首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We suggest that Pluto and Charon are immersed in a tenuous dust cloud. The cloud consists of ejecta from Pluto and—especially—Charon, released from their surfaces by impacts of micrometeoroids originating from Edgeworth-Kuiper belt objects. The motion of the ejected grains is dominated by the gravity of Pluto and Charon, which determines a pear-shape of the densest part of the cloud. While the production rates of escaping particles from both sides are comparable, the lifetimes of the Charon particles inside the Hill sphere of Pluto-Charon with respect to the Sun are much longer than of the Pluto ejecta, so that the cloud is composed predominantly of Charon grains. The dust cloud is dense enough to be detected with an in situ dust detector onboard a future space mission to Pluto. The cloud's maximum optical depth of τ≈3×10−11 is, however, too low to allow remote sensing observations.  相似文献   

2.
S. Alan Stern 《Icarus》2009,199(2):571-573
In this Note, I present first-order scaling calculations to examine the efficacy of impacts by Kuiper Belt debris in causing regolith exchange between objects in the Pluto system. It is found that ejecta can escape Nix and Hydra with sufficient velocity to reach one another, as well as Charon, and even Pluto. The degree of ejecta exchanged between Nix and Hydra is sufficient to cover these bodies with much more material than is required for photometrically change. In specific, Nix and Hydra may have exchanged as up to 10s of meters of regolith, and may have covered Charon to depths up to 14 cm with their ejecta. Pluto is likely unaffected by most Nix and Hydra ejecta by virtue of a combination of dynamical shielding from Charon and Pluto's own annual atmospheric frost deposition cycle. As a result of ejecta exchange between Nix, Hydra, and Charon, these bodies are expected to evolve their colors, albedos, and other photometric properties to be self similar. These are testable predictions of this model, as is the prediction that Nix and Hydra will have diameters near 50 km, owing to having a Charon-like albedo induced by ejecta exchange. As I discuss, this ejecta exchange process can also be effective in many KBOs and asteroids with satellites, and may be the reason that very many KBO and asteroid satellite systems have like colors.  相似文献   

3.
4.
Masateru Ishiguro 《Icarus》2008,193(1):96-104
A thin, bright dust cloud, which is associated with the Rosetta mission target object (67P/Churyumov-Gerasimenko), was observed after the 2002 perihelion passage. The neckline structure or dust trail nature of this cloud is controversial. In this paper, we definitively identify the dust trail and the neckline structure using a wide-field CCD camera attached to the Kiso 1.05-m Schmidt telescope. The dust trail of 67P/Churyumov-Gerasimenko was evident as scattered sunlight in all images taken between September 9, 2002 and February 1, 2003, whereas the neckline structure became obvious only after late 2002. We compared our images with a semi-analytical dynamic model of dust grains emitted from the nucleus. A fading of the surface brightness of the dust trail near the nucleus enabled us to determine the typical maximum size of the grains. Assuming spherical compact particles with a mass density of 103 kg m−3 and an albedo of 0.04, we deduced that the maximum diameter of the dust particles was approximately 1 cm. We found that the mass-loss rate of the comet at the perihelion was on or before the 1996 apparition, while the mass-loss rate averaged over the orbit reached . The result is consistent with the studies of the dust cloud emitted in the 2002/2003 return. Therefore, we can infer that the activity of 67P/Churyumov-Gerasimenko has showed no major change over the past dozen years or so, and the largest grains are cyclically injected into the dust tube lying along the cometary orbit.  相似文献   

5.
We use a radiative-conductive-convective model to assess the height of Pluto’s troposphere, as well as surface pressure and surface radius, from stellar occultation data from the years 1988, 2002, and 2006. The height of the troposphere, if it exists, is less than 1 km for all years analyzed. Pluto has at most a planetary boundary layer and not a troposphere. As in previous analyses of Pluto occultation light curves, we find that the surface pressure is increasing with time, assuming that latitude and longitude variations in Pluto’s atmosphere are negligible. The surface pressure is found to be slightly higher ( μbar in 1988,  μbar in 2002, and 18.5 ± 4.7 μbar in 2006) than in our previous analyses with the troposphere excluded. The surface radius is determined to be . Comparison of the minimum reduced chi-squared values between the best-fit radiative-conductive-convective (i.e., troposphere-included) model and best-fit radiative-conductive (i.e., troposphere-excluded) shows that the troposphere-included model is only a slightly better fit to the data for all 3 years. Uncertainties in the small-scale physical processes of Pluto’s lower atmosphere and consequently the functional form of the model troposphere lend more confidence to the troposphere-excluded results.  相似文献   

6.
Saturn's diffuse E ring is the largest ring of the Solar System and extends from about (Saturn radius RS=60,330 km) to at least encompassing the icy moons Mimas, Enceladus, Tethys, Dione, and Rhea. After Cassini's insertion into her saturnian orbit in July 2004, the spacecraft performed a number of equatorial as well as steep traversals through the E ring inside the orbit of the icy moon Dione. Here, we report about dust impact data we obtained during 2 shallow and 6 steep crossings of the orbit of the dominant ring source—the ice moon Enceladus. Based on impact data of grains exceeding 0.9 μm we conclude that Enceladus feeds a torus populated by grains of at least this size along its orbit. The vertical ring structure at agrees well with a Gaussian with a full-width-half-maximum (FWHM) of ∼4200 km. We show that the FWHM at is due to three-body interactions of dust grains ejected by Enceladus' recently discovered ice volcanoes with the moon during their first orbit. We find that particles with initial speeds between 225 and 235 m s−1 relative to the moon's surface dominate the vertical distribution of dust. Particles with initial velocities exceeding the moon's escape speed of 207 m s−1 but slower than 225 m s−1 re-collide with Enceladus and do not contribute to the ring particle population. We find the peak number density to range between 16×10−2 m−3 and 21×10−2 m−3 for grains larger 0.9 μm, and 2.1×10−2 m−3 and 7.6×10−2 m−3 for grains larger than 1.6 μm. Our data imply that the densest point is displaced outwards by at least with respect of the Enceladus orbit. This finding provides direct evidence for plume particles dragged outwards by the ambient plasma. The differential size distribution for grains >0.9 μm is described best by a power law with slopes between 4 and 5. We also obtained dust data during ring plane crossings in the vicinity of the orbits of Mimas and Tethys. The vertical distribution of grains >0.8 μm at Mimas orbit is also well described by Gaussian with a FWHM of ∼5400 km and displaced southwards by ∼1200 km with respect to the geometrical equator. The vertical distribution of ring particles in the vicinity of Tethys, however, does not match a Gaussian. We use the FWHM values obtained from the vertical crossings to establish a 2-dimensional model for the ring particle distribution which matches our observations during vertical and equatorial traversals through the E ring.  相似文献   

7.
We present new photometric and spectroscopic observations of the Pluto–Charon system carried out at the VLT-ESO (Chile) with two 8-m telescopes equipped with the FORS2, ISAAC and SINFONI instruments. The spectra were obtained in the 0.6–2.45 μm range with a spectral resolution from 300 to 1500. The SINFONI data were obtained using adaptive optics, allowing a complete separation of the two bodies. We derive both objects’ magnitudes in the near infrared and convert them into albedo values. These first near infrared photometric data allow to adjust the different parts of Pluto’s spectrum, provided by the three instruments. We run spectral models in order to give chemical and physical constraints on the surface of Pluto and Charon. We discuss the dilution properties of the methane ice and its implications on Pluto’s surface. The heterogeneities of the pure and diluted methane ice on Pluto’s surface is also investigated. The high signal-to-noise level of the data and our analyses may support the presence of ethane ice on the surface of Pluto, which is one of the main products of the methane irradiation and photolysis. The analyses of the spectra of Charon suggest that the water ice is almost completely in its crystalline form and that the ammonia compound is hydrated on the surface of this satellite.  相似文献   

8.
Porosity is one of the most important physical properties in the rheology of small icy satellites composed of ice–silicate mixtures. Deformation experiments involving ice and 1 μm silica bead mixtures were conducted to clarify the effect of porosity on the flow law of ice–silica mixtures. Mixtures with silica mass contents of 0, 30, and 50 wt.% were used for the experiments, and the porosity was changed from 0% to 25% in each mixture. The temperature ranged from −10 to −20 °C, and the strain rate was changed from 1.2 × 10−6 to 4.2 × 10−4 s−1. As a result, it was found that the ice–silica mixtures deformed plastically, and that the relationship between the maximum stress, σmax, on the stress–strain curve and the applied strain rate, , could be described by the following flow law: . The mixture became softer as the porosity or silica mass content increased, and the stress exponent n and activation energy Q were independent of porosity, depending only on the silica mass content. Furthermore, the parameter A0 could be written as A0 = B(1 − ?)α, where ? is the porosity. The constants B and α also depended only on the silica mass content, and they increased with the increase in this content. The Maxwell relaxation time was calculated in order to estimate the conditions for topographic relaxation of icy satellites, and it was found that topographic relaxation occurred at temperatures higher than 160 K in the case of icy satellites with mean radii of 200 km.  相似文献   

9.
The Ulysses spacecraft orbits the Sun on a highly inclined orbit, and the impact ionization dust detector on board continuously measures interstellar dust grains with masses up to , penetrating deep into the Solar System. The flow direction is close to the mean apex of the Sun's motion through the local interstellar cloud (LIC), and the grains act as tracers of the physical conditions in the LIC. Previous analysis gave a velocity dispersion of up to 40° for the interstellar grains. We partially re-analyzed the Ulysses interstellar dust data set, taking into account the detector's inner side walls. As the side walls have a sensitivity for dust impact detection almost identical to that of the instrument's target area, wall impactors must be taken into account for estimating the intrinsic velocity dispersion of the interstellar impactors and the interstellar dust flux value. Neglect of the sensor side walls overestimates the interstellar dust stream velocity dispersion by about 30% and the interstellar dust flux by about 20%.  相似文献   

10.
We use a radiative-conductive model to least-squares fit Pluto stellar occultation light curve data. This model predicts atmospheric temperature based on surface temperature, surface pressure, surface radius, and CH4 and CO mixing ratios, from which model light curves are to be calculated. The model improves upon previous techniques for deriving Pluto’s atmospheric thermal structure from stellar occultation light curves by calculating temperature (as a function of height) caused by heating and cooling by species in Pluto’s atmosphere, instead of a general assumption that temperature follows a power law with height or some other idealized function. We are able to fit for model surface radius, surface pressure, and CH4 mixing ratio with one of the 2006 datasets and for surface pressure and CH4 mixing ratio for other datasets from the years 1988, 2002, 2006, and 2008. It was not possible to fit for CO mixing ratio and surface temperature because the light curves are not sensitive to these parameters. We determine that the model surface radius, under the assumption of a stratosphere only (i.e. no troposphere) model in radiative-conductive balance, is . The CH4 mixing ratio results are more scattered with time and are in the range of 1.8-9.4 × 10−3. The surface pressure results show an increasing trend from 1988 to 2002, although it is not as dramatic as the factor of 2 from previous studies.  相似文献   

11.
We present observations of the extended dust structures near the orbits of three short-period comets: 2P/Encke, 22P/Kopff, and 65P/Gunn. The dust trails were originally discovered by the Infrared Astronomical Satellite (IRAS). Our observations were made using wide-field optical CCD cameras on the University of Hawaii 2.24-m telescope, the Canada-France-Hawaii 3.6-m telescope, and the Kiso 1.05-m Schmidt telescope. We compared the observed images with models and found that the extended structures seen around 2P/Encke and 22P/Kopff before perihelion passage were most likely “dust trails,” whereas images taken after perihelion passage show a high contamination by recently released particles (i.e., particles in Neck-Line structures are visible). We could not confirm the existence of a dust trail from 65P/Gunn within the field of view of the camera used. The effective sizes of the particles responsible for the scattered light were estimated at 1-100 mm (2P/Encke), 1-10 mm (22P/Kopff), and 100 μm-1 mm (65P/Gunn), respectively, which is consistent with previous studies of dust trails made with infrared space telescopes and optical telescopes. We evaluated the mass loss rates of these comets, averaged over their orbits, as reaching (2P/Encke), (22P/Kopff), and (65P/Gunn). These values are consistent with previous work. Therefore, the total amount of material ejected from these three comets is , which would contribute a considerable fraction of the lost within 1 AU that needs to be replaced if the zodiacal cloud is to be maintained in a steady state. We also found that the particles in the dust structures are significantly redder than the Sun and the zodiacal light, and might be redder than the average short-period comet nuclei. Specifically, the reflectivity gradients of 2P/Encke, 22P/Kopff, and 65P/Gunn are 13±7 (% 103 Å−1), 20±5 (% 103 Å−1), and 15±4 (% 103 Å−1), respectively. We examined the change in color with distance from the nucleus. No clear correlation was detected for 2P/Encke or 22P/Kopff to an accuracy of 3-11%, while the 65P/Gunn tail did show color variation, becoming redder with increasing distance from the nucleus. This dark red material, consisting of particles of sand-cobble size, has marginally escaped from the nuclei and will evolve into finer-grained interplanetary dust particles after subsequent collisions.  相似文献   

12.
We have obtained numerically integrated orbits for Saturn's coorbital satellites, Janus and Epimetheus, together with Saturn's F-ring shepherding satellites, Prometheus and Pandora. The orbits are fit to astrometric observations acquired with the Hubble Space Telescope and from Earth-based observatories and to imaging data acquired from the Voyager spacecraft. The observations cover the 38 year period from the 1966 Saturn ring plane crossing to the spring of 2004. In the process of determining the orbits we have found masses for all four satellites. The densities derived from the masses for Janus, Epimetheus, Prometheus, and Pandora in units of g cm−3 are , , , and , respectively.  相似文献   

13.
Ion waves excited by charged dust beams streaming across or along the geomagnetic field in the ionosphere may be generated by plasma instabilities during aerosol release experiments. The injection speed of the dust and gas is comparable to or larger than the ion thermal speed in the background plasma. The dust grains can get charged by plasma collection from the ambient ionosphere, and can thus act as a charged beam that excites instabilities in the background plasma. The theory is applied to relatively early time scales of the order of in the dust-gas cloud expansion, with wave frequencies that are larger than the ion gyrofrequency, and collisions with neutrals are included.  相似文献   

14.
We report on observations of the dust trail of Comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2 m telescope at 4.7 AU before aphelion, and at with the MIPS instrument on board the Spitzer Space Telescope at 5.7 AU both before and after aphelion. The comet did not appear to be active during our observations. Our images probe large dust grains emitted from the comet that have a radiation pressure parameter β<0.01. We compare our observations with simulated images generated with a dynamical model of the cometary dust environment and constrain the emission speeds, size distribution, production rate and geometric albedo of the dust. We achieve the best fit to our data with a differential size distribution exponent of −4.1, and emission speeds for a β=0.01 particle of 25 m/s at perihelion and 2 m/s at 3 AU. The dust production rate in our model is on the order of 1000 kg/s at perihelion and 1 kg/s at 3 AU, and we require a dust geometric albedo between 0.022 and 0.044. The production rates of large (>) particles required to reproduce the brightness of the trail are sufficient to also account for the coma brightness observed while the comet was inside 3 AU, and we infer that the cross-section in the coma of CG may be dominated by grains of the order of .  相似文献   

15.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   

16.
17.
Arecibo S-band () radar observations of Comet C/2001 A2 (LINEAR) on 2001 July 7-9 showed a strong echo from large coma grains. This echo was significantly depolarized. This is the first firm detection of depolarization in a grain-coma radar echo and indicates that the largest grains are at least λ/2π or 2 cm in radius. The grains are moving at tens of m s−1 with respect to the nucleus. The nondetection of the nucleus places an upper limit of 3 km on its diameter. The broad, asymmetric echo power spectrum suggests a fan of grains that have a steep (differential number ∼a−4) size distribution at cm-scales, though the observed fragmentation of this comet complicates that picture.  相似文献   

18.
David G. Schleicher 《Icarus》2006,181(2):442-457
We present compositional and physical results of Comet 67P/Churyumov-Gerasimenko, the new target of ESA's Rosetta mission. A total of 16 nights of narrowband photometry were obtained at Lowell Observatory during the 1982/83 and 1995/96 apparitions, along with one night of imaging near perihelion in 1996. These data encompass an interval of −61 to +118 days from perihelion, corresponding to a range of heliocentric distances before perihelion from 1.48 to 1.34 AU, and an outbound range from 1.30 to 1.86 AU. Production rates were determined for OH, NH, CN, C3, and C2, along with A(θ)fρ, a proxy of the dust production. Water production, based on OH, has a steep () power-law rH-dependence post-perihelion and the minor species are somewhat less steep ( to −4), while the dust is quite shallow (), possibly due to a lingering population of large, slow-moving grains. All species exhibit larger production rates after perihelion, with water having a ∼2×pre/post-perihelion asymmetry, while minor species and dust have larger asymmetries. These asymmetries imply a strong seasonal effect and probable high obliquity of the rotational axis, along with one or more isolated source regions coming into sunlight near perihelion. Peak water production (which occurred about 1 month after perihelion) was and, when combined with a standard water vaporization model, implies an effective active area on the surface of the nucleus of ∼1.5-2.2 km2 or an active fraction of only about 3-4%. Abundances of carbon-chain molecules yield a classification of slightly “depleted” in the A'Hearn et al. [A'Hearn, M.F., Millis, R.L., Schleicher, D.G., Osip, D.J., Birch, P.V., 1995. Icarus 118, 223-270] database. The peak dust production (as measured by A(θ)fρ, and uncorrected for phase angle) was ∼450 cm, while the color of the dust is moderately reddened, and the mean radial profile has a power-law slope of −1.3. Large night-to-night variability is also present, presumably due to the source region(s) rotating in and out of sunlight along with effects due to the use of differently sized apertures. A strong sunward radial feature was detected in images obtained near perihelion, along with a significant asymmetry between the two perpendicular directions from the Sun/tail line. These features may be the result of a mid-latitude source region sweeping out a cone with each rotation, which we are viewing from the side and where the sunward radial feature is one edge of the cone seen in projection. When combined with other constraints on the pole orientation, a possible pole solution is found having an obliquity of about 134° at an RA of about 223° and a Dec of −65°, with a source region located near +50° and in overall agreement with the photometric results. In comparison to the original Rosetta target Comet 46P/Wirtanen, Comet Churyumov-Gerasimenko has essentially the same peak water production but a peak dust production about 3 times greater than does Wirtanen based on A(θ)fρ (i.e., if one assumes that the properties of the dust grains are similar) (cf. Farnham and Schleicher [1998. Astron. Astrophys. 335, L50-L55]).  相似文献   

19.
In partially ionized dusty space plasmas collisional momentum transfer between neutral and charged components of different inertia yields significant self-induced magnetic fields on remarkable short time scales of several dust Alfven times. Considering the proto-solar accretion disk previous first self-consistent plasma-neutral gas-dust simulations have shown, that this process yields a self-magnetization of 10-5- on time scales of about 100 days. Thus, this mechanism is able to explain the remanent magnetization of chondrite type meteorite matter. New simulations show the quantitative dependence of the self-magnetization on polarity and charge numbers of the dust grains.  相似文献   

20.
We develop a parametric fit to the results of a detailed magnetohydrodynamic (MHD) study of the response of ion escape rates (O+, and ) to strongly varied solar forcing factors, as a way to efficiently extend the MHD results to different conditions. We then use this to develop a second, evolutionary model of solar forced ion escape. We treat the escape fluxes of ion species at Mars as proportional to the product of power laws of four factors - that of the EUV flux Reuv, the solar wind particle density Rρ, its velocity (squared) Rv2, and the interplanetary magnetic field pressure RB2, where forcing factors are expressed in units of the current epoch-averaged values. Our parametric model is: , where ?(i) is the escape flux of ion i. We base our study on the results of just six provided MHD model runs employing large forcing factor variations, and thus construct a successful, first-order parametric model of the MHD program. We perform a five-dimensional least squares fit of this power law model to the MHD results to derive the flux normalizations and the indices of the solar forcing factors. For O+, we obtain the values, 1.73 × 1024 s−1, 0.782, 0.251, 0.382, and 0.214, for ?0, α, β, γ, and δ, respectively. For , the corresponding values are 1.68 × 1024 s−1, −0.393, 0.798, 0.967, and 0.533. For , they are 8.66 × 1022 s−1, −0.427, 1.083, 1.214, and 0.690. The fit reproduces the MHD results to an average error of about 5%, suggesting that the power laws are broadly representative of the MHD model results. Our analysis of the MHD model shows that by itself an increase in REUV enhances O+ loss, but suppresses the escape of and , whereas increases in solar wind (i.e., in , and RB2, with Reuv constant) favors the escape of heavier ions more than light ions. The ratios of escaping ions detectable at Mars today can be predicted by this parametric fit as a function of the solar forcing factors. We also use the parametric model to compute escape rates over martian history. This second parametric model expresses ion escape functions of one variable (per ion), ?(i) = ?0(i)(t/t0)ξ(i). The ξ(i) are linear combinations of the epoch-averaged ion escape sensitivities, which are seen to increase with ion mass. We integrate the and oxygen ion escape rates over time, and find that in the last 3.85 Gyr, Mars would have lost about mbars of , and of water (from O+ and ) from ion escape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号