首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Masateru Ishiguro 《Icarus》2008,193(1):96-104
A thin, bright dust cloud, which is associated with the Rosetta mission target object (67P/Churyumov-Gerasimenko), was observed after the 2002 perihelion passage. The neckline structure or dust trail nature of this cloud is controversial. In this paper, we definitively identify the dust trail and the neckline structure using a wide-field CCD camera attached to the Kiso 1.05-m Schmidt telescope. The dust trail of 67P/Churyumov-Gerasimenko was evident as scattered sunlight in all images taken between September 9, 2002 and February 1, 2003, whereas the neckline structure became obvious only after late 2002. We compared our images with a semi-analytical dynamic model of dust grains emitted from the nucleus. A fading of the surface brightness of the dust trail near the nucleus enabled us to determine the typical maximum size of the grains. Assuming spherical compact particles with a mass density of 103 kg m−3 and an albedo of 0.04, we deduced that the maximum diameter of the dust particles was approximately 1 cm. We found that the mass-loss rate of the comet at the perihelion was on or before the 1996 apparition, while the mass-loss rate averaged over the orbit reached . The result is consistent with the studies of the dust cloud emitted in the 2002/2003 return. Therefore, we can infer that the activity of 67P/Churyumov-Gerasimenko has showed no major change over the past dozen years or so, and the largest grains are cyclically injected into the dust tube lying along the cometary orbit.  相似文献   

2.
We performed impact disruption experiments on pieces from eight different anhydrous chondritic meteorites—four weathered ordinary chondrite finds from North Africa (NWA791, NWA620, NWA869 and MOR001), three almost unweathered ordinary chondrite falls (Mbale, Gao, and Saratov), and an almost unweathered carbonaceous chondrite fall (Allende). In each case the impactor was a small (1/8 or 1/4 in) aluminum sphere fired at the meteorite target at , comparable to the mean collision speed in the main-belt. Some of the ∼5 to debris from each disruption was collected in aerogel capture cells, and the captured particles were analyzed by in situ synchrotron-based X-ray fluorescence. For each meteorite, many of the smallest particles ( up to in size, depending on the meteorite) exhibit very high Ni/Fe ratios compared to the Ni/Fe ratios measured in the larger particles , a composition consistent with the smallest debris being dominated by matrix material while the larger debris is dominated by fragments from olivine chondrules. These results may explain why the interplanetary dust particles (IDPs) collected from the Earth's stratosphere are C-rich and volatile-rich compared to the presumed solar nebula composition. The IDPs may simply sample the matrix of an inhomogeneous parent body, structurally and mineralogically similar to the chondritic meteorites, which are inhomogeneous assemblages of compact, strong, C- and volatile-poor chondrules that are distributed in a more porous, C- and volatile-rich matrix. In addition, these results may explain why the micrometeorites, which are to millimeters in size, recovered from the polar ices are Ni- and S-poor compared to chondritic meteorites, since these polar micrometeorites may preferentially sample fragments from the Ni- and S-poor olivine chondrules. These results indicate that the average composition of the IDPs may be biased towards the composition of the matrix of the parent body while the average composition of the polar micrometeorites may be more heavily weighted towards the composition of the chondrules and clasts. Thus, neither the IDPs nor the polar micrometeorites may sample the bulk composition of their respective parent bodies.We determined the threshold collisional specific energy for these chondritic meteorites to be 1419 J/kg, about twice the value for terrestrial basalt. Comparison of the mass of the largest fragment produced in the disruption of an sample of the porous ordinary chondrite Saratov with the largest fragment produced in the disruption of an sample of the compact ordinary chondrite MOR001 when each was struck by an impactor having approximately the same kinetic energy confirms that it requires significantly more energy to disrupt a porous target than a non-porous target.These results may also have important implications for the design of spacecraft missions intended to sample the composition and mineralogy of the chondritic asteroids and other inhomogeneous bodies. A Stardust-like spacecraft intended to sample asteroids by collecting only the small debris from a man-made impact onto the asteroid may collect particles that over-sample the matrix of the target and do not provide a representative sample of the bulk composition. The impact collection technique to be employed by the Japanese HAYABUSA (formerly MUSES-C) spacecraft to sample the asteroid Itokawa may result in similar mineral segregation.  相似文献   

3.
4.
With the collection of six years of MGS tracking data and three years of Mars Odyssey tracking data, there has been a continual improvement in the JPL Mars gravity field determination. This includes the measurement of the seasonal changes in the gravity coefficients (e.g., , , , , , ) caused by the mass exchange between the polar ice caps and atmosphere. This paper describes the latest gravity field MGS95J to degree and order 95. The improvement comes from additional tracking data and the adoption of a more complete Mars orientation model with nutation, instead of the IAU 2000 model. Free wobble of the Mars' spin axis, i.e. polar motion, has been constrained to be less than 10 mas by looking at the temporal history of and . A strong annual signature is observed in , and this is a mixture of polar motion and ice mass redistribution. The Love number solution with a subset of Odyssey tracking data is consistent with the previous liquid outer core determination from MGS tracking data [Yoder et al., 2003. Science 300, 299-303], giving a combined solution of k2=0.152±0.009 using MGS and Odyssey tracking data. The solutions for the masses of the Mars' moons show consistency between MGS, Odyssey, and Viking data sets; Phobos GM=(7.16±0.005)×10−4 km3/s2 and Deimos GM=(0.98±0.07)×10−4 km3/s2. Average MGS orbit errors, determined from differences in the overlaps of orbit solutions, have been reduced to 10-cm in the radial direction and 1.5 m along the spacecraft velocity and normal to the orbit plane. Hence, the ranging to the MGS and Odyssey spacecraft has resulted in position measurements of the Mars system center-of-mass relative to the Earth to an accuracy of one meter, greatly reducing the Mars ephemeris errors by several orders of magnitude, and providing mass estimates for Asteroids 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, and 324 Bamberga.  相似文献   

5.
6.
We present CCD photometric observations of 23 main-belt asteroids, of which 8 have never been observed before; thus, the data of these objects are the first in the literature. The majority showed well-detectable light variations, exceeding 0m1. We have determined synodic periods for 756 Lilliana (936), 1270 Datura (34), 1400 Tirela (1336), 1503 Kuopio (998), 3682 Welther (359), 7505 Furushu (414) and 11436 1969 QR (123), while uncertain period estimates were possible for 469 Argentina (123), 546 Herodias (104) and 1026 Ingrid (53). The shape of the lightcurves of 3682 Welther changed on a short time-scale and showed dimmings that might be attributed to eclipses in a binary system. For the remaining objects, only lower limits of the periods and amplitudes were concluded.  相似文献   

7.
Perihelion motion, i.e. a secular change of longitude of perihelion, of interplanetary dust particles is investigated under the action of solar gravity and solar electromagnetic radiation. As for spherical particle [Kla?ka, J., 2004. Electromagnetic radiation and motion of a particle. Cel. Mech. Dynam. Astron. 89, 1-61]: (i) perihelion motion is of the order ( is heliocentric velocity of the meteoroid and c is the speed of light in vacuum), if a component of electromagnetic radiation acceleration is considered as a part of central acceleration; (ii) perihelion motion is of the first order in if the total electromagnetic radiation force is considered as a disturbing force. The new facts presented in this paper concern irregular dust particles. Detailed numerical calculations were performed for the grains ejected at aphelion of comet Encke. Perihelion motion for irregular interplanetary dust particles exists already in the first order in for both cases of central accelerations. Moreover, perihelion motion of irregular particles exhibits both positive and negative directions during the particle orbital motion. Irregularity of the grains causes not only perihelion motion, but also dispersion of the dust in various directions, also normal to the orbital plane of the parent body.  相似文献   

8.
The Mars climate database (MCD) is a database of statistics based on output from physically consistent numerical model simulations which describe the climate and surface environment of Mars. It is used here to predict the meteorological environment of the Beagle 2 lander site. The database was constructed directly on the basis of output from multiannual integrations of two general circulation models, developed jointly at Laboratoire de Météorologie Dynamique du Centre National de la Recherche Scientifique, France, and the University of Oxford, UK. In an atmosphere with dust opacities similar to that observed by Mars Global Surveyor, the predicted surface temperature at the time of landing (Ls=322°, 13:00 local time), is , and varying between ∼186 and over the Martian day. The predicted air temperature at above the surface, the height of the fully extended Beagle 2 robot arm, is at the time of landing. The expected mean wind near the surface on landing is north-westerly in direction, becoming more southerly over the mission. An increase in mean surface pressure is expected during the mission. Heavy global dust storm predictions are discussed; conditions which may only occur in the extreme as the expected time of landing is around the end of the main dust storm period. Past observations show approximately a one in five chance of a large-scale dust storm in a whole Mars year over the landing region, Isidis Planitia. This statistic results from observations of global, encircling, regional and local dust storms but does not include any small-scale dust “events” such as dust devils.  相似文献   

9.
Solar light gets scattered at cloud top level in Venus’ atmosphere, in the visible range, which corresponds to the altitude of 67 km. We present Doppler velocity measurements performed with the high resolution spectrometer MTR of the Solar telescope THEMIS (Teide Observatory, Canary Island) on the sodium D2 solar line . Observations lasted only 49 min because of cloudy weather. However, we could assess the instrumental velocity sensitivity, per pixel of 1 arcsec, and give a value of the amplitude of zonal wind at equator at .  相似文献   

10.
11.
12.
Darrell F. Strobel 《Icarus》2006,182(1):251-258
Tidal waves driven by Titan's orbital eccentricity through the time-dependent component of Saturn's gravitational potential attain nonlinear, saturation amplitudes (|T|>10 K, , and ) in the upper atmosphere (?500 km) due to the approximate exponential growth as the inverse square root of pressure. The gravitational tides, with vertical wavelengths of ∼100-150 km above 500 km altitude, carry energy fluxes sufficient in magnitude to affect the energy balance of the upper atmosphere with heating rates in the altitude range of 500-900 km.  相似文献   

13.
14.
We have obtained numerically integrated orbits for Saturn's coorbital satellites, Janus and Epimetheus, together with Saturn's F-ring shepherding satellites, Prometheus and Pandora. The orbits are fit to astrometric observations acquired with the Hubble Space Telescope and from Earth-based observatories and to imaging data acquired from the Voyager spacecraft. The observations cover the 38 year period from the 1966 Saturn ring plane crossing to the spring of 2004. In the process of determining the orbits we have found masses for all four satellites. The densities derived from the masses for Janus, Epimetheus, Prometheus, and Pandora in units of g cm−3 are , , , and , respectively.  相似文献   

15.
Meteoric ions in the atmosphere of Mars   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
18.
19.
20.
Conventional meteoroid theory assumes that the dominant mode of ablation (which we will refer to as thermal ablation) is by evaporation following intense heating during atmospheric flight. Light production results from excitation of ablated meteoroid atoms following collisions with atmospheric constituents. In this paper, we consider the question of whether sputtering may provide an alternative disintegration process of some importance. For meteoroids in the mass range from 10-3 to and covering a meteor velocity range from 11 to , we numerically modeled both thermal ablation and sputtering ablation during atmospheric flight. We considered three meteoroid models believed to be representative of asteroidal ( mass density), cometary () and porous cometary () meteoroid structures. Atmospheric profiles which considered the molecular compositions at different heights were use in the sputtering calculations. We find that while in many cases (particularly at low velocities and for relatively large meteoroid masses) sputtering contributes only a small amount of mass loss during atmospheric flight, in some cases sputtering is very important. For example, a porous meteoroid at will lose nearly 51% of its mass by sputtering, while a asteroidal meteoroid at will lose nearly 83% of its mass by sputtering. We argue that sputtering may explain the light production observed at very great heights in some Leonid meteors. We discuss methods to observationally test the predictions of these computations. A search for early gradual tails on meteor light curves prior to the commencement of intense thermal ablation possibly represents the most promising approach. The impact of this work will be most dramatic for very small meteoroids such as those observed with large aperture radars. The heights of ablation and decelerations observed using these systems may provide evidence for the importance of sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号