首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
We have measured P- and S-wave velocities on two amphibolite and two gneiss samples from the Kola superdeep borehole as a function of pressure (up to 600 MPa) and temperature (up to 600 °C). The velocity measurements include compressional (Vp) and shear wave velocities (Vs1, Vs2) propagating in three orthogonal directions which were in general not parallel to inherent rock symmetry axes or planes. The measurements are accompanied by 3D-velocities calculations based on lattice preferred orientation (LPO) obtained by TOF (Time Of Flight) neutron diffraction analysis which allows the investigation of bulk volumes up to several cubic centimetres due to the high penetration depth of neutrons. The LPO-based numerical velocity calculations give important information on the different contribution of the various rock-forming minerals to bulk elastic anisotropy and on the relations of seismic anisotropy, shear wave splitting, and shear wave polarization to the structural reference frame (foliation and lineation). Comparison with measured velocities obtained for the three propagation directions that were not in accordance with the structural frame of the rocks (foliation and lineation) demonstrate that for shear waves propagating through anisotropic rocks the vibration directions are as important as the propagation directions. The study demonstrates that proper measurement of shear wave splitting by means of two orthogonal polarized sending and receiving shear wave transducers is only possible when their propagation and polarization directions are parallel and normal to foliation and lineation, respectively.  相似文献   

2.
Faults in the upper crust initiate from pre-existing (inherited) or precursory (early-formed) structures and typically grow by the mechanical interaction and linkage of these structures. In crystalline rock, rock architecture, composition, cooling, and exhumation influence the initiation of faults, with contrasting styles observed in plutonic rocks, extrusive igneous rocks, and foliated metamorphic rocks. Brittle fault growth in granitic rock is commonly controlled by the architecture of inherited joints or preexisting dikes. In basalt, abundant joints control the surface expression of faulting, and enhanced compliance due to abundant joints leads to folding and deformation asymmetry in the fault zone. Highly reactive mafic minerals likely become rapidly evolving fault rocks. In foliated metamorphic rocks, fault initiation style is strongly influenced by strength anisotropy relative to the principal stress directions, with fracturing favored when the foliation is aligned with the directions of principal stress. The continuity of micas within the foliation also influences the micromechanics of fault initiation. Brittle kink bands are an example of a strain-hardening precursory structure unique to foliated rock. Each of these fault initiation processes produces different initial fault geometry and spatial heterogeneity that influence such properties as fault permeability and seismogenesis.  相似文献   

3.
This paper reports on the complex relation between rock emplacement and remanence acquisition in tuffs deposited by pyroclastic density currents, disclosed by systematic measurements of the anisotropy of magnetic susceptibility and natural remanent magnetization (NRM). Thermal demagnetization shows that the NRM consists of two components with different blocking-temperature spectra. The direction of the low-temperature component is consistent with the geocentric axial dipole value, whereas the high-temperature component has dispersed directions. The magnetic fabric is oblate, the magnetic foliation is close to the bedding and the lineations are generally dispersed along a girdle within the foliation plane. The directions of the magnetic lineation and the high-temperature remanence component of individual specimens are close to each other. This correspondence suggests that the high blocking-temperature grains acquired a remanence aligned to their long dimension before deposition, while cooling within the explosive cloud and the moving pyroclastic current. Thereafter, during deposition, the traction processes at the base of the current oriented the grains along the flow direction and affected both fabric and high-temperature remanence. This NRM component results from mechanical orientation of previously magnetized grains and is thus detrital in origin. A second, thermal component was then acquired during the cooling of the low blocking-temperature grains after deposition. These results show that NRM in fine-grained pyroclastic rocks is affected by the Earth’s magnetic field as well as the emplacement processes and that magnetic fabric data are essential to unravel its complex nature.  相似文献   

4.
A representative suite of deformed, metamorphic rocks from the TRANSALP reflection seismic traverse in the Eastern Alps was studied in the laboratory with respect to elastic properties and whole-rock texture. Compressional wave (P-wave) velocities and their anisotropies were measured at various experimental conditions (dry, wet, confining pressure), and compared to the texture-related component of anisotropy. Here ‘texture’ refers to crystallographic preferred orientations (CPOs), which were determined by neutron texture goniometry. In gneisses and schists P-wave anisotropies are mainly controlled by the microcrack fabric. In marbles and amphibolites CPO contributes very significantly to anisotropy. At 200 MPa confining pressure the degree of anisotropy is between 5% and 15%, depending on rock composition and/or CPO intensity. Special emphasis was also put on discussing possible effects of fluids on seismic velocity and anisotropy. Distributions of water-filled microcracks and pores are distinctly anisotropic, with maximum contribution to bulk rock velocity mostly parallel to the foliation pole. Decreasing P-wave velocity and increasing anisotropy of immersed samples may be explained by crack-induced changes of the elastic moduli of bulk rock. The main conclusion regarding interpretation of TRANSALP data is that strong reflections in the deep Alpine crust are probably due to marble–gneiss and metabasite–gneiss contacts, although P-wave anisotropy and boundaries between zones of ‘dry’ or ‘wet’ series may contribute to reflectivity to some extent.  相似文献   

5.
The Otago and Alpine Schist belts of southern New Zealand have traditionally been treated as structurally continuous metamorphic belts with minor modification by brittle faulting. Mapping of biotite and garnet isograds has been hindered by rock types unfavourable for index mineral growth. Closer examination of well-exposed boundaries between metamorphic zones shows that they juxtapose rocks of different type and structural history. Apparent structural continuity across these zones is due to development of a locally pervasive boundary-parallel foliation on both sides of the boundary, in a broad boundary zone (up to 2  km wide). This feature has implications for mapping and metamorphic petrology in other metamorphic belts, where structural continuity has traditionally been assumed. True metamorphic isograds may be rare, and metamorphic zones may more commonly represent structural slices of complex, tectonically disrupted metamorphic piles.  相似文献   

6.
Mechanical and Elastic Properties of Transversely Isotropic Slate   总被引:3,自引:1,他引:2  
Planes of weakness like schistosity and foliation affect the strength and deformational behaviors of rocks. In this paper, an attempt has been made to study the elastic and strength behavior of slate rocks obtained from foundation of Sardasht dam site in Iran. Wet and dry specimens with different orientation of foliation were evaluated under uniaxial, triaxial, and Brazilian tests. According to the results obtained, slate mechanically pronounced U-shaped anisotropy in uniaxial and triaxial compression tests. In addition, the degree of anisotropy for the slates tested in current study was relatively high, showing the effect of foliation plane on strength and elastic parameters. It was concluded that stiffness of the samples decrease as the angle of anisotropy reaches 30–40°. This change was more pronounced for wet comparing to dry samples. However, the tensile strength obtained during Brazilian tests indicated that there is no apparent relationship between angle of anisotropy and tensile strength. However, increasing the water saturation decreased the tensile strength of the samples. The calculated elastic moduli referring to different anisotropy angles could be valuable for the design of various engineering structures in planar textured rock masses.  相似文献   

7.
Assessment of strength anisotropy in transversely isotropic rocks has been one of the most challenging subjects in rock engineering. However, far too little attention has been paid to banded amphibolite rocks. This study aim to evaluate strength and deformation anisotropy behavior of banded amphibolite rocks. The dynamic mechanical tests including ultrasonic pulse test, uniaxial compressive strength, Brazilian test and deformability test were performed on drilled rock samples as a function of foliation plane angle (β = 0°, 30°, 60° and 90°). The results obtained have shown that the dynamic mechanical properties of amphibolite rocks have different values concerning banding plane. Compression and shear waves taken parallel to the foliation plane show highest values than those obtained in the other directions. Under uniaxial test, the banded amphibolite has a U-shaped anisotropy with maximum strength at β = 90° and minimum strength is obtained when β = 30°. Strength anisotropic index ranges between 0.96 and 1.47. It seems that the high range value of anisotropic index is mainly due to slight undulation of foliation planes, that being not perfectly straight. The results of elastic deformation test show that there is no clear dependence on microstructures characteristics of subtype-amphibolite rocks that controlling modulus “shape-anisotropy”. However, in this study, Young modulus values of amphibolite rocks with β follow both types of shape-anisotropy, “U-shape” and “decreased order-shaped”. Thus, this study recommended that further research be undertaken regarding the role of modulus “shape-anisotropy” within the same lithotype.  相似文献   

8.
秦岭大别碰撞造山带中隆升最高的结晶基底便是大别杂岩,在超高压变质岩和某些高级变质岩中均发现典型的近等温减压(ITD)型的退变质结构,多呈后成合晶或冠状体的形式取代或包绕原生矿物晶粒(主晶),显示退变质不平衡反应的过程.然而超高压变质岩与大别杂岩中的高级变质岩,变质地温梯度截然不同,暗示它们形成的构造条件极不相同,超高压变质岩早期由岩石圈深处(120km±)折返到下地壳与那里的高级变质岩构造混合,平行并置,而后才一起隆升.退变质不平衡结构与寄主岩的面理无关,说明这种近等温的减压退变质作用发生于后造山时期近绝热条件下的隆升体制,近绝热隆升的热源可能是中生代以来大别山地区岩石圈减薄所引起  相似文献   

9.
Most of the rocks in Precambrian shield areas have experienced a complex structural and metamorphic evolution, processes which have a strong influence on bedrock quality. The properties vary on both a local and a regional scale. It is highly beneficial to know the variations in detail when exploiting the rocks for industrial purposes. The main objective of the investigation was to study the variation of rock mechanical properties in an originally more or less isotropic rock at various stages of ductile deformation. The rocks investigated were Paleoproterozoic and with ages of ca. 1.80-1.88 Ga, and the areas chosen for sampling were situated north-east of Lake Vänern (Kristinehamn; 10 samples), south of the city of Eskilstuna, South Central Sweden (5 samples) and south of Ödeshög, near Lake Vättern in southern Sweden (7 samples). The 12 samples from the latter two areas are described in this investigation, while the 10 samples from Kristinehamn have been published earlier (Göransson et al., 2004). A comprehensive study of various parameters of importance for bedrock quality has been performed on all samples, e.g. studded tyre test (STT) and Los Angeles test (LA), uniaxial compressive strength (UCS), ultrasonic velocity, perimeter measurements of mineral phases, and petrographic and chemical analyses. The weakly deformed and massive (more or less isotropic) rocks show a tendency towards better properties of abrasion (STT) than the strongly deformed rocks and this can also be said for UCS, reflecting the greater ability of rocks to split along foliation planes. This is not entirely unambiguous, as the more deformed rocks, such as the mylonites, may have varying properties. This depends on the combined effects of, e.g. grain size, recrystallisation and foliation. However, the brittleness (LA) shows somewhat better values with increased deformation. This may depend on higher amounts of dark minerals, as their existence does not affect this test as much as in the case of abrasion tests. The perimeter values of the mineral phases display generally higher values, i.e. grain boundaries for the more strongly deformed rocks are more complicated. However, the values for the investigated mylonites may vary between low and high. The lower value may be due to dynamic recrystallisation and the creation of triple points (static recrystallisation) making the rock weaker. Besides, the development of a strong foliation may decrease rock strength despite the usually finer grain size. The results show that it is extremely important to consider all possible variations of bedrock before classification and exploitation, as the bedrock material in fact is highly heterogeneous.  相似文献   

10.
In order to better constrain the interpretation and the nature of the seismic reflectors, experimental measurements at high confining pressure (up to 300 MPa) and room temperature of the compressional wave velocity (Vp) on 10 samples representative of the most common lithologies along the Aurina (Ahrntal), Tures (Tauferer Tal), and Badia (Abtei Tal) Valleys profile (Eastern Alps, Italy) have been performed. For each sample, the speed of ultrasonic waves was measured in three mutually perpendicular directions, parallel and normal to the rock foliation and lineation.The main results are:(a) Good agreement between the calculated vs. measured modal compositions of the considered rocks, indicating that they were presumably equilibrated at the estimated PT conditions; therefore, the seismic properties are representative of the crustal level indicated by the thermobarometry.(b) Measured and calculated average Vp are in good agreement, and are typical of mid-crustal level (6.0–6.5 km/s). Only the amphibolites show Vp typical of the lower crust (7.2 km/s).(c) The seismic anisotropy of metapelites is very high (12–27%), both with orthorhombic and transverse isotropy symmetry; amphibolites are transversely isotropic with an anisotropy of 8%; orthogneisses and granitoids are isotropic or weakly anisotropic.(d) The contacts between amphibolites and all other rock types may generate good reflections, provided they are not steeply inclined. Although the metamorphic foliation remains steeply inclined, discordant buried sub-horizontal igneous contacts may be detected.  相似文献   

11.
不同温压下岩石弹性波速度、衰减及各向异性与组构的关系   总被引:16,自引:0,他引:16  
刘斌 《地学前缘》2000,7(1):247-257
结合岩石组构分析 ,阐述了岩石弹性波传播速度和衰减以及它们的各向异性与岩石组构之间的关系。在不同温压条件下对具有很强晶格优选方位的岩石样品的研究表明 ,随着围压的增加 ,波速和Q值均增大 ,但是在相互正交的 3个方向上 (垂直或平行于层理面及线理方向 )增大的速度并不相同 ,这与微裂隙的逐渐闭合密切相关。观测到的波速和Q值的各向异性具有不同的形成机理 ,波速各向异性主要与定向分布的微裂隙和主要矿物的晶格优选方位等构造因素有关 ;高围压下Q值各向异性与速度各向异性正好相反 ,可能是由于定向排列的矿物晶体沿不同方向其边界之间接触程度不同造成的。对岩石组构的研究不仅可以揭示岩体的变形机制、变形的动力学过程及其有关的热力学信息 ,还可以对宏观岩石的各种物理性质 ,尤其是力学特性 ,从微观机理上加以解释。文中特别强调了岩石组构分析对研究岩石物理性质的各向异性具有十分重要的意义。  相似文献   

12.
In the high‐grade (granulite facies) metamorphic rocks at Broken Hill the foliation is deformed by two groups of folds. Group 1 folds have an axial‐plane schistosity and a sillimanite lineation parallel to their fold axes; the foliation has been transposed into the plane of the schistosity by these folds. Group 2 folds deform the schistosity and distort the sillimanite lineation so that it now lies in a plane. Both groups of folds are developed as large folds. The retrograde schist zones are zones in which new fold structures have formed. These structures deform Group 1 and Group 2 folds and are associated with the formation of a new schistosity and strain‐slip cleavage. The interface between ore and gneiss is folded about Group 1 axial planes but about axes different from those in the foliation in the gneiss. On the basis of this, the orebody could not have been parallel to the foliation prior to the first recognizable structural and metamorphic events at Broken Hill. The orebody has been deformed by Group 2 and later structures.  相似文献   

13.
We conducted electrical conductivity measurements perpendicular and parallel to mineral foliation in dry gneiss at up to 1000 K and a constant pressure of 1 GPa. The analyzed gneisses were obtained from the Higo metamorphic belt, Kyushu, Japan. As the metamorphic conditions of these rocks have been well determined by previous studies, we were able to select samples that were representative of the middle to lower crust. Prior to the conductivity measurements, the samples were maintained at the maximum temperature for a long period, until the electrical conductivity had stabilized. Our experiment results reveal linear and reproducible conductivity data between temperatures of 600 and 1000 K. Conductivity measured perpendicular and parallel to foliation differ by an order of magnitude over the same temperature window. A plausible explanation for this discrepancy in conductivity is the contrasting configuration of minerals in the two sample orientations, as observed by backscattered electron image (BEI) and electron probe microanalysis (EPMA). We evaluated the conductivity and computed activation energy for each of the samples and compared the results with those of previous studies; our results are consistent with the conductivity values reported for other types of rocks. We also compared the experiment results with data derived from electromagnetic (EM) soundings. Electrical conductivity measurements undertaken perpendicular to foliation can account for the subsurface conductivity structure beneath central Kyushu, Japan.  相似文献   

14.
Abstract Layer-parallel (i.e. parallel to foliation or bedding) vein formation in the graywackes and pelites of the Quetico Metasedimentary Belt occurred during synchronous prograde metamorphism and regional (D2) compression. In a traverse across metasediments which change in metamorphic grade from greenschist to upper amphibolite (migmatite) facies, layer-parallel veins show the following trends: (1) an increase in thickness and internal complexity, the latter due to successive boudinage; (2) low-grade veins are parallel to planes of anisotropy due to the original sedimentary fabric of the host rocks, but at higher grades other sites are also used and (3) a systematic increase in plagioclase/quartz ratio in the veins towards higher grade, adjacent mafic selvedges first exhibit quartz depletion then, in the amphibolite facies, plagioclase depletion. Mineralogical zoning is often preserved in a single vein, older parts are more quartz-rich than younger. Mass balance calculations and whole-rock geochemistry based on veins, mafic selvedges and country rock are consistent with a closedsystem subsolidus segregation origin. The layerparallel veins are syntectonic, and migration of the mobile components required to form their mineralogy is a stress-induced mass transfer. The source of these components appears to be dominantly pressure solution of the same minerals in the host rocks, although metamorphic reactions may also have contributed. Veins nucleated first at those sites where initial sedimentary heterogeneites, such as fine-scale graded bedding, provided gradients of normal stress across grain boundaries, and hence of chemical potential, necessary to drive the subsolidus segregation process. The earliest veins are thus parallel to bedding. Later, nucleation of the veins could also occur along more randomly distributed sites within the metasediments, and these veins grew parallel to the schistosity rather than bedding, if the two were distinct. Once formed, the veins themselves, which are more competent than the surrounding rock, provide the stress heterogeneity required for their further growth. The increasing plagioclase/quartz ratio in the veins may be due to a temperature dependent increase in plagioclase component mobility relative to quartz. Alternatively, the increasing transfer distances for silica, resulting from prior quartz depletion in the inner parts of the mafic selvedge, may increase the relative mobility of plagioclase component.  相似文献   

15.
根据野外地质特征确定出黑龙江涌泉地区具有洋壳性质的变质基性火山岩由火山熔岩和火山角砾岩两部分组成。这些基性火山岩至少发生了两期高压变质,两期高压变质形成的钠质角闪石具有不同成因。早期的钠质角闪石与岩石片理明显不协调、无方向性、在岩石中不均匀分布,可能是在佳木斯地块与松嫩地块拼合过程中形成;晚期的钠质角闪石构成了现存片理,可能与后期构造变形有关。由于后期变质、变形作用不均匀及火山角砾岩中物质成份的差异,使得部分火山熔岩和火山角砾岩中的角砾及部分胶结物早期高压变质特征得以保留。根据研究区内及相邻地区绿色片岩特征,确定绿色片岩是由经历高压变质的基性火山岩转变而形成。  相似文献   

16.
戚炜  王勇智  姜伏伟 《岩土力学》2011,32(Z2):478-483
在对比国内外各种选取岩体力学参数方法的基础上,对黄河某高拱坝坝址区主要岩层中生代二长岩和三叠系变质砂岩采用现场原位试验和数据统计方法获取岩体力学参数。用刚性圆形承压板法进行岩体变形试验,建立了岩体纵波波速与变形模量的拟合关系,用最小二乘回归法处理变形数据。用平推法直剪试验进行岩体抗剪断强度试验,用 - 点群中心法处理直剪试验数据。软弱带取样后进行室内断层泥物理力学性质试验,运用岩土工程勘察规范中参数统计经验公式来获得各软弱带的抗剪参数。点群法求得的各抗剪指标总体上与原位试验得到的结果相一致,证明该法可用于岩体力学参数选取。  相似文献   

17.
Deciphering the relationship between polyphase tectonic foliations and their associated mineral assemblages is significant in understanding the process from diagenesis to low-/medium-/high-grade metamorphism. It can provide information related to strain, metamorphic conditions and overprinting relationships and so help reveal the tectonic evolution of orogenesis. In this study, we predominately focus on the formation of foliations and their related minerals, as developed in two separate basins. First of all, two stages of axial plane cleavages (S1 and S2) were recognized in the Hongyanjing inter-arc basin, the formation of the S1 axial plane cleavage is associated with mica rotation and elongation in mudstones in the local area. The pencil structure of S2 formed during the refolding phase, the minerals in the sedimentary rocks not changing their shape and orientation. Secondly, in the Liao-Ji backarc basin, foliations include diagenetic foliation (bedding parallel foliation), tectonic S1 foliation (secondary foliation or axial plane cleavage of S0 folding) and crenulation cleavage (S2). The formation mechanism of foliation changes from mineral rotation or elongation and mineral solution transfer in S1 to crystal-plastic deformation, dynamic recrystallization and micro-folding in S2. Many index metamorphic minerals formed from low-grade to medium-grade consist of biotites, garnets, staurolite and kyanite, constituting a typical Barrovian metamorphic belt. Accordingly, a new classification of foliation is presented in this study. The foliations can be divided into continuous and disjunctive foliations, based on the existence of microlithons, detectable with the aid of a microscope. Disjunctive foliation can be further sub-divided into spaced foliation and crenulation cleavage, according to whether (or not) crenulation (micro-folding) is present. The size of the mineral grains is also significant for classification of the foliations.  相似文献   

18.
ABSTRACT

The Yao Shan complex, a massif near the southern segment of the Ailao Shan–Red River (ASRR) shear zone, bears important information on the structural framework of the massif and the kinematics of ductile shearing along the ASRR shear zone. In this contribution, structural, microstructural, quartz c-axis fabric, magnetic fabric, and geochronologic data are used to determine the structural framework of the Yao Shan massif and its tectonic implications for the ASRR shear zone. The Yao Shan complex is characterized by an overall linear A-type antiform that contains a core of high-grade metamorphic rocks with Palaeoproterozoic to Mesozoic protoliths and a mantle of Permo-Triassic low-grade rocks. Both the high-grade metamorphic core and low-grade Permo-Triassic rocks have experienced progressive ductile shearing. Anisotropy of magnetic susceptibility (AMS) results from 17 samples collected along the Xinjie–Pingbian section across the complex show that magnetic lineation (Kmax) and foliation (KmaxKint) are generally subparallel to the corresponding structural elements in the sheared rocks. The shape parameter E values of the magnetic ellipsoids are indicative of dominantly oblate and plane strain, but vary with protolith type and degree of strain among the various rock types. In agreement with the field and microstructural observations, the corrected degree of anisotropy (Pj) values reflect high shear strain in the core rocks and relatively low shear strain in the low-grade strata. A kinematic analysis based on structural and magnetic fabric data shows that both left- and right-lateral shear occurred during the deformation of the Yao Shan complex. Therefore, instead of being an element of the ASRR shear zone, the Yao Shan complex constitutes a crustal-scale inharmonic A-type fold with a fold axis parallel to the stretching lineation. Geochronologic data reveal that the folding occurred coevally with ductile shearing of the middle to lower crust between ca. 30 and 21 Ma.  相似文献   

19.
Laboratory measurements are required to study geophysical properties of the subsurface because of lacking direct observation of Earth’s crust. In this research, compressional (P) and shear (S) wave velocity measurements have been conducted on cylindrical specimens of Quartz-micaschist cored using rock blocks taken from the zinc and lead Angouran mine, Zanjan, northwest of Iran. Cylindrical rock specimens were prepared from the blocks by coring in 0°, 30°, 45°, 60°, and 90° into the foliation direction. P- and S-wave velocities were measured along the cylindrical specimens with different foliation orientations. Percent variations of the P- and S-wave velocities (Thomsen’s anisotropic parameters ε and γ) and constant dynamic modulus of test results have been determined. Percent variations of the P-wave velocity (ε) increase with an increase of the foliation angle with respect to the propagating waves direction by a parabolic function as it shows P-wave velocity differences up to a maximum value of 50 %. Thomsen’s anisotropic parameter of γ has also the same function with the foliation angle. Meanwhile, foliation orientation has a much greater influence on ε than γ for foliation angle from 45° to 90° as \( \frac{\varepsilon }{\gamma } \) ratio increases with an increase of foliation angle. Values of dynamic elastic modulus (E), Poisson’s ratio (ν), shear modulus (μ), bulk modulus (K), and Lamé’s constant (λ) increase with the increase of foliation angle with the parabolic function. The results show that dynamic elastic modulus, Poisson’s ratio, shear modulus, bulk modulus, and Lamé’s constant have anisotropic behavior in relation with the foliation orientation.  相似文献   

20.
Despite the fact that phyllosilicates are widespread in fault zones, little is known about the strength of phyllosilicate-bearing fault rocks under brittle–ductile transitional conditions. In this study, we explored the steady state strength and healing behaviour of a simulated phyllosilicate-bearing fault rock, i.e. muscovite plus halite and brine, at room temperature, normal stresses of 1–9 MPa, atmospheric fluid pressure and sliding velocities of 0.001–13 μm/s, using a rotary shear apparatus. While 100% halite and 100% muscovite samples exhibit rate-independent frictional/brittle behaviour, the strength of mixtures containing 10–50% muscovite is both normal stress and sliding velocity dependent. At low velocities (< 1 μm/s), strength increases with increasing velocity and normal stress, and a mylonitic foliation develops. This behaviour results from pressure solution in the halite grains, which accommodates frictional sliding on the phyllosilicate foliation. The pervasive muscovite foliation, which coats all halite grains, prevents significant healing. At high velocities (> 1 μm/s), velocity-weakening frictional behaviour occurs, along with the development of a structureless, intermixed, cataclastic microstructure. The steady state porosity of samples deformed in this regime increases with increasing sliding velocity. We propose that this behaviour involves competition between dilatation due to granular flow and compaction due to pressure solution. Towards higher sliding velocities, dilatation increasingly dominates over pressure solution compaction, so that porosity increases and frictional strength decreases. During periods of zero slip, pressure solution compaction occurs, causing a significant strength increase on reshearing. Our results imply that cataclastic overprinting of mylonitic rocks in natural fault zones does not require any changes in temperature or effective pressure conditions, but can simply result from oscillating fault motion rates. Our healing data suggest that foliated, aseismically creeping fault segments will remain weak and aseismic, whereas segments that have slipped seismically will rapidly re-strengthen and remain in the unstable, velocity-weakening regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号