4 (chrysoberyl) and BeMg3Al8O16 (taaffeite) group of intermediate polysomatic minerals. Based on these results, we conclude that the formation of (111) twins in spinel is a preparatory stage of polytype/polysome formation (taaffeite) and is a result of thermodynamically favourable formation of hcp stacking due to Be incorporation on the {111} planes of the spinel structure in the nucleation stage of crystal growth. The twin structure grows as long as the surrounding geochemical conditions allow its formation. The incorporation of Be induces a 2D-anisotropy and exaggerated growth of the crystal along the (111) twin boundary.  相似文献   

20.
Field and laboratory data are presented that show a soluble FeS species(FeSaq) exists in sulfidic seawater solutions, and is observedwhen the IAP exceeds the Ksp of amorphous FeS. TheFeSaq yields a discrete signal (double peak) using square-wavevoltammetry and two one-electron waves in sampled DC polarographyexperiments at the Hg electrode. The aqueous FeS species reacts irreversiblyat the electrode as a single FeS subunit and not as a polymeric entity. Thepeak potential of FeSaq occurs at -1.1 V whereas the peakpotential of Fe occurs at-1.45 V; the positive shift for Fe2+ reduction inFeSaq indicates a change in geometry for Fe2+from octahedral to tetrahedral. The kinetics of electron transfer at theelectrode are determined to be similar for both Fe2+ andFeSaq. Molecular orbital energy diagrams, further indicatethat Fe(II) does change from octahedral to tetrahedral geometry in solution.First, Fe(II) exists as octahedralFe in solution whichundergoes a substitution reaction of bisulfide for water. The resultingcomplex, Fe(H2O)5(HS)+, thentransforms to a tetrahedral complex on further addition of sulfide. Thisgeometry change is consistent with the formation of amorphous FeS thatconverts to mackinawite which has tetrahedral Fe(II). The process is entropydriven because of the water loss that occurs. The overall sequence can berepresented as: Soluble FeS species are important asreactants in the formation of iron-sulfide minerals including pyrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号