首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
选取中国东部季风区南方赣江流域和北方官厅流域,基于逐日气象和水文观测数据率定和验证了HBV水文模型,并以国际耦合模式比较计划第五阶段(CMIP5)中输出要素最多的5个全球气候模式在3种典型浓度路径(RCP2.6、RCP4.5和RCP8.5)下的预估结果驱动HBV模型,预估了气候变化对21世纪两个流域径流的影响。结果表明:(1) 1961—2017年,赣江和官厅流域年平均气温均呈显著上升趋势,升温速率分别为0.17℃/(10 a)和0.28℃/(10 a);同期,赣江流域降水显著增加,官厅流域降水微弱下降。不同RCP情景下,21世纪两个流域均将持续变暖、降水有所增加,北方官厅流域的气温和降水增幅均大于南方赣江流域。(2) 21世纪,官厅流域年、季径流增幅远大于赣江流域。官厅流域年径流在近期(2020—2039年)、中期(2050—2069年)、末期(2080—2099年)均呈增加趋势,RCP8.5情景下增幅最大、RCP4.5最小。赣江流域在RCP4.5下,近期、中期年径流相对基准期略有减少,但在整个21世纪径流呈上升趋势;RCP2.6和RCP8.5下,21世纪中期以后径流增幅下降。(3) 21世纪,东部季风区北部的官厅流域发生洪涝、南方赣江流域发生干旱的可能性增大,不同RCP情景预估得到相同的结论。  相似文献   

2.
利用CMIP5耦合气候模式的模拟结果,分析了不同排放情景下1.5℃和2℃升温阈值出现的时间。多模式集合平均结果表明:RCP2.6、RCP4.5和RCP8.5排放情景下,全球地表温度将分别在2029年、2028年和2025年达到1.5℃升温阈值;RCP2.6情景下直至21世纪末期都未达到2℃升温阈值,RCP4.5和RCP8.5排放情景下达到2℃升温阈值的时间分别为2048年和2040年。伴随着排放情景的升高,完成从1.5℃升温阈值到2℃升温阈值所需要的时间缩短。区域尺度上,达到同一升温阈值的时间主要表现为陆地比海洋早,且陆地对排放情景差异的敏感性相对较差,而海洋达到升温阈值的时间则随着排放情景的升高而明显提前。中国达到相应升温阈值的时间要早于全球,且以东北和西北地区出现的时间最早。  相似文献   

3.
1.5和2℃升温阈值下中国温度和降水变化的预估   总被引:1,自引:0,他引:1  
基于CMIP5耦合气候模式模拟结果对1.5和2℃升温阈值时中国温度和降水变化的分析表明,1.5℃升温阈值时,中国年平均升温由南向北加强且在青藏高原地区有所放大,季节尺度上升温的空间分布与其类似,就区域平均而言,RCP2.6、RCP4.5和RCP8.5情景下中国年平均气温分别升高1.83、1.75和1.88℃,气温的季节变幅以冬季升高最为显著;除华南和西南地区外中国大部分地区年平均降水量增多,降水的季节差异明显,以夏季降水的分布模态与年平均降水量的分布最为相似,区域平均的年降水量分别增加5.03%、2.82%和3.27%,季节尺度上以冬季降水增幅最大。2℃升温阈值时,RCP4.5和RCP8.5情景下中国年平均温度的空间分布与1.5℃升温阈值基本一致,中国年平均气温分别升高2.49和2.54℃,季节尺度上气温的变化以秋、冬季增幅最大;中国范围内年平均降水量基本表现为增多趋势,其中,西北和长江中下游部分地区表现为明显的季节差异,区域平均的年降水量分别增加6.26%和5.86%。与1.5℃升温阈值相比较,2℃升温阈值时中国年平均温度在RCP4.5和RCP8.5情景下分别升高0.74和0.76℃,降水则分别增加3.44%和2.59%,空间上温度升高以东北、西北和青藏高原最为显著,降水则在东北、华北、青藏高原和华南地区增加最为明显。   相似文献   

4.
RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化   总被引:1,自引:1,他引:0  
按照CORDEX (COordinated Regional Downscaling Experiment) 计划试验设计要求,利用中国科学院大气物理研究所全球模式FGOALS-g2的数据驱动区域气候模式RegCM3,针对1986~2005年历史气候和2010~2065年RCP8.5排放情景下气候预估,对东亚地区进行了50 km动力降尺度模拟。首先评估了RegCM3模式及驱动模式FGOALS-g2对1986~2005年夏季中国地表气温和极端高温事件的模拟能力,然后比较了两个模式在RCP8.5排放情景下对中国夏季地表气温和极端高温事件预估的变化,重点分析了动力降尺度结果的优势。结果表明,两个模式均能合理再现夏季中国地表气温和极端高温事件的大尺度气候态特征。相对于全球模式,区域模式由于水平分辨率较高,能在刻画地表气温分布的细节上体现出优势。在RCP8.5排放情景下,两个模式预估的三个地表气温指标均显著升高,到21世纪中期 (2046~2065年),两个模式预估的全国平均地表气温增幅相当,气温日较差变化均较小。在FGOALS-g2模式预估中,到21世纪中期,三个地表气温指标的增幅相当,气温日较差没有明显变化,东北和青藏高原的地表气温增幅最大。在RegCM3模式预估中,到21世纪中期,中国大部分地区日最高气温 (Tmax) 增幅大于日最低气温 (Tmin) 增幅,气温日较差增加;而在青藏高原西部,Tmax的增幅较Tmin偏低,气温日较差减小。在RCP8.5排放情景下,两个模式预估的极端高温事件到21世纪中期也显著增加,RegCM3模式预估的极端高温事件全国平均增幅略高于FGOALS-g2模式的预估。在两个模式的预估中,日最高气温最大值 (TXx)、暖昼指数 (TX90p) 和持续暖期指数 (WSDI) 变化的空间分布特征与Tmax相似;和当代相比TX90p增加了60%以上,而WSDI增加了一倍以上。  相似文献   

5.
王晓欣  姜大膀  郎咸梅 《大气科学》2019,43(5):1158-1170
本文使用国际耦合模式比较计划第五阶段(CMIP5)中39个全球气候模式的试验数据,预估了相对于工业革命前期全球1.5℃升温背景下中国气温和降水变化。根据多模式中位数预估结果,在不同典型浓度路径(RCPs)情景下,相对于工业革命前期全球1.5℃升温分别发生在2034年(RCP2.6)、2033年(RCP4.5)和2029年(RCP8.5)。全球升温1.5℃时,中国年和季节气温平均上升1.8℃和1.6~2.1℃,其中冬季最强。增温总体上由南向北加强,青藏高原为高值中心。年和各季节增温均超过其自然内部变率,区域平均的信噪比分别为3.4和1.6~2.7。年和季节降水整体上在中国北方增加、华南减少;区域平均的年降水增加1.4%,季节降水增加0.1%~5.1%,冬季增幅最大。年和季节降水变化要远小于其自然内部变率,区域平均的信噪比仅为0.1和0.01~0.2。总体上,模式对气温预估的不确定性较小,对降水的偏大,其中对季节尺度预估的不确定性要高于年平均结果。  相似文献   

6.
利用CMIP5耦合模式RCP2.6、RCP4.5和RCP8.5情景预估结果,以1890一1900年为基准气候,确定了2℃全球变暖时间、对应时期青藏高原平均气候和极端气候事件变化幅度,多模式集合平均结果表明:RCP2.6、RCP4.5和RCP8.5情景下2℃全球变暖分别发生在2063年、2040年和2036年;对应着2℃全球变暖,三种情景下青藏高原平均气温分别升高2.99℃、3.22℃和3.28℃,均超过全球2℃的升温水平;年降水量亦增加,分别增加8.35%、7.16%和7.63%。受气温升高和降水量增多影响,RCP4.5情景下霜冻日数、冰封日数减少,暖夜日数、暖昼日数增多;RCP4.5情景下中雨日数、强降水量、降水强度均增加,持续干期天数减少。从各地平均气候和极端气候事件变化结果来看,柴达木盆地是青藏高原气候变化的敏感区。  相似文献   

7.
“一带一路”区域未来气候变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。  相似文献   

8.
基于8 km气温栅格数据、全球模式(BCC_ CSM1.1)驱动区域模式RegCM4得到的RCP8.5和RCP4.5情景数据,采用时段对比分析、线性趋势分析等方法,研究了内蒙古地区气温变化特征及未来演变趋势。结果表明:从1981年到2010年,内蒙古地区气温显著上升,平均升速为0.49 ℃·10a-1,且最高气温升速略高于最低气温升速;升温幅度阶段性明显,全区1980s至1990s平均气温上升0.65 ℃,而1990s至21世纪初仅增温0.30 ℃;三大草原间年均气温年代际变化规律一致,但总体上草甸草原升温速率最小,而荒漠草原升温速率最大。与基准时段(1981—2010年)相比,全区年平均气温RCP4.5情景下在2020s、2030s和2040s分别增加0.92 ℃、1.27 ℃和1.78 ℃,而RCP8.5情景下分别增加1.39 ℃、1.56 ℃和2.07 ℃,RCP4.5与 RCP8.5情景下典型草原增温幅度均最为突出。  相似文献   

9.
预估气候变化背景下中国未来近期、中期及远期温度热相关人群超额死亡风险,为未来热相关人群健康风险防范提供科学依据。基于中国网格化日均气温数据集与3种排放情景下未来日均气温数据、历史人口数据与3种生育率情景下未来人口数据以及死因数据资料计算的热效应暴露-反应关系,计算每日热相关死亡人数。结果表明:(1)未来中国平均气温将持续升高,且北方地区升温幅度较大。(2)1986—2005年中国热相关非意外总死亡人数约为7.1(95%置信区间:5.7—8.5)万。(3)RCP2.6、RCP4.5情景下未来中国热相关非意外总死亡人数均呈现先升后降的变化趋势。21世纪末,不同情景下的热相关非意外总死亡人数均高于基准年代。(4)未来不同情景下中国热相关非意外总死亡人数在黄淮海地区以及成渝地区均呈上升趋势,在RCP2.6、RCP4.5情景下北方地区热相关非意外总死亡人数呈下降趋势,东南沿海地区在21世纪30年代后开始呈下降趋势。总体而言在全球变暖的背景下未来中国热相关死亡风险将上升,而在RCP2.6情景下可以有效抑制其上升趋势。   相似文献   

10.
利用玉树地区5个气象台站1961—2015年逐月气温资料,采用气候趋势系数等统计方法分析了近55年来气温年代际变化及其异常特征,并结合CMIP5计划21个全球气候耦合模式模拟结果对未来气温变化趋势进行了预估。结果表明:(1)近55年来玉树地区年平均气温、最高和最低气温均显著升高,21世纪上升趋势更为突出;全区增温总体上呈现出"西北高、东南低"的空间分布特征。(2)各季平均气温也在显著上升,其中冬季升温最明显,达0.48℃/10 a,对年气温升高的贡献率最大。(3)气温偏冷年基本出现在20世纪60年代—80年代;偏暖年集中出现在21世纪,进入本世纪气温偏暖频次明显增多。(4)在RCP2.6、RCP4.5、RCP8.5情景下,玉树地区未来的气温变化都以增温为主,其中在中(RCP4.5)、高排放(RCP8.5)情景下增温效应更加显著。  相似文献   

11.
利用CMIP5提供的26个全球气候系统模式的集合模拟结果,预估新代表性浓度路径情景下,中国区域21世纪温度和降水的变化,并采用泰勒图和模式离差法对多模式预估结果进行不确定性分析。预估结果显示到21世纪末期(2081—2100年),三种浓度路径情景(RCP2.6、RCP4.5、RCP8.5)下中国年均温增幅分别为1.87 ℃、2.88 ℃、5.51 ℃;年降水的增幅分别为0.124 mm/d、0.214 mm/d、0.323 mm/d。21世纪中国增温增湿的主要贡献区为青藏高原和东北地区。不确定性分析结果表明,大多数CMIP5模式对21世纪中国区域温度的预估有着较好的一致性,而对降水预估的差异性相对较大。集合模式离差分析结果表明,中国80%以上区域的温度预估结果信号大于噪音,而降水预估的有意义信号区域不足20%,CMIP5集合模式对温度变化预测结果的可信度较高,而对降水变化的预测结果则存在很大的不确定性。  相似文献   

12.
本文基于耦合模式比较计划第5阶段(CMIP5)的17个全球气候模式,确定了1.5℃温升(相对于1861-1880年)的发生时间,预估了全球升温1.5℃时,北半球冻土和积雪的变化,并对预估结果的不确定性进行了讨论。结果表明,全球平均地表温度在3种排放情景下(RCP2.6,RCP4.5,RCP8.5)分别于2027、2026、2023年达到1.5℃阈值。当全球升温1.5℃,北半球多年冻土南界北移1°~3.5°,冻土退化主要发生在中西伯利亚南部。多年冻土面积在全球升温1.5℃时,在RCP2.6、RCP4.5和RCP8.5排放情景下较1986-2005年分别减少约3.43×106 km2(21.12%)、3.91×106 km2(24.10%)和4.15×106 km2(25.55%);北半球超过一半以上的区域雪水当量减少,只在中西伯利亚地区略微增加;北美洲中部、欧洲西部以及俄罗斯西北部减少较显著,减少约40%以上。青藏高原多年冻土面积在RCP2.6、RCP4.5以及RCP8.5排放情景下分别减少0.15×106 km2(7.28%)、0.18×106 km2(8.74%)和0.17×106 km2(8.25%)。青藏高原冬、春季雪水当量分别减少约14.9%和13.8%。  相似文献   

13.
依据政府间气候变化委员会(IPCC)第五次评估报告(AR5)未来不同排放情景(RCPs)下的多模式(CMIP5)气温和降水预估结果,构建基于气温和降水的未来径流量预估模型,并以宜昌站为例分析了不同模式不同排放情景下未来80年(2020~2099年)长江上游年径流量的变化趋势。多模式集合平均预估结果表明:在99%的置信水平下,未来80年长江上游年径流量在RCP2.6排放情景下呈不显著增加趋势,在RCP4.5排放情景下呈不显著减小趋势,而在RCP8.5排放情景下则呈显著减小趋势;在RCP2.6、RCP4.5和RCP8.5排放情景下未来80年长江上游年径流量预估均值相对于1961~2000年分别减少6.42%、10.99%和13.25%;同时,未来80年长江上游年径流量变化具有一定的年代际特征,在RCP2.6和RCP4.5排放情景下21世纪初期偏多、中期偏少而后期变化并不明显,在RCP8.5排放情景下则是21世纪中期以前偏多而中期以后明显偏少。本研究方法可为未来气候变化情景预估分析提供技术参考,本研究成果可供气候变化背景下长江上游乃至长江流域水资源开发利用及对策分析提供决策依据。   相似文献   

14.
采用第五次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)高分辨率全球统计降尺度预估数据集,针对近期(2020—2039年)、中期(2040—2059年)和长期(2080—2099年),以及全球1.5℃和2℃温升阈值,预估了青藏高原地区平均气温和降水、极端气温和极端降水的变化,定量估算了预估结果的不确定性来源。结果表明:(1)在RCP4.5和RCP8.5情景下,21世纪青藏高原地区平均气温和降水、极端气温和极端降水强度均显著增加,最长连续干旱天气减少。高原气候变化幅度超全球平均,至21世纪末,模式集合预估的气候变化幅度介于全球平均的1.5~3倍。(2)青藏高原地区受0.5℃额外增温的显著影响,年均气温、极端高温和极端低温均显著升高,平均及极端强降水均显著增加。(3)排放情景的选择对近期气候预估影响小,但对长期影响大。在相同排放情景下,内部变率主导了近期高原平均气温预估的不确定性,但至长期其贡献降至10%以下。模式和内部变率的不确定性对降水预估均有贡献,且都随时间减小,最大不确定性中心位于西部和北部边缘,噪声与信号比大于6。  相似文献   

15.
利用SWAT模型和IPCC第五次评估报告中全球气候模式BCC-CSM 1.1数据,对未来气候变化RCP 2.6、RCP 4.5、RCP 8.5共3种典型排放情景对洪湖流域水资源的影响进行了模拟研究。结果表明:SWAT模型对洪湖流域供水资源模拟的适用性较好,洪湖流域在未来RCP 2.6、RCP 4.5、RCP 8.5排放情景下的温度增幅分别为1.4℃、1.9℃和2.4℃,降水变率分别为-3.20%、7.60%和7.90%。SWAT模型模拟结果表明,未来3种情景下随着温度上升洪湖流域实际蒸散发量均略增加,径流受降水影响显著且变化不同,RCP 4.5和RCP 8.5情景下地表径流及地下径流均增加,RCP 8.5情景比RCP4.5情景下地表径流增加多;且各种重现期的洪峰流量和洪水发生频次均增加,RCP 2.6情景下地表径流和地下径流减少。3种情景下径流变异系数较基准期均略增大,说明洪湖流域发生干旱和洪涝的可能性增大,水资源可控性和利用率降低。  相似文献   

16.
基于国家气候中心中等分辨率模式BCC-CSM2-MR开展的第六次耦合模式比较计划(CMIP6)预估数据,采用双线性插值、趋势分析、偏差分析等方法,分析全球升温1.5℃和2.0℃辽河流域极端降水变化。结果表明:全球升温1.5℃辽河流域年平均降水量距平百分率增幅随排放情景的升高而增大,SSP5-8.5排放情景下增幅达5.82%。全球升温2.0℃辽河流域年和四季降水均为增加趋势,夏季降水增幅明显;SSP2-4.5和SSP5-8.5情景下降水量均为自西南向东北递减,辽宁西部地区降水增幅较为显著,超过15%。不同排放情景下辽河流域极端降水指数均为增加趋势,日降水强度、强降水日数、强降水比例增长显著;随排放情景升高,极端降水指数增长速率增大,SSP5-8.5情景下的增长速率为SSP2-4.5情景下的两倍以上。SSP5-8.5情景下,21世纪末降水强度、强降水日数、强降水比例、强降水阈值、最长连续湿日数、最大十日降水量将达11.66 mm/d、15.15 d、59.08%、32.94 mm、9.69 d、201.29 mm,较基准期增加5.58 mm/d、5.15 d、37.08%、10.15 mm...  相似文献   

17.
基于CMIP5模式集合预估21世纪中国气候带变迁趋势   总被引:3,自引:0,他引:3  
本文选用耦合模式比较计划第五阶段(CMIP5)数据,结合英国东英吉利大学气候研究中心(CRU)气温和降水资料,分析了中国20世纪末期气候带分布;以此为基础,模拟并分析了RCP2.6和RCP8.5两种情景下中国21世纪中期和末期气候带的变迁趋势。结果表明:CMIP5模式集合数据能较好地模拟出中国区域气温和降水空间分布形态,CRU分析资料描述的气候带分布与柯本气候分类吻合较好。21世纪中期、末期与20世纪末期相比,RCP2.6情景下,气候类型及分布变化并不显著,RCP8.5情景下,热夏冬干温暖型分别增加了28.2%(中期)、86.9%(末期),草原气候分别增加了24.1%(中期)、49.4%(末期)。热夏冬干冷温型到21世纪末期有明显的增加,但苔原气候和沙漠气候类型所占比重减少。  相似文献   

18.
8个CMIP5模式对中国极端气温的模拟和预估   总被引:14,自引:0,他引:14  
利用8个耦合模式比较计划第五阶段(CMIP5)模式结果,采用加权平均方法进行多模式集合,并与NCEP再分析资料进行对比分析,评估了CMIP5模式对中国极端气温的模拟效果,在此基础上,对未来极端气温进行预估。CMIP5模式对中国8个极端气温指数和20年一遇最高(低)气温有模拟能力,所有极端气温指数模拟和观测结果的时间相关均达到0.10显著性水平,20年一遇最高、最低气温模拟和观测结果空间相关系数均超过0.98。在中等排放RCP4.5情景下,未来中国极暖(冷)日数增多(减少),到21世纪中期热浪指数增加2.6倍,到21世纪末期寒潮指数减少71%,20年一遇最高(低)气温在中国地区均呈现升高趋势,局部升温幅度达到4℃。  相似文献   

19.
研究目的:本文采用CMIP5多模式的集合平均,针对多种排放情景,估算了丝绸之路核心区达到1.5度和2度温升的时间,比较了全球平均温度达到1.5度和2度温升阈值时丝绸之路核心区的平均气候和极端气候指标的变化。创新要点:中国西部和中亚位于古丝绸之路核心区,是连接东西方的桥梁。1.5度和2度温控目标的设定,是国际社会应对全球变暖的重要举措。理解在上述增暖阈值下丝绸之路核心区平均气候和极端气候的可能变化,将为一带一路战略的实施提供重要科学参考。研究方法:CMIP5多模式集合平均重要结论:相较于当前气候态(1986–2005年),在四种排放情景下,即RCP2.6、RCP4.5、RCP6.0和RCP8.5,CMIP5多模式集合预估的丝绸之路核心区到21世纪末将分别增温1.5、2.9、2.6和6.0°C。在四种排放情景下,年平均降水较之当前气候态均显著增加,其中在RCP8.5情景下增加约14%。四种排放情景下的预估结果,均显示丝绸之路核心区将在2020年前温升达到1.5°C。在RCP8.5情景下,该地区将在2020年代温升达到2.0°C,而在RCP4.5情景下,温升达到2.0°C的时间则推迟到2030年代。比较全球温升1.5和2.0°C的气候变化,发现全球额外升温0.5°C(较之1.5°C温升阈值)将导致丝绸之路核心区升温0.73°C(0.49–0.94°C),高于全球平均温度的变化,极端热浪的天数将增加4.2天,年平均降水增加2.72%(0.47%–3.82%),而连续干旱日数的变化则具有区域依赖性。  相似文献   

20.
研究采用NorESM1-M模式输出的气候情景资料驱动农业生态区模型,分析了21世纪中期在RCP 2.6和RCP8.5典型浓度路径下的东北区域气候资源变化。研究表明:在RCP2.6、RCP8.5两种气候变化情景下,东北区域年平均气温呈现升高趋势,≥10℃积温所反映的热量条件得到显著改善,以黑龙江省和辽中南积温的增加最为明显;受气温升高影响,2050s参考作物蒸散普遍增加。区域内降水总量略有增加,东北西部干旱地区状况略有改善,东部地区更加湿润;趋于暖湿的气候促使作物生长季延长,到21世纪中期,全区最长增加12.4天。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号