首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
Upper mantle low anisotropy channels below the Pacific Plate   总被引:1,自引:0,他引:1  
A new 3D anisotropic model has been obtained at a global scale by using a massive dataset of seismic surface waves. Though seismic heterogeneities are usually interpreted in terms of heterogeneous temperature field, a large part of lateral variations are also induced by seismic anisotropy of upper mantle minerals. New insight into convection processes can be gained by taking seismic anisotropy into account in the inversion procedure. The model is best resolved in the Pacific Plate, the largest and the most active tectonic plate. Superimposed on the large-scale radial (ξ parameter) and azimuthal anisotropy (of VSV velocity) within and below the lithosphere, correlated with present or past Pacific Plate motions, are smaller-scale (<1000 km) lateral variations of anisotropy not predicted by plate tectonics. Channels of low anisotropy down to a depth of 200 km (hereafter referred to as LAC) are observed and are the best resolved anomalies: one east-west channel between Easter Island and the Tonga-Kermadec subduction zones (observed on both radial and azimuthal anisotropies) and a second one (only observed on azimuthal anisotropy) extending from the south-west Pacific up to south-east Hawaii, and passing through the Polynesia hotspot group for plate older than about 40 Ma. These features provide strong constraints on the decoupling between the plate and asthenosphere. They are presumably related to cracking within the Pacific Plate and/or to secondary convection below the rigid lithosphere, predicted by numerical and analog experiments. The existence and location of these LACs might be related to the current active volcanoes and hotspots (possibly plumes) in the Central Pacific. LACs, which are dividing the Pacific Plate into smaller units, might indicate a future reorganization of plates with ridge migrations in the Pacific Ocean.  相似文献   

2.
背景噪声层析成像技术已被广泛应用于地壳和上地幔速度结构的研究,这种方法不依靠地震的发生和人工源爆破,只需记录连续的噪声信号而无需产生信号,因为噪声穿过地下介质时会携带信息,然后通过利用台站记录到的连续背景噪声数据进行互相关计算和叠加,即可得到台站间的经验格林函数,从而获取对地下结构的认识。这种方法已经很好地应用于中国的东北地区、华北克拉通、青藏高原以及华南地区,并成功地揭示了这些地区地壳与上地幔顶部的速度结构。此外近年来,一些学者还利用噪声互相关技术研究地下介质地震波速度随时间的变化,通过对汶川大地震前后连续噪声记录的研究发现,大震发生后呈现同震波速降低和震后波速逐渐恢复的特点,这表明可以通过观测地震波特性的变化来监测地下应力的变化,从而为大震的预测预防工作提供科学依据。本文主要综述了近些年来背景噪声技术及其在中国大陆地区的应用。  相似文献   

3.
Siberian traps are the result of huge basalt eruptions which took place about 250 Ma ago over a vast territory of Siberia. The genesis of Siberian traps is attributed to a mantle plume with a center in the region of Iceland or beneath the central Urals in terms of their present coordinates. The eruption mechanism is associated with delamination—replacement of the mantle lithosphere by the deep magma material. The receiver function analysis of the records from the Norilsk seismic station (NRIL) allows comparing these hypotheses with the factual data on the depth structure of the region of Siberian traps. The S-wave velocity section place the seismic lithosphere/asthenosphere boundary (LAB) at a depth of 155–190 km, commensurate with the data for the other cratons. The mantle lithosphere has a high S-wave velocity characteristic of cratons (4.6–4.8 km/s instead of the typical value 4.5 km/s). The seismic boundary, which is located at a depth around 410 km beneath the continents is depressed by ~10 km in the region of the NRIL station. The phase diagram of olivine/wadsleyite transformation accounts for this depression by a 50–100°С increase in temperature. At the depths of 350–400 km, the S-wave velocity drops due to partial melting. A new reduction in the S-wave velocities is observed at a depth of 460 km. The similar anomalies (deepening of the 410-km seismic boundary and low shear wave velocity at depths of 350–400 and 460–500 km, respectively) were previously revealed in the other regions of the Meso-Cenozoic volcanism. In the case of a differently directed drift of the Siberian lithosphere and underlying mantle at depths down to 500 km, these anomalies are barely accountable. In particular, if the mantle at a depth ranging from 200 to 500 km is fixed, the anomalies should be observed at the original locations where they emerged 250 Ma ago, i.e. thousands of km from the Siberian traps. Our seismic data suggest that despite the low viscosity of the asthenosphere, the mantle drift at depths ranging from 200 to 500 km is correlated with the drift of the Siberian lithospheric plate. Furthermore, the position of the mantle plume beneath the Urals is easier to reconcile with the seismic data than its position beneath Iceland because of the Siberian traps being less remote from the Urals.  相似文献   

4.
From an analysis of many seismic profiles across the stable continental regions of North America and northern Europe, the crustal and upper mantle velocity structure is determined. Analysis procedures include ray theory calculations and synthetic seismograms computed using reflectivity techniques. TheP wave velocity structure beneath the Canadian Shield is virtually identical to that beneath the Baltic Shield to a depth of at least 800 km. Two major layers with a total thickness of about 42 km characterize the crust of these shield regions. Features of the upper mantle of these region include velocity discontinuities at depths of about 74 km, 330 km, 430 km and 700 km. A 13 km thickP wave low velocity channel beginning at a depth of about 94 km is also present.A number of problems associated with record section interpretation are identified and a generalized approach to seismic profile analysis using many record sections is described. TheS wave velocity structure beneath the Canadian Shield is derived from constrained surface wave data. The thickness of the lithosphere beneath the Canadian and Baltic Shields is determined to be 95–100 km. The continental plate thickness may be the same as the lithospheric thickness, although available data do not exclude the possibility of the continental plate being thicker than the lithosphere.  相似文献   

5.
The paper presents a review and analysis of new seismic data related to the structure of the mantle beneath the East European platform. Analysis of observations of long-range profiles revealed pronounced differences in the structure of the lower lithosphere beneath the Russian plate and the North Caspian coastal depression. The highest P-velocities found at depths around 100 km are in the range 8.4–8.5 km s?1. Deep structure of the Baltic shield is different from the structures of both these regions. No evidence of azimuthal anisotropy in the upper mantle was found. A distribution of P-velocity in the upper mantle and in the transition zone consistent with accurate travel-time data was determined. The model involves several zones of small and large positive velocity gradients in the upper mantle, rapid increases of velocity near 400 and 640 km depths and an almost constant positive velocity gradient between the 400 and 640 km discontinuities. The depth of the 640 km discontinuity was determined from observations of waves converted from P to SV in the mantle.  相似文献   

6.
A self-consistent approach is proposed for the investigation of the thermal conditions, chemical composition, and internal structure of the upper mantle of the Earth. Using this approach, the thermal state of the lithospheric mantle beneath the Siberian Craton (SC) is reconstructed from P velocities, taking into account the phase transitions, anharmonicity, and the effects of anelasticity. The velocities of seismic waves are more sensitive to temperature than to the composition of the mantle rocks, which allows the velocity models to be effectively used for reconstruction of the thermal regime of the mantle. The temperature at depths 100–300 km is reconstructed by inversion of the Kraton and Kimberlit superlong seismic profiles for compositions of the garnet harzburgite, lherzolite, and intermediate composition of garnet peridotite. The averaged temperature in the normal continental mantle is reconstructed by inversion of the IASP91 reference model for depleted and fertile substance. One-dimensional models and two-dimensional thermal fields undergo a substantial fall in temperature (~300–600°C) beneath the Siberian Craton as compared to the temperatures of the continental mantle and paleotemperatures inferred from the thermobarometry of xenoliths. Temperature profiles of the Siberian Craton deduced from seismic data lie between the conductive geotherms of 32.5–40.0 mW/m2 and below the P(H)-T values obtained for low- and high-temperature xenoliths from the Mir, Udachnaya, and Obnazhennaya kimberlite pipes. The thickness of the thermal lithosphere estimated from the intersection with the potential adiabat is 300–320 km, which is consistent with the data on heat flows and seismotomographic observations. This provides grounds for the assumption that the low-temperature anomalies (thermal roots of continents) penetrate down to a depth of 300 km. The analysis of the sensitivity of seismic velocity and density to the variations in temperature, pressure, and chemical and phase composition of petrological models shows that recognition of fine differences in chemical composition of the lithospheric rocks by seismic methods is impossible.  相似文献   

7.
We have produced a P-wave model of the upper mantle beneath Southeast (SE) Asia from reprocessed short period International Seismological Centre (ISC) P and pP data, short period P data of the Annual Bulletin of Chinese Earthquakes (ABCE), and long period PP-P data. We used 3D sensitivity kernels to combine the datasets, and mantle structure was parameterized with an irregular grid. In the best-sampled region our data resolve structure on scale lengths less than 150 km. The smearing of crustal anomalies to larger depths is reduced by a crustal correction using an a priori 3D model. Our tomographic inversions reveal high-velocity roots beneath the Archean Ordos Plateau, the Sichuan Basin, and other continental blocks in SE Asia. Beneath the Himalayan Block we detect high seismic velocities, which we associate with subduction of Indian lithospheric mantle. This structure is visible above the 410 km discontinuity and may not connect to the remnant of the Neo-Tethys oceanic slab in the lower mantle. Our images suggest that only the southwestern part of the Tibetan plateau is underlain by Indian lithosphere and, thus, that the upper mantle beneath northeastern Tibet is primarily of Asian origin. Our imaging also reveals a large-scale high-velocity structure in the transition zone beneath the Yangtze Craton, which could have been produced in multiple subduction episodes. The low P-wave velocities beneath the Hainan Island are most prominent in the upper mantle and transition zone; they may represent counter flow from the surrounding subduction zones, and may not be unrelated to processes beneath eastern Tibet.  相似文献   

8.
The deep structure of the upper mantle is determined from data on phase velocities of Love and Rayleigh waves measured by a differential method on traces between two stations in central Western Europe. One-dimensional velocity structures are first constructed from data of each pair of stations, after which two-dimensional distributions of SH and SV velocities are calculated by the method of two-dimensional tomography from S wave velocities at fixed depths. The results are presented in the form of 2-D vertical structures of the average S wave velocity (S = (SV + SH)/2) constructed along profiles crossing the region in directions of the best resolution. The main structural features are a higher velocity zone at depths of 60–80 km in the area (48°–50°N, 9°–11°E) and a lower velocity zone in the western part of the region at depths of 100–150 km, probably extending farther beyond the studied area.  相似文献   

9.
In this paper we search for a reference relation between seismic P-wave velocity V and density ρ ref for the continental crust. Based on the results of modern seismic experiments, we compiled 2-D seismic models into a network of four, each about 1100–1400 km long, continental-scale seismic transects cutting all main tectonic units in Central Europe. The Moho depth (about 52 km beneath the TESZ in SE Poland, to about 25 km beneath the Pannonian Basin) and the crustal structure of this area are characterised by a large variation. This structural variation provides an interesting basis for gravity studies and especially for analysing the difference of the density structure between two major tectonic provinces of distinctive age difference: Precambrian and Phanerozoic. The 2-D gravity modelling applied for crustal cross-sections representing the regional structure, based on a unified gravity anomaly map of the area, allows for a stable determination of some general features of the regional reference velocity-density relation for the continental crust. In general three major seismo-petrological types of rocks can be distinguished: sediments, crystalline crust and mantle. In compacted sediments the reference velocity-density relation is well described by the Gardner or Nafe-Drake model. Calculated gravity anomalies, using unified velocity-density relation for the whole crystalline crust, well describe observed anomalies, with an average difference of 14 mGal. However, calculated gravity anomalies, using separated velocity-density relations for the crystalline crust of Precambrian and Phanerozoic Europe, describe observed anomalies better than for the entire crust, with an average difference 12 mGal. The most important feature of these relations is the large differentiation of the derivative dρ ref /dV in the crystalline crust, being about 0.3 g s/m4 for Precambrian, and about 0.1 g s/m4 for the Phanerozoic crystalline crust. The modelling suggests a very small density value in the uppermost mantle ρ = 3.11 g/cm3 below the younger area, while for the older area it is ρ = 3.3 g/cm3.  相似文献   

10.
A new model is proposed for the structure of the Kaapvaal craton lithosphere. Based on chemical thermodynamics methods, profiles of the chemical composition, temperature, density, and S wave velocities are constructed for depths of 100–300 km. A solid-state zone of lower velocities is discovered on the S velocity profile in the depth interval 150–260 km. The temperature profiles are obtained from absolute values of P and S velocities, taking into account phase transformations, anharmonicity, and anelastic effects. The examination of the sensitivity of seismic models to the chemical composition showed that relatively small variations in the composition of South African xenoliths result in lateral temperature variations of ~200°C. Inversion of some seismic profiles (including IASP91) with a fixed bulk composition of garnet peridotites (the primitive mantle material) leads to a temperature inversion at depths of 200–250 km, which is physically meaningless. It is supposed that the temperature inversion can be removed by gradual fertilization of the mantle with depth. In this case, the craton lithosphere should be stratified in chemical composition. The depleted lithosphere composed by garnet peridotites exists to depths of 175–200 km. The lithospheric material at depths of 200–250 km is enriched in basaltoid components (FeO, Al2O3, and CaO) as compared with the material of garnet peridotites but is depleted in the same components as compared with the fertile substance of the underlying primitive mantle. The material composing the craton root at a depth of ~275 km does not differ in its physical and chemical characteristics from the composition of the normal mantle, and this allows one to estimate the thickness of the lithosphere at 275 km. The results of this work are compared with data of seismology, thermal investigations, and thermobarometry.  相似文献   

11.
We have constrained the shear-wave structure of crust and upper mantle beneath Iceland by analyzing fundamental mode Rayleigh waves recorded at the ICEMELT and HOTSPOT seismic stations in Iceland. The crust varies in thickness from 20 to 28 km in western and northern Iceland and from 26 to 34 km in eastern Iceland. The thickest crust of 34–40 km lies in central Iceland, roughly 100 km west to the current location of the Iceland hotspot. The crust at the hotspot is ∼32 km thick and is underlain by low shear-wave velocities of 4.0–4.1 km/s in the uppermost mantle, indicating that the Moho at the hotspot is probably a weak discontinuity. This low velocity anomaly beneath the hotspot could be associated with partial melting and hot temperature. The lithosphere in Iceland is confined above 60 km and a low velocity zone (LVZ) is imaged at depths of 60 to 120 km. Shear wave velocity in the LVZ is up to 10% lower than a global reference model, indicating the influence of the Mid-Atlantic Ridge and the hotspot in Iceland. The lowest velocities in the LVZ are found beneath the rift zones, suggesting that plume material is channeled along the Mid-Atlantic Ridge. At depths of 100 to 200 km, low velocity anomalies appear at the Tjornes fracture zone to the north of Iceland and beneath the western volcanic zone in southwestern Iceland. Interestingly, a relatively fast anomaly is imaged beneath the hotspot with its center at ∼135 km depth, which could be due to radial anisotropy associated with the strong upwelling within the plume stem or an Mg-enriched mantle residual caused by the extensive extraction of melts.  相似文献   

12.
—During the last 30 years, considerable evidence of seismic anisotropy has accumulated demonstrating that it is present at all scales, but not in all depth ranges. We detail which conditions are necessary to detect large-scale seismic anisotropy. Firstly, minerals must display a strong anisotropy at the microscopic scale, and/or the medium must be finely layered. Secondly, the relative orientations of symmetry axes in the different crystals must not counteract in destroying the intrinsic anisotropy of each mineral, and there must be efficient mechanisms of orientation of minerals and aggregates. Finally, the strain field must be coherent at large scale in order to preserve long wavelength anisotropy. Part of shallow anisotropy can be related to the past strain field (frozen-in anisotropy), however the deep anisotropy is due to the present strain field. All these conditions are fulfilled only in boundary layers of convective mantle.¶We review in this paper, the seismic data sets which provide insight into the location at depth of large-scale anisotropy from the D"-layer up to the lithosphere. In addition to the well-documented seismic anisotropy in the lithosphere and asthenosphere, there is new evidence of seismic anisotropy in the upper (400–660 km) and lower (660–900 km) transition zones and in the D"-layer. Nonetheless the bulk of the lower mantle seems close to isotropy. If we assume the hypothesis that seismic anisotropy is associated with boundary layers in convective systems, these observations strongly suggest that the transition zone is a boundary layer which makes the pasage of matter between the upper and the lower mantle difficult. However, this general statement does not rule out flow circulation between the upper and lower mantles. Finally, the geophysical, mineral physics and geological applications are briefly reviewed. An intercomparison between surface wave anisotropy and body-wave anisotropy data sets is presented. We discuss the scientific potential of seismic anisotropy and how it makes it possible to gain more insight into continental root, deformation and geodynamics processes.  相似文献   

13.
Long-range seismic sounding carried out during the last few years on the territory of the U.S.S.R. has shown a basic inhomogeneity of the uppermost mantle, as well as evidence of regularities in the distribution of its seismic parameters. The following data were used: times and apparent velocities of P- and S-waves for investigation of mantle velocities, converted waves for seismic discontinuity model studies and wave attenuation for Q-factor estimation. Strong regularities were distinguished in the distribution of average seismic velocities for the uppermost mantle, in their dependence on the age and type of geostructure and on their position relative to the central part of the continent. Old platforms and the inner part of the continent are marked by velocities under the Mohorovi?i? discontinuity of more than 8.2–8.3 km s?1, young platforms and outer parts of the continent by 8.0–8.2 km s?1, and orogenic and rift zones by 7.8–8.0 km s?1. The difference becomes more pronounced at a depth of about 100–200 km: for the old platform mantle velocities of 8.5–8.6 km s?1 are typical; beneath the orogenic and rift areas, inversion zones with velocities less than 7.8 km s?1 are observed.The converted waves show fine inhomogeneities of the crust and uppermost mantle, the presence of many discontinuities with positive and negative changes of velocity, and anisotropy of seismic waves in some of the layers. Wave attenuation allowed the determination of the Q-factor in the mantle. It varied from one region to another but a close relation between Q and P-wave velocity is the main cause of its variation.  相似文献   

14.
We present new one-dimensional SH-wave velocity models of the upper mantle beneath the Kalahari craton in southern Africa obtained from waveform inversion of regional seismograms from an Mw = 5.9 earthquake located near Lake Tanganyika recorded on broadband seismic stations deployed during the 1997–1999 Southern African Seismic Experiment. The velocity in the lithosphere beneath the Kalahari craton is similar to that of other shields, and there is little evidence for a significant low velocity zone beneath the lithosphere. The lower part of the lithosphere, from 110 to 220 km depth, is slightly slower than beneath other shields, possibly due to higher temperatures or a decrease in Mg number (Mg#). If the slower velocities are caused by a thermal anomaly, then slightly less than half of the unusually high elevation of the Kalahari craton can be explained by shallow buoyancy from a hot lithosphere. However, a decrease in the Mg# of the lower lithosphere would increase the density and counteract the buoyancy effect of the higher temperatures. We obtain a thickness of 250 ± 30 km for the mantle transition zone, which is similar to the global average, but the velocity gradient between the 410 and 660 km discontinuities is less steep than in global models, such as PREM and IASP91. We also obtain velocity jumps of between 0.16 ± 0.1 and 0.21 ± 0.1 km/s across the 410 km discontinuity. Our results suggest that there may be a thermal or chemical anomaly in the mantle transition zone, or alternatively that the shear wave velocity structure of the transition zone in global reference models needs to be refined. Overall, our seismic models provide little support for an upper mantle source of buoyancy for the unusually high elevation of the Kalahari craton, and hence the southern African portion of the African Superswell.  相似文献   

15.
—An attempt is made to explore the geodynamical significance of seismic anisotropy in the deep mantle on the basis of mineral physics. The mineral physics observations used include the effects of deformation mechanisms on lattice and shape preferred orientation, the effects of pressure on elastic anisotropy and the nature of lattice preferred orientation in deep mantle minerals in dislocation creep regime. Many of these issues are still poorly constrained, but a review of recent results shows that it is possible to interpret deep mantle seismic anisotropy in a unified fashion, based on the solid state processes without invoking partial melting. The key notions are (i) the likely regional variation in the magnitude of anisotropy as deformation mechanisms change from dislocation to diffusion creep (or superplasticity), associated with a change in the stress level and/or grain-size in the convecting mantle with a high Rayleigh number, and (ii) the change in elastic anisotropy with pressure in major mantle minerals, particularly in (Mg, Fe)O. The results provide the following constraints on the style of mantle convection (i) the SH > SV anisotropy in the bottom transition zone and the SV > SH anisotropy in the top lower mantle can be attributed to anisotropy structures (lattice preferred orientation and/or laminated structures) caused by the horizontal flow in this depth range, suggesting the presence of a mid-mantle boundary layer due to (partially) layered convection, (ii) the observed no significant seismic anisotropy in the deep mantle near subduction zones implies that deformation associated with subducting slabs is due mostly to diffusion creep (or superplasticity) and therefore slabs are weak in the deep mantle and hence easily deformed when encountered with resistance forces, and (iii) the SH > SV anisotropy in the cold thick portions of the D" layer is likely to be due to horizontally aligned shape preferred orientation in perovskite plus magnesiowüstite aggregates formed by strong horizontal shear motion in the recent past.  相似文献   

16.
An overview of the S-wave velocity (V s) structural model of the Caribbean with a resolution of 2°?×?2° is presented. New tomographic maps of Rayleigh wave group velocity dispersion at periods ranging from 10 to 40?s were obtained as a result of the frequency time analysis of seismic signals of more than 400 ray-paths in the region. For each cell of 2°?×?2°, group velocity dispersion curves were determined and extended to 150?s by adding data from a larger scale tomographic study (Vdovin et al., Geophys. J. Int 136:324–340, 1999). Using, as independent a priori information, the available geological and geophysical data of the region, each dispersion curve has been inverted by the “hedgehog” non-linear procedure (Valyus, Determining seismic profiles from a set of observations (in Russian), Vychislitielnaya Seismologiya 4, 3–14. English translation: Computational Seismology (V.I. Keylis-Borok, ed.) 4:114–118, 1968), in order to compute a set of V s versus depth models up to 300?km of depth. Because of the non-uniqueness of the solutions for each cell, a local smoothness optimization has been applied to the whole region in order to choose a three-dimensional model of V s, satisfying this way the Occam's razor concept. Several known and some new main features of the Caribbean lithosphere and asthenosphere are shown on these models such as: the west directed subduction zone of the eastern Caribbean region with a clear mantle wedge between the Caribbean lithosphere and the subducted slab; the complex and asymmetric behavior of the crustal and lithospheric thickness in the Cayman ridge; the predominant oceanic crust in the region; the presence of continental type crust in Central America, and the South and North America plates; as well as the fact that the bottom of the upper asthenosphere gets shallower going from west to east.  相似文献   

17.
We extend to the case of intermediate and deep earthquakes the mantle magnitude developed for shallow shocks byokal andTalandier (1989). Specifically, from the measurement of the spectral amplitude of Rayleigh waves at a single station, we obtain a mantle magnitude,M m, theoretically related to the seismic moment of the event through $$M_m = \log _{10} M_0 - 20.$$ The computation ofM minvolves two corrections. The distance correction is the same as for shallow shocks. For the purpose of computing the frequency-dependent source correction, we define three depth windows: Intermediate (A) (75 to 200 km); Intermediate (B) (200–400 km) and Deep (over 400 km). In each window, the source correctionC S is modeled by a cubic spline of log10 T. Analysis of a dataset of 200 measurements (mostly from GEOSCOPE stations) shows that the seismic moment of the earthquakes is recovered with a standard deviation of 0.23 units of magnitude, and a mean bias of only 0.14 unit. These figures are basically similar to those for shallow events. Our method successfully recognizes truly large deep events, such as the 1970 Colombia shock, and errors due to the potential misclassification of events into the wrong depth window are minimal.  相似文献   

18.
Arrival times of P and S waves from local earthquakes in the Kamchatka area of the Kurile-Kamchatka Island Arc are used for calculating a spatial model of the elastic wave velocity distribution to a depth of 200 km. The lithosphere is shown to be strongly stratified in its velocity properties and laterally heterogeneous within the mantle wedge and seismic focal zone. A lower velocity layer (an asthenospheric wedge) is identified at depths of 70–130 km beneath the Eastern Kamchatka volcanic belt. The morphology of the Moho interface and the velocity properties of the crust are studied. The main tectonic structures of the region are shown to be closely interrelated with deep velocity heterogeneities. Regular patterns in the statistics of the earthquakes are analyzed in relation to variations in the elastic wave velocities in the focal layer. A mechanism of lithospheric block displacements along weakened zones of the lower crust and upper mantle is proposed.  相似文献   

19.
Seismic anisotropy has been widely used to constrain deformation and mantle flow within the upper mantle of the Earth's interior, and is mainly affected by crystallographic preferred orientation(CPO)of anisotropic mineral in lithosphere. Anisotropy of peridotites caused by deformation is the main source of seismic anisotropy in the upper mantle. Olivine is the most abundant and easily deformed mineral to form CPO in peridotite, thus the CPO of olivine controls seismic anisotropy in the upper mantle. Based on simple shear experiments and studies of natural peridotites deformation, several CPO types of olivine have been identified, including A, B, C, D, E and AG-type. Studies on the deformation of olivine have shown that the CPO of olivine is mainly related to stress, water content, temperature, pressure, partial melting and melt/fluid percolation. Most of the seismic anisotropy has been explained by the A-type olivine CPO in the upper mantle, which is commonly found in upper-mantle peridotites and produced by the simple shear in dry conditions. Previous studies showed that anisotropy was attributed to the CPO of mica and amphibole in the middle-lower crust. The comparison between mantle anisotropy calculated from mineral CPO and regional anisotropy deduced from geophysical methods is therefore particularly useful for interpreting the deformation mechanisms and geodynamic processes which affect the upper mantle in different tectonic units such as subduction system, continental rift and continental collision zone in the world. The paper summarizes the characteristics of CPO and anisotropy of major anisotropic minerals in the upper mantle. Taking the lithosphere mantle xenoliths in the southeastern Tibetan plateau as an example, we perform detailed studies on the microstructures and seismic anisotropy to better understand the deformation mechanisms and upper mantle anisotropy in this region. Results show that the CPO of olivine in peridotite xenoliths in southeastern Tibetan plateau are A-type and AG-type. The mechanisms proposed for the formation of AG-type are different from that for the A-type. Therefore, the occurrence of AG-type olivine CPO pattern suggests that this CPO may record a change in deformation mechanism and tectonic environment of the lithosphere in southeastern Tibetan plateau. Provided that the strong SKS(shear wave splitting)observed in southeastern Tibetan plateau results from lithosphere mantle, the lithosphere mantle in this region is expected to be at least 130km thick and characterized by vertical foliation. Considering that the thickness of lithosphere in southeastern Tibetan plateau is much less than 130km and the lithosphere mantle cannot explain the anisotropy measured by SKS, other anisotropy sources should be considered, such as anisotropy in the asthenosphere and the oriented melt pockets(MPO)in the upper mantle. Therefore, detailed study of CPO of anisotropic mineral is essential for constraining geophysical measurements and analyzing the dynamic process of the lithosphere reasonably.  相似文献   

20.
High-resolution P wave tomography shows that the subducting Pacific slab is stagnant in the mantle transition zone and forms a big mantle wedge beneath eastern China. The Mg isotopic investigation of large numbers of mantle-derived volcanic rocks from eastern China has revealed that carbonates carried by the subducted slab have been recycled into the upper mantle and formed carbonated peridotite overlying the mantle transition zone, which becomes the sources of various basalts. These basalts display light Mg isotopic compositions(δ26 Mg = –0.60‰ to –0.30‰) and relatively low87 Sr/86 Sr ratios(0.70314–0.70564) with ages ranging from 106 Ma to Quaternary, suggesting that their mantle source had been hybridized by recycled magnesite with minor dolomite and their initial melting occurred at 300-360 km in depth. Therefore, the carbonate metasomatism of their mantle source should have occurred at the depth larger than 360 km, which means that the subducted slab should be stagnant in the mantle transition zone forming the big mantle wedge before 106 Ma. This timing supports the rollback model of subducting slab to form the big mantle wedge. Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom(180–120 km in depth) of cratonic lithosphere in North China, the carbonated silicate melts should have 25–18 wt% CO2 contents, with lower Si O2 and Al2 O3 contents, and higher Ca O/Al2 O3 values, similar to those of nephelinites and basanites, and have higher εNdvalues(2 to 6). The carbonatited silicate melts migrated upward and metasomatized the overlying lithospheric mantle, resulting in carbonated peridotite in the bottom of continental lithosphere beneath eastern China. As the craton lithospheric geotherm intersects the solidus of carbonated peridotite at 130 km in depth, the carbonated peridotite in the bottom of cratonic lithosphere should be partially melted, thus its physical characters are similar to the asthenosphere and it could be easily replaced by convective mantle. The newly formed carbonated silicate melts will migrate upward and metasomatize the overlying lithospheric mantle. Similarly, such metasomatism and partial melting processes repeat, and as a result the cratonic lithosphere in North China would be thinning and the carbonated silicate partial melts will be transformed to high-Si O2 alkali basalts with lower εNdvalues(to-2). As the lithospheric thinning goes on,initial melting depth of carbonated peridotite must decrease from 130 km to close 70 km, because the craton geotherm changed to approach oceanic lithosphere geotherm along with lithospheric thinning of the North China craton. Consequently, the interaction between carbonated silicate melt and cratonic lithosphere is a possible mechanism for lithosphere thinning of the North China craton during the late Cretaceous and Cenozoic. Based on the age statistics of low δ26 Mg basalts in eastern China, the lithospheric thinning processes caused by carbonated metasomatism and partial melting in eastern China are limited in a timespan from 106 to25 Ma, but increased quickly after 25 Ma. Therefore, there are two peak times for the lithospheric thinning of the North China craton: the first peak in 135-115 Ma simultaneously with the cratonic destruction, and the second peak caused by interaction between carbonated silicate melt and lithosphere mainly after 25 Ma. The later decreased the lithospheric thickness to about70 km in the eastern part of North China craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号