首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed a series of interdiffusion experiments on magnesiowüstite samples at room pressure, temperatures from 1,320° to 1,400°C, and oxygen fugacities from 10?1.0 Pa to 10?4.3 Pa, using mixed CO/CO2 or H2/CO2 gases. The interdiffusion couples were composed of a single-crystal of MgO lightly pressed against a single-crystal of (Mg1-x Fe x )1-δO with 0.07<x<0.27. The interdiffusion coefficient was calculated using the Boltzmann–Matano analysis as a function of iron content, oxygen fugacity, temperature, and water fugacity. For the entire range of conditions tested and for compositions with 0.01<x<0.27, the interdiffusion coefficient varies as $$\tilde D\, =\,2.9\times10^{ - 6}\,f_{{\text{O}}_2 }^{0.19}\,x^{0.73}\,{\text{e}}^{ - (209,000\, -\,96,000\,x)/RT}\,\,{\text{m}}^{\text{2}} {\text{s}}^{ -1} $$ These dependencies on oxygen fugacity and composition are reasonably consistent with interdiffusion mediated by unassociated cation vacancies. For the limited range of water activity that could be investigated using mixed gases at room pressure, no effect of water on interdiffusion could be observed. The dependence of the interdiffusion coefficient on iron content decreased with increasing iron concentration at constant oxygen fugacity and temperature. There is a close agreement between our activation energy for interdiffusion extrapolated to zero iron content (x=0) and that of previous researchers who used electrical conductivity experiments to determine vacancy diffusivities in lightly doped MgO.  相似文献   

2.
3.
推荐XRF粉末法直接测定硅线选矿流程试样中铝、铁、钛、钾、钠。以不同矿区的选矿流程试样作为标准,试样研磨至所需粒度。用经验系数校正法克服矿物效应,颗粒度效应和共存元素间的影响,与化学分析法相比,本法快速,简便,成本低,测定结果满足选矿要求。  相似文献   

4.
5.
Copper and iron skarn deposits are economically important types of skarn deposits throughout the world, especially in China, but the differences between Cu and Fe skarn deposits are poorly constrained. The Edong ore district in southeastern Hubei Province, Middle–Lower Yangtze River metallogenic belt, China, contains numerous Fe and Cu–Fe skarn deposits. In this contribution, variations in skarn mineralogy, mineralization-related intrusions and sulfur isotope values between these Cu–Fe and Fe skarn deposits are discussed.The garnets and pyroxenes of the Cu–Fe and Fe skarn deposits in the Edong ore district share similar compositions, i.e., dominantly andradite (Ad29–100Gr0–68) and diopside (Di54–100Hd0–38), respectively. This feature indicates that the mineral compositions of skarn silicate mineral assemblages were not the critical controlling factors for variations between the Cu–Fe and Fe skarn deposits. Intrusions associated with skarn Fe deposits in the Edong ore district differ from those Cu–Fe skarn deposits in petrology, geochemistry and Sr–Nd isotope. Intrusions associated with Fe deposits have large variations in their (La/Yb)N ratios (3.84–24.6) and Eu anomalies (δEu = 0.32–1.65), and have relatively low Sr/Y ratios (4.2–44.0) and high Yb contents (1.20–11.8 ppm), as well as radiogenic Sr–Nd isotopes (εNd(t) =  12.5 to − 9.2) and (87Sr/86Sr)i = 0.7067 to 0.7086. In contrast, intrusions associated with Cu–Fe deposits are characterized by relatively high Sr/Y (35.0–81.3) and (La/Yb)N (15.0–31.6) ratios, low Yb contents (1.00–1.62 ppm) without obvious Eu anomalies (δEu = 0.67–0.97), as well as (87Sr/86Sr)i = 0.7055 to 0.7068 and εNd(t) =  7.9 to − 3.4. Geochemical evidence indicates a greater contribution from the crust in intrusions associated with Fe skarn deposits than in intrusions associated with Cu–Fe skarn deposits. In the Edong ore district, the sulfides and sulfates in the Cu–Fe skarn deposits have sulfur isotope signatures that differ from those of Fe skarn deposits. The Cu–Fe skarn deposits have a narrow range of δ34S values from − 6.2‰ to + 8.7‰ in sulfides, and + 13.2‰ to + 15.2‰ in anhydrite, while the Fe skarn deposits have a wide range of δ34S values from + 10.3‰ to + 20.0‰ in pyrite and + 18.9‰ to + 30.8‰ in anhydrite. Sulfur isotope data for anhydrite and sedimentary country rocks suggest that the formation of skarns in the Edong district involved the interaction between magmatic fluids and variable amounts of evaporites in host rocks.  相似文献   

6.
7.
党杰  卢家烂 《广东地质》1995,10(2):71-76
用现代疏松沉积物样品,浸泡于模拟不同成岩阶段温度条件和水质类型含或不含有机质的溶液中,分析Fe,Pb,Zn等金属元素在其中的含量,结果表明Pb,Zn在非碱性的晚期成岩溶液中的含量明显高于中、早期在岩溶液,但由于试验缺乏充分的还原条件。  相似文献   

8.
Ferrovalleriite, ideally 2(Fe,Cu)S · 1.5Fe(OH)2, a layered hydroxide-sulfide of the valleriite group and an analog of valleriite with Fe instead of Mg in the hydroxide block, has been approved by the IMA Commission on New Minerals, Nomenclature and Classification as a valid mineral species. It was found in the Oktyabr’sky Mine, Noril’sk, Krasnoyarsk krai, Siberia, Russia. Ferrovalleriite occurs in cavities of massive sulfide ore mainly consisting of cubanite and mooihoekite. In different cases, it is associated with magnetite, Fe-rich chlorite-like phyllosilicate, ferrotochilinite, hibbingite, or rhodochrosite. Ferrovalleriite forms crystals flattened on [001] (from scaly to tabular; up to 5 mm across and up to 0.3 mm thick), typically split and curved. Occasionally, they are combined into aggregates up to 1.5 × 2 cm. Ferrovalleriite is dark bronze-colored, with a metallic luster and black streak. The Mohs’ hardness is ca. 1; VHN is 35 kg/mm2. Cleavage is perfect parallel to {001}, mica-like. Individuals are flexible and inelastic. D(calc) = 3.72 g/cm3. In reflected light, ferrovalleriite is pleochroic from yellowish to gray; bireflectance is moderate. Anisotropy is strong, with bluish gray to yellowish beige rotation colors. Reflectance values [R 1R 2 %, (λ, nm)] are: 15.6–16.6 (470), 14.8–20.5 (546), 14.7–22.3 (589), 14.5–24.1 (650). The IR spectrum shows the presence of (OH) groups bonded with Fe cations and the absence of H2O molecules. The chemical composition of the holotype (wt %; electron microprobe, H content is calculated) is as follows: 0.10 Al, 0.03 Mn, 45.31 Fe, 0.07 Ni, 18.29 Cu, 20.37 S, 15.62 O, 0.98 H, total is 100.77. The empirical formula calculated on the basis of 2 S atoms is: Al0.01Fe2.55Cu0.91S2(OH)3.07 = (Fe1.09Cu0.91)Σ2S2 · (Fe 1.34 2+ Fe 0.12 3+ Al0.01)Σ1.47(OH)3.07. The structure of ferrovalleriite is incommensurate (misfit); two sublattices are present: (1) sulfide sublattice, space group $R\bar 3m$ , R3m or R32; the unit-cell dimensions are: a = 3.792(2), c = 34.06(3) Å, V = 424(1) Å3 and (2) hydroxide sublattice, space group $P\bar 3m1$ , P3m1 or P321; the unit-cell dimensions: a = 3.202(3), c = 11.35(2)Å, V = 100.8(3) Å3. Together with this main polytype modification with three-layer (R-cell, Z = 3) sulfide block, the holotype ferrovalleriite contains the modification with one-layer (P-cell, Z = 1) sulfide block (sulfide sublattice with $P\bar 3m1$ , P3m1 or P321, unit cell dimensions: a = 3.789(4), c = 11.35(1) Å, V = 141(5) Å3). The strongest reflections in the X-ray powder pattern (d, Å-I) are: 5.69–100; 3.268–58; 3.163–36; 1.894–34; 1.871–45.  相似文献   

9.
雷蕴芬  林月英等 《矿物学报》1991,11(1):78-82,T002
未定名硫化物矿物是一个稀少矿物,它发现于内蒙古铅锌矿的钛卡岩矿床中。共生太物有黄铜矿、闪锌矿、方铅矿。它呈黑色,金属光泽,不透明,硬度为165-214kg/mm^2。反射铯为灰色微带蓝色,弱非均质性,深蓝--黄褐色。化学成分(wt%):S32.32、Cu6.46、Fe6.56、Zn54.29、Pb0.31、Cd0.2c、CO0.03(平均),分子式(Zn0.84Fe0.11Cu0.09)1.04S。X射线分析数据与闪锌矿相同,d值和晶胸参数比闪锌矿(含铁)的小,晶胞参数比人工合成闪锌矿的大。粉晶主要强线为3.108(100)、1.906(50)、1.628(30)、1.240(20)、1.103(20)。  相似文献   

10.
The Au–Fe mineralized granitoids at Mezcala district have a porphyry texture with a quartz+feldspar microcrystalline matrix and phenocrysts of plagioclase, quartz (with reaction rims), hornblende and biotite. The primary minerals are oligoclase–andesine, microcline and β-quartz. The accessory minerals are biotite, hornblende and, in minor amounts, apatite+zircon+sphene+titanomagnetite. Some intrusive rocks present abundant hornblende autoliths. Based on the petrography and bulk geochemistry of these granitoids, they are classified as monzonite, tonalite (the most abundant) and granodiorite with a strong calc-alkaline trend in potassium (K2O=3.8% average). The bulk and trace elements chemistry is SiO2=63.8%, Al2O3=15.83%, Fe2O3+MgO+MnO+TiO=6.52%; V=76.7 ppm, Cr=50.2 ppm, Ni=19.7 ppm, Sr=694 ppm. These granitoids show a strong depletion in heavy rare-earth elements (HREE), with average values of Yb=1 ppm and Y=13 ppm, this being the characteristic geochemical signature for adakite. The trace elements content suggests that the adakite granitoids from Mezcala were formed within a tectonic framework of volcanic arc related to the interaction between the Farallon and North America plates. This interaction occurred during the Paleocene after the Laramide Orogeny (post-collision zone) in a fast convergent thick continental crust (>50 km) subduction regime. The original magma is interpreted as being the product of partial melting of an amphibolite–eclogite transition zone source with little contribution of the mantle wedge. Along with the hydration processes, a metallic fertility also took place in the area. The geochemical signature of the adakites within the granitoids rocks represents a characteristic guide for further exploration for Au-rich skarn-type ore deposits in southern México.  相似文献   

11.
We provide new insights into the prograde evolution of HP/LT metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg = 0.27–0.73) and chloritoid (overall X Mg = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve PT conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The PT paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.  相似文献   

12.
Despite a large number of studies of iron spin state in silicate perovskite at high pressure and high temperature, there is still disagreement regarding the type and PT conditions of the transition, and whether Fe2+ or Fe3+ or both iron cations are involved. Recently, our group published results of a Mössbauer spectroscopy study of the iron behaviour in (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 110 GPa (McCammon et al. 2008), where we suggested stabilization of the intermediate spin state for 8- to 12-fold coordinated ferrous iron ([8–12]Fe2+) in silicate perovskite above 30 GPa. In order to explore the behaviour in related systems, we performed a comparative Mössbauer spectroscopic study of silicate perovskite (Fe0.12Mg0.88SiO3) and majorite (with two compositions—Fe0.18Mg0.82SiO3 and Fe0.11Mg0.88SiO3) at pressures up to 81 GPa in the temperature range 296–800 K, which was mainly motivated by the fact that the oxygen environment of ferrous iron in majorite is quite similar to that in silicate perovskite. The [8–12]Fe2+ component, dominating the Mössbauer spectra of majorites, shows high quadrupole splitting (QS) values, about 3.6 mm s?1, in the entire studied PT region (pressures to 58 GPa and 296–800 K). Decrease of the QS of this component with temperature at constant pressure can be described by the Huggins model with the energy splitting between low-energy e g levels of [8–12]Fe2+ equal to 1,500 (50) cm?1 for Fe0.18Mg0.82SiO3 and to 1,680 (70) cm?1 for Fe0.11Mg0.88SiO3. In contrast, for the silicate perovskite dominating Mössbauer component associated with [8–12]Fe2+ suggests the gradual change of the electronic properties. Namely, an additional spectral component with central shift close to that for high-spin [8–12]Fe2+ and QS about 3.7 mm s?1 appeared at ~35 (2) GPa, and the amount of the component increases with both pressure and temperature. The temperature dependence of QS of the component cannot be described in the framework of the Huggins model. Observed differences in the high-pressure high-temperature behaviour of [8–12]Fe2+ in the silicate perovskite and majorite phases provide additional arguments in favour of the gradual high-spin—intermediate-spin crossover in lower mantle perovskite, previously reported by McCammon et al. (2008) and Lin et al. (2008).  相似文献   

13.
14.
15.
Brick-tea-type fluorosis is a peculiar endemic disease in China, which had been discovered in minority areas of western China since 1980, and distributed mainly in Tibet, Inner Mongolia, Gansu, Xinjiang, Qinghai and parts of Sichuan Province. The prevalence rate of fluorosis in Tibetan and Mongolian nationality people was higher. Epidemiological investigation showed that fluorosis morbidity and degrees were different in different brick-tea drinking areas, and it was probably caused by drinking various kinds of brick tea from different regions. Therefore, we collected 33 samples of brick tea from six provinces where minority nationalities were accustomed to drinking a large quantity of brick tea. F concentrations were determined by the combustion hydrolysis-ion selective electrode method. The results showed that among the brick teas, the F concentrations ranged from the minimum 74.1 mg/kg in Yunnan Province to the maximum 991.2 mg/kg in Sichuan Province. Besides, there was a great difference among the various kinds of brick tea, and F concentrations decreased in the order of Kang brick tea, Green brick tea, Black brick tea, Mi brick tea, Fu brick tea, Chitsu ping tea, Puerh tea, and Tuo tea. The average F concentration in brick teas was 431.92 mg/kg.  相似文献   

16.
Summary Wollastonite occurs abundantly at the Sterling Hill Fe–Zn–Mn ore deposit, Ogdensburg, New Jersey, one of the few occurrences of wollastonite in regionally metamorphosed rocks; it is absent from the surrounding Franklin marble. Wollastonite occurs in two distinct bands along the inner margins of the synclinal ore deposit. Minerals associated with wollastonite include calcite, grossular-andradite, diopsidic pyroxene, alkali feldspar, and rarely vesuvianite, quartz or bustamite. Assuming the generally accepted values of 750°C at 5kbar at Sterling Hill during metamorphism in the Grenville Orogeny, thermodynamic modeling of reactions involving garnet and wollastonite suggest XCO2 0.35 in the wollastonite-bearing rocks. Infiltrating metamorphic fluid rich in H2O was necessary for the formation of wollastonite; at XCO2 of 0.35, the calculated minimum volumetric water:rock ratio is 0.51. The source of the water is believed to be the dehydration of water-rich phases in adjacent ores or mafic rocks. The chemical compositions, textures, stratigraphy, and calculated metamorphic conditions show that wollastonite formed from calcite and quartz at the peak of the Grenville Orogeny.Present address: Maryland State Highway AdministrationReceived August 18, 2002; revised version accepted February 5, 2003  相似文献   

17.
Doklady Earth Sciences - Isotope study of ore-bearing rocks at Fe–Mn rift deposits of the Atasu and Zhezdy (Dzhezdy) ore districts in Central Kazakhstan has been carried out for the first...  相似文献   

18.
19.
Three chalcolithic pottery sherds, paint removed from the surface of each sherd, and an unheated red pigment (Tell-Halaf culture, Turkey) were analysed within the frame of archaeometric studies using mineralogical methods, 57Fe Mössbauer spectroscopy, magnetization and rotational hysteresis data. From mineralogical results, the individual minerals forming the cores of the sherds were determined. It was found that the sherds are lime-rich. High temperature X-ray analysis on comparable Ca-rich material showed that the established composition is consistent with a firing temperature of 750-950°C. Apart from the pigment, each Mössbauer spectrum of Fe-bearing components consists of dominating paramagnetic doublets, arising mostly from silicate phases, and of a six-line pattern with reduced intensity, due to ferri- and/or antiferromagnetic Fe-oxide phases. For three samples, an Fe3+ silicate component of the spectra is clearly dominating, which points to oxidizing conditions during firing. For the others Fe2+ and Fe3+ components occur in about equal intensities. For the pigment, the magnetic sextet is of similar intensity to the Fe3+ silicate component. From magnetic analysis of ferrimagnetic phases it follows that a low percentage of particles of solid solutions -Fe2O3 – Fe3O4 exist, probably in part 0.1 m in diameter. The ferrimagnetic particles of at least one paint are probably covered by a thin layer of hematite as found from rotational hysteresis data. An attempt is made to draw conclusions from the experimental results, regarding the firing conditions of the sherds and paints.  相似文献   

20.
三价铁水解是铁地球化学循环中的一个重要过程,在一定程度上控制了铁在水体中的运移和再分配。实验研究了Fe(Ⅲ)在20℃和46℃水解生成沉淀过程中,上清液的存在形态以及该过程导致的Fe同位素分馏。20℃水解实验有两个时间长度,分别是95天和130天,水解实验结束时上清液中的Fe(Ⅲ)主要以胶体形式存在。不同的水解时间导致的Fe同位素分馏在误差范围内是一致的。20℃水解实验结束时上清液和沉淀之间56Fe/54Fe的同位素组成之间的差异Δ56FeFe(Ⅲ)sup-Fe(Ⅲ)pre为1.15‰;46℃水解实验的时间长度为95天,结束时上清液中的Fe(Ⅲ)主要以离子形式存在,46℃水解实验结束时Δ56FeFe(Ⅲ)sup-Fe(Ⅲ)pre为1.37‰。通过瑞利分馏的公式计算出20℃和46℃时Fe(Ⅲ)水解过程中沉淀和上清液间的瞬时平衡分馏系数分别为0.999 121和0.999 260。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号