首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
We have performed a series of interdiffusion experiments on magnesiowüstite samples at room pressure, temperatures from 1,320° to 1,400°C, and oxygen fugacities from 10?1.0 Pa to 10?4.3 Pa, using mixed CO/CO2 or H2/CO2 gases. The interdiffusion couples were composed of a single-crystal of MgO lightly pressed against a single-crystal of (Mg1-x Fe x )1-δO with 0.07<x<0.27. The interdiffusion coefficient was calculated using the Boltzmann–Matano analysis as a function of iron content, oxygen fugacity, temperature, and water fugacity. For the entire range of conditions tested and for compositions with 0.01<x<0.27, the interdiffusion coefficient varies as $$\tilde D\, =\,2.9\times10^{ - 6}\,f_{{\text{O}}_2 }^{0.19}\,x^{0.73}\,{\text{e}}^{ - (209,000\, -\,96,000\,x)/RT}\,\,{\text{m}}^{\text{2}} {\text{s}}^{ -1} $$ These dependencies on oxygen fugacity and composition are reasonably consistent with interdiffusion mediated by unassociated cation vacancies. For the limited range of water activity that could be investigated using mixed gases at room pressure, no effect of water on interdiffusion could be observed. The dependence of the interdiffusion coefficient on iron content decreased with increasing iron concentration at constant oxygen fugacity and temperature. There is a close agreement between our activation energy for interdiffusion extrapolated to zero iron content (x=0) and that of previous researchers who used electrical conductivity experiments to determine vacancy diffusivities in lightly doped MgO.  相似文献   

2.
The paper presents data on the thermochemical study (high-temperature melt calorimetry in a Tian–Calvet microcalorometer) of two natural Mg–Fe amphiboles: anthophyllite Mg2.0(Mg4.8Fe0.2 2+)[Si8.0O22](OH)2 from Kukh-i-Lal, southwestern Pamirs, Tajikistan, and gedrite Na0.4Mg2.0(Mg1.7Fe0.2 2+Al1.3)[Si6.3Al1.7O22](OH)2 from the Kola Peninsula, Russia. The enthalpy of formation from elements is obtained as–12021 ± 20 kJ/mol for anthophyllite and as–11545 ± 12 kJ/mol for gedrite. The standard entropy, enthalpy, and Gibbs energy of formation are evaluated for Mg–Fe amphiboles of theoretical composition.  相似文献   

3.
The thermochemical study of two natural trioctahedral Mg–Fe chlorites—clinochlores was carried out using high-temperature melt solution calorimetry with a Tian–Calvet microcalorimeter. The enthalpies of formation of clinochlores of compositions (Mg4.9Fe 0.3 2+ Al0.8)[Si3.2Al0.8O10](OH)8 (–8811 ± 12 kJ/mol) and (Mg4.3Fe 0.7 2+ Al1.0)[Si3.0Al1.0O10](OH)8 (–8696 ± 13 kJ/mol) from elements were determined. The values of the standard entropies and the Gibbs energies of formation of the studied natural minerals as well as thermodynamic properties of Mg–Fe chlorites of theoretical composition were estimated.  相似文献   

4.
Chemical interdiffusion of Fe–Mg along the c-axis [001] in natural diopside crystals (X Di = 0.93) was experimentally studied at ambient pressure, at temperatures ranging from 800 to 1,200 °C and oxygen fugacities from 10?11 to 10?17 bar. Diffusion couples were prepared by ablating an olivine (X Fo = 0.3) target to deposit a thin film (20–100 nm) onto a polished surface of a natural, oriented diopside crystal using the pulsed laser deposition technique. After diffusion anneals, compositional depth profiles at the near surface region (~400 nm) were measured using Rutherford backscattering spectroscopy. In the experimental temperature and compositional range, no strong dependence of D Fe–Mg on composition of clinopyroxene (Fe/Mg ratio between Di93–Di65) or oxygen fugacity could be detected within the resolution of the study. The lack of fO2-dependence may be related to the relatively high Al content of the crystals used in this study. Diffusion coefficients, D Fe–Mg, can be described by a single Arrhenius relation with $$D^{{{\text{Fe}} - {\text{Mg}}}} = 2. 7 7\pm 4. 2 7\times 10^{ - 7} {\text{exp(}}-3 20. 7\pm 1 6.0{\text{ kJ}}/{\text{mol}}/{\text{RT)m}}^{ 2} /{\text{s}}.$$ D Fe–Mg in clinopyroxene appears to be faster than diffusion involving Ca-species (e.g., D Ca–Mg) while it is slower than D Fe–Mg in other common mafic minerals (spinel, olivine, garnet, and orthopyroxene). As a consequence, diffusion in clinopyroxene may be the rate-limiting process for the freezing of many geothermometers, and compositional zoning in clinopyroxene may preserve records of a higher (compared to that preserved in other coexisting mafic minerals) temperature segment of the thermal history of a rock. In the absence of pervasive recrystallization, clinopyroxene grains will retain compositions from peak temperatures at their cores in most geological and planetary settings where peak temperatures did not exceed ~1,100 °C (e.g., resetting may be expected in slowly cooled mantle rocks, many plutonic mafic rocks, or ultra-high temperature metamorphic rocks).  相似文献   

5.
We provide new insights into the prograde evolution of HP/LT metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg = 0.27–0.73) and chloritoid (overall X Mg = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve PT conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The PT paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.  相似文献   

6.
End-member synthetic fayalite and forsterite and a natural solid-solution crystal of composition (Mg1.80,Fe0.20)SiO4 were investigated using Raman spectroscopy. Polarized single-crystal spectra were measured as a function of temperature. In addition, polycrystalline forsterite and fayalite, isotopically enriched in 26Mg and 57Fe, respectively, were synthesized and their powder spectra measured. The high-wavenumber modes in olivine consist of internal SiO4 vibrations that show little variation upon isotopic substitution. This confirms conclusions from previous spectroscopic studies that showed that the internal SiO4 vibrations have minimal coupling with the lower-wavenumber lattice modes. The lowest wavenumber modes in both forsterite and fayalite shift in energy following isotopic substitution, but with energies less than that which would be associated with pure Mg and Fe translations. The low-wavenumber Raman modes in olivine are best described as lattice modes consisting to a large degree of mixed vibrations of M(2) cation translations and external vibrations of the SiO4 tetrahedra. The single-crystal spectra of forsterite and Fo90Fa10 were recorded at a number of temperatures from room temperature to about 1200 °C. From these data the microscopic Grüneisen parameters for three different Ag modes for both compositions were calculated, and also the structural state of the solid solution crystal was investigated. Small discontinuities observed in the wavenumber behavior of a low-energy mixed Mg/T(SiO4) mode between 700 and 1000 °C may be related to minor variations in the Fe–Mg intracrystalline partitioning state in the Fo90Fa10 crystal, but further spectroscopic work is needed to clarify and quantify this issue. The mode wavenumber and intensity behavior of internal SiO4 vibrations as a function of temperature are discussed in terms of crystal field and dynamic splitting and also 1 and 3 coupling. Crystal-field splitting increases only very slightly with temperature, whereas dynamical-field splitting is temperature dependent. The degree of 13 coupling decreases with increasing temperature.  相似文献   

7.
低温绿泥石成分温度计Fe/(Fe+Mg)校正的必要性问题   总被引:1,自引:0,他引:1  
谭靖  刘嵘 《矿物学报》2007,27(2):173-178
绿泥石是沉积岩、低级变质岩和水热蚀变岩中的常见矿物,基于四次配位Al含量的绿泥石成分温度计是确定古成岩或变质温度的最主要的手段之一。介绍了四种应用最为广泛的绿泥石成分温度计的原理,并从离子替代规律和比较研究的角度着重讨论了近年来关于绿泥石成分温度计校正的必要性。研究表明,在铝饱和的条件下,根据绿泥石中的Fe/(Fe Mg)值对绿泥石温度计进行校正并不能使计算值与实际值更为接近,而且从晶体化学的角度看,全岩的Fe/(Fe Mg)主要影响的是绿泥石中六次配位Fe与Mg的占位,而且偶合置换(Si4 )Ⅳ(Mg2 )Ⅵ—(Al3 )Ⅳ(Al3 )Ⅵ和(Si4 )Ⅳ(Fe2 )Ⅵ—(Al3 )Ⅳ(Al3 )Ⅵ共同控制着四次配位Al的占位。所以在铝饱和的岩石体系中可不必进行Fe/(Fe Mg)值的校正。  相似文献   

8.
The exchage equilibrium has been used to measure activity-composition relations along the olivine join FeSi0.5O2−MgSi0.5O2 at 1400 K and 1 atm pressure. Equilibrium Fe−Mg partitioning between the two phases was determined by reversing the compositions of olivine coexisting with oxide and matallic iron over the composition range Fo23 to Fo92. A detailed study of the thermodynamic properties of the oxide phase has recently been made by Srečec et al. and we have confirmed their results in the composition range of interest. Application of the oxide data to the exchange equilibrium enables the properties of olivine to be determined. Within experimental uncertainly (Fe, Mg)Si0.5O2 olivine can, at 1400 K, be treated as a symmetric solution with W Fe-Mg o1 of 3.7±0.8 kJ/mol. The data permit the presence of only very slight asymmetry in the series. The data do not support recent assertions that olivine is highly non-ideal (W≈10 kJ/mol) under these conditions.  相似文献   

9.
鲍根德 《地球化学》1986,(4):344-352
本文详细描述了取自太平洋西部7个岩心沉积物中Fe、Mn,Me的分布、来源及地球化学特征。由于Fe、Mn、Mg的含量与火山碎屑矿物和沉积物类型有关,这对太平洋西部的沉积环境起着标志作用。  相似文献   

10.
Fe–Mg partitioning between post-perovskite and ferropericlase has been studied using a laser-heated diamond anvil cell at pressures up to 154 GPa and 2,010 K which corresponds to the conditions in the lowermost mantle. The composition of the phases in the recovered samples was determined using analytical transmission electron microscopy. Our results reveal that the Fe–Mg partition coefficient between post-perovskite and ferropericlase (K DPPv/Fp) increases with decreasing bulk iron content. The compositional dependence of K DPPv/Fp on the bulk iron content explains the inconsistency in previous studies, and the effect of the bulk iron content is the most dominant factor compared to other factors, such as temperature and aluminum content. Iron prefers ferropericlase compared to post-perovskite over a wide compositional range, whereas the iron content of post-perovskite (X FePPv, the mole fraction) does not exceed a value of 0.10. The iron-rich ferropericlase phase may have significant influence on the physical properties, such as the seismic velocity and electrical conductivity at the core–mantle boundary region.  相似文献   

11.
The local structural heterogeneity and energetic properties of 22 natural Mg–Fe cordierites, ideal formula (Mg,Fe)2Al4Si5O18·x(H2O,CO2), were investigated at length scales given by powder infrared spectroscopy (IR) and also by published electronic absorption spectra. The studied samples have iron mole fractions from XFe = 0.06 to 0.82 and cover most of the Mg–Fe cordierite binary. Variations in wavenumbers and line widths of the IR bands were determined as a function of composition. Most modes shift linearly to lower wavenumbers with increasing XFe, except those at high wavenumbers located between 900 and 1,200 cm-1. They are vibrations that have a large internal (Si,Al)O4 character and are not greatly affected by Mg–Fe exchange on the octahedral site. The lower wavenumber modes can be best characterized as lattice vibrations having mixed character. The systematics of the wavenumber shifts suggest small continuous variations in the "average" cordierite structure with Mg–Fe exchange and are consistent with an ideal volume of mixing, Vmix= 0, behavior (Boberski and Schreyer 1990). IR line broadening was measured using the autocorrelation function for three wavenumber regions in order to determine the range of structural heterogeneity between roughly 2 and 100 Å (0.2–10.0 nm) in the solid solution. In order to do this, an empirical correction was first made to account for the effect that small amounts of channel Na have on the phonon systematics. The results show that between 1,200 and 540 cm-1 the line widths of the IR bands broaden slightly and linearly with increasing XFe. Between 350 and 125 cm-1 nonlinear behavior was observed and it may be related to dynamic effects. These results suggest minimal excess elastic enthalpies of mixing for Mg–Fe cordierite solid solutions. Channel Na should affect measurably the thermodynamic properties of natural cordierites as evidenced by variations in the IR spectra of Na-containing samples. Occluded H2O (Class I) and CO2 should have little interaction with the framework and can be considered nearly "free" molecules. They should not give rise to measurable structural heterogeneity in the framework. The contribution of the crystal field stabilization energy (CFSE) of octahedral Fe2+ to the energetics of Mg–Fe cordierites was also investigated using published electronic absorption spectra (Khomenko et al. 2001). Two bands are observed between 8,000 and 10,500 cm-1 and they represent electronic dd-excitations of octahedral Fe2+ derived from the 5T2g 5Eg transition. They shift to higher wavenumbers with increasing XMg in cordierite. An analysis gives slightly asymmetric excess -CFSE across the Mg–Fe cordierite join with a maximum of about –550 J/mole towards iron-rich compositions.Editorial responsibility: J. Hoefs  相似文献   

12.
A two-stage model of oxidation was devised to explain the observed variations in crystallographic parameters in two artificially oxidized natural spinels. In the first stage, oxygen is added to the crystal boundary as cations are preserved, with Fe rising in total valence and vacant sites being formed. In the second stage, oxygen is preserved and α−Fe2O3 intergrowth occurs, at the expense of the oxygen of the parent spinel structure. On the basis of this model, crystallochemical formulae were calculated and cations partitioned in the various conditions. It was found that, both before and after oxidation, the spinel site population varies continuously in the direction of an increase in random charge distribution, depending on the increase of heat to the crystals. This trend was found to be reversible. Cation vacancies produced during oxidation are distributed between tetrahedral site T and octahedral site M. Received: 12 June 1997 / Revised, accepted: 17 February 1998  相似文献   

13.
14.
Pressure dependence of Néel temperature (T N) in (Mg0.20Fe0.80)O, (Mg0.25Fe0.75)O, and (Mg0.30Fe0.70)O was newly measured up to 1.14 GPa, using superconducting quantum interference device magnetometer and piston–cylinder-type pressure cell under hydrostatic condition. The dT N/dP values of (Mg0.20Fe0.80)O, (Mg0.25Fe0.75)O, and (Mg0.30Fe0.70)O were determined as 4.0 ± 0.3, 2.7 ± 0.3, and 4.4 ± 0.4 K/GPa, respectively, in linear approximation; however, the T N deviated from the linearity under nonhydrostatic conditions. The compositional dependence of dT N/dP in (Mg1?X Fe X )O showed a rapid decay with increasing Mg components at X ≥ 0.75 and the trend ended at X = 0.70. The estimated Néel transition pressure at room temperature by extrapolating these linearities are very similar to the rhombohedral distortion determined by previous X-ray diffraction studies for X ≥ 0.75, which suggests that the rhombohedral phase of (Mg1?X Fe X )O (X ≥ 0.75) at room temperature is antiferromagnetic under hydrostatic conditions.  相似文献   

15.
李建平 《矿物学报》1996,16(2):191-204
本文通过实验研究了Fe-Mg-Ca在橄榄石和熔体之间的分配及交换平衡,且从热力学角度对其结果进行了理论解释,实验结果显示,Fe和Mg在橄榄石和熔体之间的分配系数随温度的升高而减小,而Ca在它们之间的分配不受温度的影响;Fe-Mg,Ca-Mg及Ca-Fe在橄榄石-熔体之间的交换系数随温度的升高而增大,压力(〈0.10GPa)对以上分配及交换系数的影响可忽略不计。理论解释表明,各分配及交换系数亦随熔体  相似文献   

16.
陈修芳  于慧  龚自正 《地球学报》2009,30(2):210-214
在69~100 GPa冲击压力(估算温度为2600~4300 K)范围内进行了初始样品为(Mg0.92, Fe0.08)SiO3顽火辉石和MgO+SiO2的冲击压缩回收实验。对回收样品进行的X射线衍射(XRD)分析结果表明: 两发顽火辉石回收样品的主相均是单链状结构硅酸盐, 而非钙钛矿结构; 另外, 回收样品中均未观察到氧化物SiO2 和(Mg0.92, Fe0.08)O的XRD特征谱线; 两发MgO+SiO2回收样品中均观察到SiO2和镁橄榄石(Mg2SiO4)而没有氧化物MgO。实验结果表明: 在冲击压缩过程中样品处于钙钛矿结构, 在冲击卸载过程中样品发生了由钙钛矿结构向单链状结构的逆转相变; 在实验的温压范围内, 不可能发生由(Mg0.92, Fe0.08)SiO3向SiO2和(Mg0.92, Fe0.08)O的化学分解相变, 顽火辉石的高压相——钙钛矿结构是稳定的。高压加载或卸载过程引起的晶格畸变导致回收样品和原始样品的谱线差异, 而高压加载导致钙钛矿型(Mg0.92, Fe0.08)SiO3晶格畸变的可能性更大。  相似文献   

17.
正1 Introduction In the present paper,MgCl2·6H2O,FeCl3·6H2O,and CeCl3·6H2O were used as raw materials in the precipitationhydrothermal method to synthesize MgF eC e hydrotalcite.The effects of the Fe:Ce molar ratio on the composition,crystal structure,and thermal stability of hydrotalcite are examined.Energy-dispersive X-ray spectroscopy(EDS),X-  相似文献   

18.
57Fe-Mössbauer spectra of eleven Fe-Mg-bearing staurolite samples, synthesized at 5, 20 and 25 kbar and 680°C, ranging in composition from xFe?=1.00 to xFe?=0.15, and of two Zn-Fe-bearing staurolite samples, synthesized at 20 kbar and 700°C with xFe?=0.10 and xFe?=0.32 were collected at room temperature. The spectra reveal that about 80% of Fetot (in case of Fe-Mg-bearing staurolite) and about 70% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the three subsites Fe1, Fe2 and Fe3 of the tetrahedral T2-site. The refinement of the spectra results in almost identical values for the isomer shift (IS) (±1.0 mm/s) but significantly different values for the quadropole splitting (QS) for the three subsites which is in accordance with the different distortions of these sites. About 8% of Fetot (in case of Fe-Mg-bearing staurolite) and 13% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the octahedral M4 site, while the remainder percents of Fetot indistinguishably occur as Fe2+ at the octahedral M1 and M2 sites of the kyanite-like part of the structure. Within the whole Fe-Mg-staurolite solid solution series the Mössbauer parameters QS of the sites M4 and (M1, M2) vary systematically with composition whereas IS remains constant. There is a high negative correlation of the total Mg-content with Fe-occupation of all the Fe-bearing sites indicating a continuous substitution of Fe2+ by Mg on all these sites. Synthetic Fe-staurolites show no increasing occupation of the octahedral sites by two-valent cations with pressure, as was assumed by several authors.  相似文献   

19.
Despite a large number of studies of iron spin state in silicate perovskite at high pressure and high temperature, there is still disagreement regarding the type and PT conditions of the transition, and whether Fe2+ or Fe3+ or both iron cations are involved. Recently, our group published results of a Mössbauer spectroscopy study of the iron behaviour in (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 110 GPa (McCammon et al. 2008), where we suggested stabilization of the intermediate spin state for 8- to 12-fold coordinated ferrous iron ([8–12]Fe2+) in silicate perovskite above 30 GPa. In order to explore the behaviour in related systems, we performed a comparative Mössbauer spectroscopic study of silicate perovskite (Fe0.12Mg0.88SiO3) and majorite (with two compositions—Fe0.18Mg0.82SiO3 and Fe0.11Mg0.88SiO3) at pressures up to 81 GPa in the temperature range 296–800 K, which was mainly motivated by the fact that the oxygen environment of ferrous iron in majorite is quite similar to that in silicate perovskite. The [8–12]Fe2+ component, dominating the Mössbauer spectra of majorites, shows high quadrupole splitting (QS) values, about 3.6 mm s?1, in the entire studied PT region (pressures to 58 GPa and 296–800 K). Decrease of the QS of this component with temperature at constant pressure can be described by the Huggins model with the energy splitting between low-energy e g levels of [8–12]Fe2+ equal to 1,500 (50) cm?1 for Fe0.18Mg0.82SiO3 and to 1,680 (70) cm?1 for Fe0.11Mg0.88SiO3. In contrast, for the silicate perovskite dominating Mössbauer component associated with [8–12]Fe2+ suggests the gradual change of the electronic properties. Namely, an additional spectral component with central shift close to that for high-spin [8–12]Fe2+ and QS about 3.7 mm s?1 appeared at ~35 (2) GPa, and the amount of the component increases with both pressure and temperature. The temperature dependence of QS of the component cannot be described in the framework of the Huggins model. Observed differences in the high-pressure high-temperature behaviour of [8–12]Fe2+ in the silicate perovskite and majorite phases provide additional arguments in favour of the gradual high-spin—intermediate-spin crossover in lower mantle perovskite, previously reported by McCammon et al. (2008) and Lin et al. (2008).  相似文献   

20.
Mg–Fe interdiffusion rates have been measured in wadsleyite aggregates at 16.0–17.0 GPa and 1230–1530 °C by the diffusion couple method. Oxygen fugacity was controlled using the NNO buffer, and water contents of wadsleyite were measured by infrared spectroscopy. Measured asymmetric diffusion profiles, analyzed using the Boltzmann–Matano equation, indicate that the diffusion rate increases with increasing iron concentration and decreasing grain size. In the case of wadsleyite containing 50–90 weight ppm H2O, the Mg–Fe interdiffusion coefficients at compositions of Mg/(Mg + Fe)=0.95 in the coarse-grained region (about 60 m) and 0.90 in the fine-grained region (about 6 m) were determined to be a DXmg = 0.95 (m2 s–1)=1.24 × 10–9 exp[–172 (kJ mol–1)/RT] and DXmg = 0.90 (m2 s–1)=1.77 × 10–9 exp[–143 (kJ mol–1)/RT], respectively. Grain-boundary diffusion rates were estimated to be about 4 orders of magnitude faster than the volume diffusion rate. Grain-boundary diffusion dominates when the grain size is less than a few tens of microns. Results for the nominally dry diffusion couple in the present study are roughly consistent with previous studies, taking into account differences in pressure and grain size, although water contents of samples were not clear in previous studies. We observed that the diffusivity is enhanced by about 1 order of magnitude in wadsleyite containing 300–2100 wt. ppm H2O at 1230 °C, which is almost identical to the enhancement associated with a 300 °C increase in temperature. It is still not conclusive that a jump in diffusivity exists between olivine and wadsleyite because water contents of olivine in previous diffusion studies and effects of water on the olivine diffusivity are uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号