首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
邦铺斑岩型钼(铜)矿床位于甲玛铜多金属矿床北东约30 km处,与钼(铜)成矿有关的岩体主要为二长花岗斑岩,次为花岗闪长斑岩及闪长(玢)岩.通过对二长花岗斑岩体进行LA-ICP-MS锆石U-Pb年龄测试,获得了含矿母岩的年龄,二长花岗斑岩的26颗锆石206Pb/238U加权平均年龄为(16.23±0.19)Ma(MSWD...  相似文献   

2.
岗讲铜钼矿床是西藏冈底斯成矿带中段典型的斑岩型矿床,岗讲矿床成岩成矿时代、岩浆演化过程及其与成岩成矿关系尚不明确,利用LA-ICP-MS锆石U-Pb定年方法对岗讲矿区主要岩体二长花岗斑岩、花岗闪长斑岩和英云闪长玢岩成岩时代进行研究,获得锆石U-Pb年龄加权平均值分别为16.6±0.3 Ma (MSWD=0.94,n=10)、16.1±0.2 Ma (MSWD=1.07,n=12)、14.4±0.4 Ma (MSWD=1.12,n=7);同时采用辉钼矿Re-Os同位素测年方法首次对岗讲矿床石英硫化物脉中的辉钼矿进行定年,获得12件辉钼矿Re-Os同位素模式年龄集中于13.24±0.20 Ma~13.55±0.22 Ma,加权平均年龄为13.4±0.1 Ma (MSWD=0.65),等时线年龄为13.6±1.6 Ma (MSWD=1.2).结果表明:(1) 岗讲矿区复式岩体侵入序列为含巨斑黑云二长花岗岩-二长花岗斑岩-花岗闪长斑岩-流纹斑岩 (深部定名为英云闪长玢岩),成岩时限为16.6~14.4 Ma,成矿时代为13.4 Ma左右,成岩成矿是一个连续的岩浆演化过程;(2) 辉钼矿中Re含量为155.4~171.1 μg/g,均值为162.9 μg/g,指示其成矿物质中有幔源成分的加入;(3) 矿床产出于中新世印度-亚洲大陆碰撞后伸展构造环境.   相似文献   

3.
鄂东鸡冠嘴矿区成矿岩体锆石SHRIMP U-Pb定年及其意义   总被引:5,自引:0,他引:5  
鄂东鸡冠嘴铜金(铁)矿床位于阳新岩体西北端,与铜绿山铜金矿床毗邻。矿区成矿岩体主要岩性为石英正长闪长玢岩、石英闪长岩、闪长岩和安山玢岩。其中石英正长闪长玢岩与成矿关系密切。在前人矿床地质特征研究基础上,笔者对成矿岩体进行了锆石SHRIMP U-Pb定年,获得石英正长闪长玢岩和闪长岩的年龄为146±2Ma(95%可信度,MSWD=1.3)和132±4Ma(95%可信度,MSWD=3)。测定结果表明,区内石英正长闪长玢岩和闪长岩分属燕山早期和燕山晚期岩浆活动的产物。鉴于矿体在空间上主要赋存于岩体内外接触带及层间破碎带中,推测成矿作用应略晚于石英正长闪长玢岩(146±2Ma)而早于闪长岩侵位的时间(132±4Ma),这与前人获得长江中下游铜铁金成矿带代表性矿床的辉钼矿Re-Os模式年龄分布在134.7~143Ma的研究结果一致。  相似文献   

4.
西藏曲水县达布斑岩铜(钼)矿床成岩成矿年代学研究   总被引:1,自引:0,他引:1  
本文采用锆石LA-ICP-MS微区U-Pb测年技术,对冈底斯成矿带东段曲水县达布斑岩Cu(Mo)矿床北部达布矿区含矿斑岩体、南部显角囊含矿花岗闪长斑岩岩体进行了年代学研究,通过对3件岩体样品中单颗粒锆石的分析,达布主矿体花岗闪长斑岩样品206Pb/238U年龄加权平均值为16.5±0.05Ma(n=15,MSWD=3),达布主含矿体二长花岗斑岩样品年龄为16.1±0.13Ma(n=15,MSWD=1.03),南部显角囊矿体花岗闪长斑岩年龄为16.2±0.04Ma(n=13,MSWD=0.0064)。对达布矿床斑岩Cu(Mo)矿床主矿体中4件辉钼矿样品,显角囊矿体中6件辉钼矿样品,分别进行了Re-Os同位素测试,等时线年龄分别为14.6±0.50Ma(MSWD=0.35,主矿体)、14.8±0.23Ma(MSWD=1.3,显角囊)。结合前人研究以及本次测年结果认为:1)达布斑岩铜(钼)矿床岩体侵位的年龄应限定在16Ma左右,成矿时代为14Ma左右,成矿时间差小于0.86Ma,与区域上"成矿瞬时发生"的成矿规律是一致的;2)矿床产出于印度-亚洲大陆板块后碰撞伸展环境。  相似文献   

5.
The Ga'erqiong‐Galale skarn–porphyry copper–gold ore‐concentrated area is located in the western part of the Bangong‐Nujiang suture zone north of the Lhasa Terrane. This paper conducted a systematic study on the magmatism and metallogenic effect in the ore‐concentrated area using techniques of isotopic geochronology, isotopic geochemistry and lithogeochemistry. According to the results, the crystallization age of quartz diorite (ore‐forming mother rock) in the Ga'erqiong deposit is 87.1 ± 0.4 Ma, which is later than the age of granodiorite (ore‐forming mother rock) in the Galale deposit (88.1 ± 1.0 Ma). The crystallization age of granite porphyry (GE granite porphyry) in the Ga'erqiong deposit is 83.2 ± 0.7 Ma, which is later than the age of granite porphyry (GL granite porphyry) in the Galale deposit (84.7 ± 0.8 Ma).The quartz diorite, granodiorite, GE granite porphyry and GL granite porphyry both main shows positive εHf(t) values, suggesting that the magmatic source of the main intrusions in the ore‐concentrated area has the characteristics of mantle source region. The Re–Os isochron age of molybdenite in the Ga'erqiong district is 86.9 ± 0.5 Ma, which is later than the mineralization age of the Galale district (88.6 ± 0.6 Ma). The main intrusive rocks in the ore‐concentrated area have similar lithogeochemical characteristics, for they both show the relative enrichment in large‐ion lithophile elements(LILE: Rb, Ba, K, etc.), more mobile highly incompatible lithophile elements(HILE: U, Th) and relatively depleted in high field strength elements (HFSE: Nb, Ta, Zr, Hf, etc.), and show the characteristics of magmatic arc. The studies on the metal sulfides' S and Pb isotopes and Re content of molybdenite indicate that the metallogenic materials of the deposits in the ore‐concentrated area mainly come from the mantle source with minor crustal source contamination. Based on the regional tectonic evolution process, this paper points out that the Ga'erqiong‐Galale copper–gold ore‐concentrated area is the typical product of the Late Cretaceous magmatism and metallogenic event in the collision stage of the Bangong‐Nujiang suture zone.  相似文献   

6.
The Dawan Mo–Zn–Fe deposit located in the Northern Taihang Mountains in the middle of the North China Craton (NCC) contains large Mo‐dominant deposits. The mineralization of the Dawan Mo–Zn–Fe deposit is associated with the Mesozoic Wanganzhen granitoid complex and is mainly hosted within Archean metamorphic rocks and Proterozoic–Paleozoic dolomites. Rhyolite porphyry and quartz monzonite both occur in the ore field and potassic alteration, strong silicic–phyllic alteration, and propylitic alteration occur from the center of the rhyolite porphyry outward. The Mo mineralization is spacially related to silicic and potassic alteration. The Fe orebody is mainly found in serpentinized skarn in the external contact zone between the quartz monzonite and dolomite. Six samples of molybdenite were collected for Re–Os dating. Results show that the Re–Os model ages range from 136.2 Ma to 138.1 Ma with an isochron age of 138 ± 2 Ma (MSWD = 1.2). U–Pb zircon ages determined by laser ablation inductively coupled plasma mass spectrometry yield crystallization ages of 141.2 ± 0.7 (MSWD = 0.38) and 130.7 ± 0.6 Ma (MSWD = 0.73) for the rhyolite porphyry and quartz monzonite, respectively. The ore‐bearing rhyolite porphyry shows higher K2O/Na2O ratios, ranging from 58.0 to 68.7 (wt%), than those of quartz monzonite. All of the rock samples are classified in the shoshonitic series and characterized by enrichment in large ion lithophile elements; depletion in Mg, Fe, Ta, Ni, P, and Y; enrichment in light rare earth elements with high (La/Yb)n ratios. Geochronology results indicate that skarn‐type Fe mineralization associated with quartz monzonite (130.7 ± 0.6 Ma) formed eight million years later than Mo and Zn mineralization (138 ± 2 Ma) in the Dawan deposit. From Re concentrations in molybdenite and previously presented Pb and S isotope data, we conclude that the ore‐forming material of the deposit was derived from a crust‐mantle mixed source. The porphyry‐skarn type Cu–Mo–Zn mineralization around the Wanganzhen complex is related to the primary magmatic activity, and the skarn‐type Fe mineralization is formed at the late period magmatism. The Dawan Mo–Zn–Fe porphyry‐skarn ores are related to the magmatism that was associated with lithospheric thinning in the NCC.  相似文献   

7.
龙门钼矿床是太行山北段成矿带内近些年探明的一个大型钼矿床,钼矿体主要产于花岗斑岩、闪长岩和新太古代片麻岩中,以角砾岩型矿石为主.矿区内辉钼矿化主要类型为浸染状、薄膜状、细脉状,发育钾长石化、硅化、绢云母化、黄铁矿化蚀变,类似典型的斑岩型矿床的矿化和蚀变特征.文章对龙门钼矿床的闪长岩和花岗斑岩进行了LA-ICP-MS锆石U-Pb同位素测年,获得闪长岩的锆石谐和年龄为(138.1±0.6)Ma(MSWD=0.6,n=21),花岗斑岩的锆石谐和年龄为(137.0±0.7)Ma(MSWD=1.03,n=17),结合地质特征,显示花岗斑岩晚于闪长岩形成.对主要矿石类型中的辉钼矿进行了Re-Os同位素测年,获得辉钼矿的Re-Os等时线年龄为(136.5±1.5)Ma,与赋矿的花岗斑岩的侵位年龄相一致,二者应为同一岩浆-流体活动的产物.龙门钼矿床辉钼矿样品的w(Re)为13.1×10-6~59.3×10-6,表明其成矿物质来源于壳幔混源.龙门矿区及太行山北段成矿带内的隐爆角砾岩体是下一步找矿勘查的方向.  相似文献   

8.
戴盼  吴胜华  丁成武 《岩石学报》2018,34(9):2598-2614
王坞斑岩型Mo-Cu矿床位于北武夷地区,地处钦杭构造岩浆成矿带北段。目前钻孔信息显示,该矿床的矿体主要由网脉状石英-辉钼矿-黄铜矿矿石组成,也含少量的浸染状和细脉浸染状Cu-Mo矿化,主要的蚀变作用包括硅化、绢英岩化和绿泥石化。矿区内隐伏燕山期的花岗斑岩脉及石英闪长玢岩脉。本文对该矿床的花岗斑岩进行了LA-ICP-MS锆石U-Pb测年,对主要矿石类型(网脉状石英-辉钼矿矿石)中的辉钼矿进行了Re-Os同位素测年。结果显示,花岗斑岩的锆石U-Pb年龄为136. 7±2. 2Ma,辉钼矿的Re-Os同位素模式年龄为132. 6±1. 8Ma~134. 5±2. 0Ma,加权平均值为133. 7±0. 94Ma,对应的Re-Os等时线年龄为134. 8±2. 1Ma。花岗斑岩的锆石U-Pb年龄和辉钼矿的Re-Os年龄在误差范围内基本一致,且花岗斑岩和矿体之间具有密切的空间关系,指示王坞Mo-Cu矿床的Mo矿化可能与矿区内的花岗斑岩存在密切的成因联系。北武夷地区主要的斑岩-矽卡岩和岩浆热液脉型Cu-Mo多金属矿床的成岩成矿年龄数据的统计结果显示,北武夷地区的Cu-Mo-Pb-ZnAg成矿作用主要集中在燕山期,可被划分为150~165Ma和140~125Ma两个阶段。结合区域构造背景资料,王坞Mo-Cu矿床形成于早白垩纪伸展的构造背景下。  相似文献   

9.
The Great Xing'an Range (GXR), Northeast (NE) China, is a major polymetallic metallogenic belt in the eastern segment of the Central Asian Orogenic Belt. The newly discovered Xiaokele porphyry Cu (–Mo) deposit lies in the northern GXR. Field geological and geochronological studies have revealed two mineralization events in this deposit: early porphyry‐type Cu (–Mo) mineralization, and later vein‐type Cu mineralization. Previous geochronological studies yielded an age of ca. 147 Ma for the early Cu (–Mo) mineralization. Our 40Ar/39Ar dating yielded 40Ar/39Ar plateau ages of 124.8 ± 0.4 to 124.3 ± 0.4 Ma on K‐feldspar in altered Cu‐mineralized diorite porphyrite dikes that represent the overprinting vein‐type Cu mineralization, consistent with zircon U–Pb ages of the diorite porphyrite (126.4 ± 0.5 to 125.0 ± 0.5 Ma). The Cr and Ni contents and Mg# of the Xiaokele diorite porphyrites are high. The diorite porphyrites at Xiaokele are enriched in light rare‐earth elements (REEs), and large‐ion lithophile elements (e.g., Rb, Ba, and K), are depleted in heavy REEs and high‐field‐strength elements (e.g., Nb, Ta, and Ti), and have weak negative εHf(t) values (+0.29 to +5.27) with two‐stage model ages (TDM2) of 1,164–845 Ma. Given the regional tectonic setting in Early Cretaceous, the ore‐bearing diorite porphyrites were likely formed in an extensional environment related to lithospheric delamination and asthenospheric upwelling induced by subduction of the Paleo‐Pacific Plate. These tectonic events caused large‐scale magmatic activity, ore mineralization, and lithospheric thinning in NE China.  相似文献   

10.
The Tiegelongnan Cu (Au) deposit is the largest copper deposit newly discovered in the Bangong–Nujiang metallogenic belt. The deposit has a clear alteration zoning consisting of, from core to margin, potassic to propylitic, superimposed by phyllic and advanced argillic alteration. The shallow part of the deposit consists of a high sulphidation‐state overprint, mainly comprising disseminated pyrite and Cu–S minerals such as bornite, covellite, digenite, and enargite. At depth porphyry‐type mineralization mainly comprises disseminated chalcopyrite, bornite, pyrite, and a minor vein molybdenite. Mineralization is disseminated and associated with veins contained within the porphyry intrusions and their surrounding rocks. The zircon U–Pb ages of the mineralized diorite porphyry and granodiorite porphyry are 123.1 ± 1.7 Ma (2σ) and 121.5 ± 1.5 Ma (2σ), respectively. The molybdenite Re–Os age is 121.2 ± 1.2 Ma, suggesting that mineralization was closely associated with magmatism. Andesite lava (zircon U–Pb age of 111.7 ± 1.6 Ma, 2σ) overlies the ore‐bodies and is the product of post‐mineralization volcanic activity that played a critical role in preserving the ore‐bodies. Values of ?4.6 ‰ to + 0.8 ‰ δ34S for the metal sulfides (mean ? 1.55 ‰) suggest that S mainly has a deep magmatic source. The H and O isotopic composition is (δD = ?87 ‰ to ?64 ‰; δ18OH2O = 5.5 ‰ to 9.0 ‰), indicating that the ore‐forming fluids are mostly magmatic‐hydrothermal, possibly mixed with a small amount of meteoric water. The zircon εHf(t) of the diorite porphyry is 3.7 to 8.3, and the granodiorite porphyry is 1.8 to 7.5. Molybdenite has a high Re from 382.2 × 10?6 to 1600 × 10?6. Re and Hf isotope composition show that Tiegelongnan has some mantle source, maybe the juvenile lower crust from crust–mantle mixed source. Metallogenesis of the Tiegelongnan giant porphyry system was associated with intermediate to acidic magma in the Early Cretaceous (~120 Ma). The magma provenance of the Tiegelongnan deposit has some mantle‐derived composition, possibly mixed with the crust‐derived materials.  相似文献   

11.
258高地金矿床地处黑龙江省完达山成矿带东部,矿化与岩浆侵入活动密切相关。文章利用锆石LA-ICP-MS U-Pb定年方法,对258高地金矿区的二长花岗岩、花岗闪长岩及闪长玢岩进行了年代学研究,获得258金矿区花岗闪长岩的成岩年龄为(118.3±1.1)Ma;3件二长花岗岩样品的成岩年龄分别为(130.5±0.8)Ma、(122.1±0.7)Ma、(118.0±0.9)Ma;2件闪长玢岩的成岩年龄分别为(119.5±1.3)Ma、(107.4±2.2)Ma,表明本区中酸性岩体侵位时代介于131~107 Ma,与西太平洋构造域的早白垩世演化有关。定年结果同时表明矿区存在3期岩浆活动,其中122~118 Ma的二长花岗岩与花岗闪长岩、闪长玢岩的年龄在误差范围内一致,且与金矿成矿关系密切。岩石地球化学显示区内的中酸性侵入岩均为高钾钙碱性过铝质岩石,花岗闪长岩和二长花岗岩具有重熔型岩浆岩的特征,可能是加厚地壳物质部分熔融的产物;闪长玢岩脉具有典型壳幔源岛弧岩浆岩的特点。综合研究认为258高地金矿床形成于与板块俯冲有关的活动大陆边缘环境。  相似文献   

12.
陕西洛南县石家湾钼矿Re-Os同位素年龄及地质意义   总被引:1,自引:0,他引:1  
陕西石家湾钼矿床位于东秦岭成矿带西段黄龙铺地区,钼矿化呈细脉-网脉状分布于花岗斑岩体及其围岩中,与矿化有关的围岩蚀变有钾长石化、硅化、绢云母化,属斑岩型矿床.在矿床中选取不同矿化类型的辉钼矿样品,进行了Re~Os同位素定年,获得模式年龄变化范围为143.1±2.1~145.1±2.2 Ma之间,其加权平均年龄(144.0±1.1 Ma,MSWD=0.91)、等时线年龄(145.4±2.1 Ma,MSWD=0.83)与石家湾斑岩体的成岩年龄(141.4±0.6Ma)相近,说明成岩成矿作用发生在晚侏罗世一早白垩世.综合辉钼矿中Re的含量、硫同位素以及相关岩体的源区特征等多方面证据认为,石家湾斑岩型钼矿的成矿物质主要来自于下地壳,并混有少量幔源成分.  相似文献   

13.
The Naruo porphyry copper-gold deposit(hereinafter referred to as the Naruo deposit) in Tibet is a potentially ultra-large, typical gold-rich porphyry copper deposit, which was recently discovered in the Bangongco-Nujiang metallogenic belt. This study analyzed U-Pb chronology and Hf isotopes of the ore-bearing granodiorite porphyry in the Naruo deposit using the LA-ICPMS dating technique. The results show that the weighted average age is 124.03±0.94Ma(MSWD=1.7, n=20), and 206Pb/238 U isochron age is 126.2±2.7 Ma(MSWD=1.02, n=20), both of which are within the error. The weighted average age represents the crystallization age of the granodiorite porphyry, which indicates that the ore-bearing porphyry in the Naruo deposit area was formed in the Early Cretaceous and further implies that the Neo-tethys Ocean had not been closed before 124 Ma under a typical island-arc subduction environment. The εHf(t) of zircons from the granodiorite porphyry varies from 2.14 to 9.07, with an average of 5.18, and all zircons have εHf(t) values greater than 0; 176Hf/177 Hf ratio is relatively high(0.282725–0.282986). Combined with the zircon age―Hf isotope correlation diagram, the aforementioned data indicate that the source reservoir might be a region that is mixed with depleted mantle and ancient crust, which possibly contains more materials sourced from depleted mantle. Rock-forming ages and ore-forming ages of the Duolong ore concentrate area are 120–124 Ma and 118–119 Ma, respectively, which indicate 124–118 Ma represents the main rockforming and ore-forming stage within the area. The Naruo deposit is located in the north of the Bangongco-Nujiang suture, and it yielded a zircon LA-ICPMS age of 124.03 Ma. This indicates the Bangongco-Nujiang oceanic basin subducted towards the north at about 124 Ma, and the Neo-tethys Ocean had not been closed before the middle Early Cretaceous. It is possible that the crust-mantle mixing formed the series of large and giant porphyry copper-gold deposits in the Bangongco.  相似文献   

14.
The Bolong porphyry Cu–Au deposit is a newly discovered deposit in the central Tibetan Plateau, and is ranked as the second largest copper deposit discovered to date in the Bangong‐Nujiang metallogenic belt in China. Three granodiorite porphyry phases occur within the Bolong porphyry Cu–Au deposit. Phyllic alteration is widespread on the surface of the deposit, and potassic alteration occurs at depth, associated with granodiorite porphyries. The copper and gold mineralization is clearly related to the potassic and phyllic alteration. Multiple chronometers were applied to constrain the timing of magmatic–hydrothermal activity at the Bolong deposit. Zircon U–Pb geochronology reveals that the granodiorite porphyry phases were emplaced at ca. 120 Ma. Re–Os data of four molybdenite samples from quartz–molybednite veinlets yielded an isochron age of 119.4 ± 1.3 Ma. The plateau age of hydrothermal K‐feldspar from the potassic alteration zone, analyzed by 40Ar/39Ar dating, is 118.3 ± 0.6 Ma, with a similar reverse isochron age of 118.5 ± 0.7 Ma. Therefore, the magmatic–hydrothermal activity occurred at ca. 120–118 Ma, which is similar in age to the neighboring Duobuza porphyry copper deposit. The period of 120–118 Ma is therefore important for the development of porphyry Cu–Au mineralization in the central Tibetan Plateau, and these porphyry deposits were formed during the final stages of the northward subduction of the Neo‐Tethys Ocean.  相似文献   

15.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

16.
西藏墨竹工卡县甲玛铜多金属矿中,辉钼矿普遍发育,产于各类矿石中,尤其在矽卡岩型和角岩型矿石中最常见,其次是斑岩型矿石,极少量产于大理岩和结晶灰岩型矿石中。本文采集了甲玛铜多金属矿矽卡岩、角岩和斑岩中不同产状、不同形态的辉钼矿,进行Re-Os同位素定年,获得了27件样品的模式年龄为14.2~17.5 Ma,等时线年龄为15.22±0.59 Ma。其中,斑岩型辉钼矿等时线年龄为14.78±0.33 Ma,角岩型辉钼矿等时线年龄为14.67±0.19 Ma,结果一致。辉钼矿中187Re含量变化于38.75~387.4 g/g,其中,角岩中辉钼矿187Re含量为121.5~387.4 g/g,矽卡岩中为123.7~304.7 g/g,含量较高,而斑岩中辉钼矿的187Re含量相对较低,38.75~130.5 g/g,平均69.0 g/g;辉钼矿187Os含量变化情况基本与187Re相同。甲玛辉钼矿187Re值与冈底斯其他矿体的值对比,显示冈底斯成矿带斑岩-矽卡岩型矿床成矿原岩具有相对较高187Re值的特点。本文研究成果表明,甲玛大型铜多金属矿床形成于中新世Langhian期,辉钼矿为主成矿期的产物之一。鉴于辉钼矿的产出状态,以及其与黄铜矿等的共生组合关系,辉钼矿的成矿时代可代表矿区内主要矿石矿物的成矿时代,且与冈底斯成矿带上一大批大中型斑岩型铜矿的成矿时代一致,成矿集中在20~10 Ma之间,形成于印度大陆与亚洲大陆碰撞之后,从而否定了前人海底喷流沉积的成因观点,为矿区内及其外围进一步的找矿指明了方向。  相似文献   

17.
The Xiaohongshilazi deposit located in central Jilin Province, Northeast China, is a newly discovered and medium‐scale Pb–Zn–(Ag) deposit with ore reserves of 34,968 t Pb, 100,150 t Zn, and 158 t Ag. Two‐stage mineralization has been identified in this deposit. Stratiform volcanic‐associated massive sulfide (VMS) Pb–Zn mineralization interbedding with the marine volcanic rocks of the Late Carboniferous–Early Permian Daheshen Formation was controlled by the premineralization E–W‐trending faults. Vein‐type Pb–Zn–(Ag) mineralization occurs within or parallel to the granodiorite and diorite porphyries controlled by the major‐mineralization N–S‐trending faults that cut the stratiform mineralization and volcanic rocks. To constrain the age of vein‐type Pb–Zn–(Ag) mineralization and determine the relationship between mineralization and magmatism, we conducted LA–ICP–MS U–Pb dating on zircon from the ore‐bearing granodiorite and diorite porphyries and Rb–Sr dating on metal sulfide. Granodiorite and diorite porphyries yield zircon U–Pb weighted‐mean 206Pb/238U ages of 203.6 ± 1.8 Ma (Mean Standard Weighted Deviation [MSWD] = 1.8) and 225.6 ± 5.1 Ma (MSWD = 2.3), respectively. Sulfides from four vein‐type ore samples yield a Rb–Sr isochron age of 195 ± 17 Ma (MSWD = 4.0). These results indicate a temporal relationship between the granodiorite porphyry and vein‐type Pb–Zn–(Ag) mineralization. The granodiorite associated with vein‐type mineralization has high SiO2 (68.99–70.49 wt.%) and Na2O (3.9–4.2 wt.%; Na2O/K2O = 1.07–1.10) concentrations, and A/CNK values of 0.95–1.04; consequently, the intrusion is classified as a high‐K, calc‐alkaline, metaluminous I‐type granite. The granodiorite porphyry is enriched in large‐ion lithophile elements (e.g. Rb, Th, U, and K) and light REE and is depleted in high‐field‐strength elements (e.g. Nb, Ta, P, and Ti) and heavy REE, indicating that it represents a subduction‐related rock that formed at an active continental margin. Furthermore, the granodiorite porphyry has Mg# values of 31–34, indicating a lower crustal source. Based on petrological and geochemical features, we infer that the ore‐bearing granodiorite porphyry was derived from the partial melting of the lower crust. In summary, mineralization characteristics, cross‐cutting relationships, geochronological data, and regional tectonic evolution indicate that the region was the site of VMS Pb–Zn mineralization that produced stratiform orebodies within the Late Carboniferous–Early Permian marine volcanic rocks of the Daheshen Formation, followed by mesothermal magmatic hydrothermal vein‐type Pb–Zn–(Ag) mineralization associated with granodiorite porphyry induced by the initial subduction of the Paleo‐Pacific Plate beneath the Eurasia Plate during the Late Triassic–Early Jurassic.  相似文献   

18.
The Xinlu Sn‐polymetallic ore field is located in the western Nanling Polymetallic Belt in northeastern Guangxi, South China, where a number of typical skarn‐, hydrothermal vein‐type tin deposits have developed. There are two types of Sn deposits: skarn‐type and sulfide‐quartz vein‐type. The tin mineralizations mainly occur on the south side of the Guposhan granitic complex pluton and within its outer contact zone. To constrain the Sn mineralization age and further understand its genetic links to the Guposhan granitic complex, a series of geochronological works has been conducted at the Liuheao deposit of the ore field using high‐precision zircon SHRIMP U‐Pb, molybdenite Re‐Os, and muscovite Ar‐Ar dating methods. The results show that the biotite‐monzogranite, which is part of the Xinlu intrusive unit of the Guposhan complex pluton, has a SHRIMP U‐Pb zircon age of 161.0 ± 1.5 Ma. The skarn‐type ore has a 40Ar‐39Ar muscovite plateau age of 160 ± 2 Ma (same as its isochron age), and the sulfide‐quartz vein‐type ore yields an Re‐Os molybdenite isochron age of 154.4 ± 3.5 Ma. The magmatic‐hydrothermal geochronological sequence demonstrated that the hydrothermal mineralization took place immediately following the emplacement of the monzogranite, with the skarn metasomatic mineralization stage predating the sulfide mineralization stage. Geochronologically, we have compared this ore field with 26 typical Sn deposits distributed along the Nanling Polymetallic Belt, leading to the suggestion of the magmatic‐metallogenic processes in the Xinlu ore field (ca. 161–154 Ma) as a component of the Early Yanshanian large‐scale Sn‐polymetallic mineralization event (peaked at 160–150 Ma) in the Nanling Range of South China. Petrogenesis of Sn‐producing granite and Sn‐polymetallic mineralization were probably caused by crust–mantle interaction as a result of significant lithospheric extension and thinning in South China in the Late Jurassic.  相似文献   

19.
1 Introduction Since the Guilaizhuang gold deposit was discovered in the 1980s, the Tongshi magmatic complex has attracted attention since it exhibits a spatial-temporal relationship to gold mineralization. In the past ten years, a number of detailed fundamental researches have been carried out on the complex, Guilaizhuang gold deposit and their relationships (Qiu et al., 1994; Lin et al., 1996; Yan et al., 1996; Xu et al., 1999; Kong et al., 2001; Shun et al., 2001). Up to date, some res…  相似文献   

20.
西藏邦铺斑岩型钼(铜)矿床位于冈底斯成矿带东段,地理位置上与甲玛铜多金属矿床、驱龙斑岩铜矿床毗邻.矿区岩浆活动频繁,发育不同类型、不同期次的侵入岩体,辉绿玢岩出露于矿区北部,地质研究程度相对较低.为了精确限制其成岩时代,文章通过对辉绿玢岩脉体LA-ICP-MS锆石U-Pb年龄精确测试,获得了19颗锆石206Pb/238...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号