首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Groundwater constitutes the major source of utility water in Ekiti State with the majority of the population depending on groundwater for drinking and other household uses. Soil in the area is commonly used as a component of building materials, which may produce radon in the indoor environment. Excessive concentrations of radon in water and soil can cause radiological health risks to human as witnessed by the increased cases of lung cancer among non-smokers in Nigeria, which may be traceable to the ingestion and inhalation 222Rn in drinking water and indoor air. In the present study, comparative in situ measurements of radon in groundwater and soil gas were carried out at one hundred selected locations across the Ekiti State in southwest Nigeria, using a RAD7 radon detector to generate a radon distribution map and to estimate radiation hazards due to radon. The concentrations of radon in groundwater ranged from 0.9 to 472 Bq L?1 with a mean of 34.7?±?4.4 Bq L?1, while those of soil gas ranged from 0.1 to 315 kBq L?1 with a mean of 38.9?±?1.4 kBq L?1. The total annual effective dose due to inhalation and ingestion of radon in groundwater amounted to 94.7 µSv year?1, which is lower than the reference dose of 100 µSv year?1 recommended by the World Health Organization (WHO). The radon map generated for groundwater and soil gas identified three distinct areas with radon levels ranging from low to high. The results of this study show that some locations (Emure, Gbonyin, Ijero and Ikole) show mean total annual effective doses which are higher than the recommended limit. It can then be inferred that the groundwater samples pose significant radiological hazards to the population and that the noticed increase in lung cancer cases may be attributed to the consumption of groundwater in the area.  相似文献   

2.
 Radon is a significant component of the groundwaters that discharge in the springs of Szczawno Zdrój and are recognized as medicinal. However, among the five exploited springs adjoining each other, it is only in Marta Spring that radon occurs in large concentrations (up to 325.6 Bq/dm3). Therefore, the authors have made an attempt to describe and clarify this fact. They found out from their own research and archival data that 222Rn dissolves in the waters of Marta Spring after acidulous waters of deep circulation have mixed with poorly mineralized shallow waters in their outflow zone. The genesis of the gas is determined by the content of its parent nuclide, 226Ra, in the sandstones in the vicinity of the intake. The volume of the rocks providing radon to the waters of this intake has been estimated at several hundred cubic metres. No seasonal fluctuations in radon concentration have been observed and 222Rn concentration changes do not seem to be influenced by changes in the concentration of other chemical components of the waters or by the discharge of the intake. The process of dissolving 222Rn in the medicinal groundwaters of Marta Spring is the last, the shortest, and the most local of the processes that form the chemical composition and the physical properties of these waters. Received: 7 January 2000 · Accepted: 12 August 2000  相似文献   

3.
Measurement of soil-gas radon in some areas of northern Rajasthan,India   总被引:1,自引:0,他引:1  
The health hazards of the radioactive gas radon on general public are well known. In order to understand the level and distribution of 222Rn concentrations in soil-gas in Sri Ganganagar district of Rajasthan, a 222Rn survey was carried out for the first time using RAD7, an electronic radon detector manufactured by Durridge Company (USA), at different locations covering a total area of 10,978 km 2, having a population of approximately 20 lakh. The measurement of 222Rn concentration in soil-gas was carried out at four different depths (10, 40, 70, and 100 cm). The radon concentration in soil-gas for 10, 40, 70, and 100 cm depths ranged from 0.09–4.25, 0.15–6.30, 0.50–9.18, and 0.72–10.40 kBq m ?3, respectively. The minimum value of radon concentration is observed in 33 GB village at 10 cm depth and maximum for Mohanpura village at 100 cm depth. As expected, our data show an increase of soil-gas radon concentration levels with depth. The present results are compared with the available radon data from other studies.  相似文献   

4.
Soil radon (222Rn) has been monitored during winter months under cool-temperate deciduous stands of different surface geology in Tomakomai and in Sapporo, Hokkaido, Japan. Radon level was lower in Tomakomai of immature soil of porous volcanic ash emitted from an active volcano (Mt. Tarumae), compared with those in Sapporo of alluvial sediments. In Tomakomai, mean value of the 222Rn activity concentration was higher in winter (570 Bq m?3) than in summer (350 Bq m?3) at a depth of 1 m, which is consistent with the results in cold and dry winter reported in the literature. In contrast, soil radon decreasing with decreasing soil temperature from mid-September (5.0 kBq m?3) remained low (2.6 kBq m?3) under persistent snow in Sapporo, which had already been observed in the same location. Measurements of the activity concentrations of 222Rn in snow and in snow air as well as in soil air indicate that the small amount of 222Rn is released from the ground surface to the overlying snowpack with a 222Rn flux density of 0.4 mBq m?2 s?1 under thick snow cover in Sapporo.  相似文献   

5.
A calculation method for determining the amount of Rn isotopes and daughter products at the start of measurement (CRAS) is proposed as a more accurate means of estimating the initial Rn concentration in soil gas. The CRAS utilizes the decay law between 222Rn and 220Rn isotopes and the daughter products 218Po and 216Po, and is applicable to α-scintillation counter measurements. As Rn is both inert and chemically stable, it is useful for fault investigation based on the soil gas geochemistry. However, the total number of α particles emitted by the decay of Rn has generally been considered to be proportional to the initial Rn concentration, without considering the gas condition with respect to radioactive equilibrium. The CRAS method is shown to be effective to derive Rn concentration for soil gases under both nonequilibrium conditions, in which the total number of decays increases with time, and equilibrium conditions, which are typical of normal soil under low gas flux. The CRAS method in conjunction with finite difference method simulation is applied to the analysis of two active fault areas in Japan, and it is demonstrated that this combination could detect the sharp rises in 222Rn concentrations associated with faults. The method also allows the determination of fault geometry near the surface based on the asymmetry variation of the Rn concentration distribution when coupled with a numerical simulation of 222Rn transport. The results for the new method as applied to the two case studies are consistent with the data collected from the geological survey. It implies that the CRAS method is suitable for investigating the fault system and interstitial gas mobility through fractures. The present analyses have also demonstrated that high Rn concentrations require the recent and repeated accumulation of 222Rn parents (230Th and 226Ra) in fault gouges through deep gas release during fault movement.  相似文献   

6.
Depth-discrete tracing of residual dense non-aqueous phase liquid (DNAPL) sources in the subsurface is of great importance in making decisions related to contaminated groundwater remediation. Temporal variations in the natural tracer 222Rn and contaminant concentrations in groundwater contaminated with multiple chlorinated contaminants, such as trichloroethene, carbon tetrachloride, and chloroform, were examined to trace residual multiple DNAPL contaminants at an industrial complex in Wonju, Korea. The 222Rn activities and multiple DNAPL concentrations in the groundwater fluctuated irregularly according to the groundwater recharge. The natural tracer 222Rn in groundwater present in the soil layer, originating from the underlying crystalline biotite granite, had a wide range from 29,000 to 179,000 Bq/m3, and total concentrations of chlorinated solvents ranged from 0.06 to 17.77 mg/l, indicating the ambiguous results of 222Rn for tracing the residual DNAPL sources. In this paper, a method is presented to locate zones with a high probability of containing depth-discrete residual multiple DNAPL sources using 222Rn and considering relative contaminant concentrations. The results demonstrate that the combination of the 222Rn activities as a natural tracer and the relative contaminant concentrations is able to be used as a useful tool for tracing residual DNAPLs.  相似文献   

7.
8.
The combined use of geophysical and soil gas composition exploration methods allows to rapidly obtain at relative low cost information that might be related to seismic activity conditions. In this study, we carried out geochemical soil gas sampling (222Rn, 220Rn and CO2), electrical resistivity tomography and seismic refraction profiles in two selected zones near the town of Amer in the Spanish Pyrenees, where the presence of recent fractures is evident in the field. Data analysis clearly reveals anomalous values for each gas at specific positions along the electrical imaging transects. Geomorphologic and hydrogeologic data and the integration of geophysical data and soil gas measurements indicate that: (1) endogene gases radon (222Rn) and carbon dioxide (CO2) are released from the meta-sedimentary basement rocks across the main fractured zones with higher permeability values, while lower Cenozoic detrital sedimentary formations act as an impervious boundary; (2) sites with highest radon concentrations (52?kBq?m?3) coincide with the zones in the Amer fault showing more recent geomorphic evidence of activity, and more specifically with those areas covered by thinner surficial formations; (3) the lowest 222Rn values (0.2?C0.4?kBq?m?3) were recorded just on the master active fault plane. This pattern could be explained by a dilution effect resulting from high rates of soil CO2 efflux (267?g?m?2?day?1); (4) soil thoron (220Rn) activity is maximum (143?kBq?m?3) in areas with high surficial fracturing; (5) groundwater pumping may cause important distortions in the natural flow dynamics and in the measured concentrations of gases. The agreement between the different data (geochemical, geophysical, and hydrogeological) and field observations (geology and geomorphology) leads us to propose a preliminary tectonic-gravitational model for the study area.  相似文献   

9.
The relationship of soil gas radon Rn222 and indoor radon was studied within the Quaternary fluvial sediments of the Czech Republic. The processing of data selection from the radon database of the Czech Geological Survey and indoor radon data (database of the National Radiation Protection institute) has proved the concentration dependence of radon in Quaternary fluvial sediments on deeper bedrock. The ArcGIS processing was accompanied by the field verification in five profiles, intersecting the granitoid Central Bohemian Plutonic Complex and its rim rock types. Both theoretical and experimental results show dependence of soil gas radon and indoor radon concentrations in Quaternary fluvial sediments on deeper geological basement, thus leading to the conclusion that the lateral transport of Quaternary sediments does not play such a dominant role in radon concentrations, as was thought previously. This fact will enable to determine precisely the radon index of Quaternary sediments (in the Czech radon mapping classified as an intermediate index) into three categories according to the lithology of their geological basement.  相似文献   

10.
Indoor radon measurements were carried out in a total of 420 dwellings and 17 schools in Hail region of Saudi Arabia, using NTDs based radon dosimeters. The duration of the measurements was one year, from April 2008 to April 2009. The indoor radon concentrations varied from 4 to 513 Bq/m3 with an overall average of 45 Bq/m3 for all surveyed dwellings. These passive measurements were confirmed by the active measurements. The anomalous concentrations above 200 Bq/m3 were observed in 13 dwellings, representing 3.1 % of the total surveyed dwellings. In Inbowan village alone, it was found that 7.6 % of the dwellings have indoor radon concentration above 200 Bq/m3. The highest average indoor radon concentration of 64 Bq/m3 was found in Inbowan village while the lowest average of 24 Bq/m3 was found in Majasah village. The city of Hail showed an average indoor radon concentration of 49 Bq/m3. The average indoor radon concentration in one area located at the edge of the Aja Mountain in Hail city was 111 Bq/m3. The elevated indoor radon concentrations in many dwellings in the Hail region, prompted us to measure outdoor ground radon in such locations using gas monitor. It was found that radon concentrations at a depth of 0.5 m varied significantly from place to place ranging from 1.2 to 177 kBq/m3. The outdoor radon concentrations are generally correlated with the indoor radon measurements. Radon exhalations from construction materials and soil samples from the Hail region were also measured. It was found that radon exhalations from soil samples are higher than that of construction materials by a factor of at least 3 and reaching up to 11. These results indicate that soil is the main source of indoor radon. Geological interpretations of the results are also given.  相似文献   

11.
The Neoproterozoic olistostromes were first distinguished as a special geological unit in a generalised geological map of the Czech Republic on a scale 1:500,000. The olistostromes represent a tectonic mélange or subaquatic continental slope-slides formed by a mixture of black shales, greywackes, carbonates and shales, forming an extremely inhomogeneous geological environment. The extreme over-limit values of indoor radon (Rn, 222Rn) were first detected during check measurements performed for final building approval by team of the National Radiation Protection Institute in a house situated on bedrock of black shales—lithological component of olistostromes north-eastward from Plzeň. Additional measurements of soil gas Rn performed by the Czech Geological Survey were oriented to cover the whole olistostrome belt extending over 65 × 25 km area NE of Plzeň–Prague general direction. The increased concentrations both of soil gas and indoor Rn were confirmed in the whole extent of Neoproterozoic olistostrome belt compared to neighbouring geological units (Neoproterozoic metasediments on NW and Cambrian Palaeovolcanites and Ordovician sediments on SE). This observation lead to increasing the radon index of olistostromes to medium radon category (from the low one) both in general and detailed Rn index maps. Drawing the attention to this lithological type enables to improve the radon risk prevention for newly built houses and interest of remediation of existing houses not only in the specific area of the Czech Republic, but also in other European countries, where Neoproterozoic olistostromes form the geological basement.  相似文献   

12.
Radon measurements were made in the soil and spring/seepage water in and around an active landslide located along the Pindar river in the Chamoli District of Uttaranchal in Garhwal Lesser Himalaya, to understand the application of radon in geological disasters. The landslide is a compound slide i.e. a slump in the crown portion, and debris slide and fall in the lower part. The bedrock consists of gneisses and schists of the Saryu Formation of the Almora Group of Precambrian age. The presence of several small slump scars and debris slide/fall scars along the length of the slide indicates continuous downward movement. The radon concentrations in the present study are much lower in comparison to values reported from other regions. However, the present radon data show relative variation in the slide zone. The concentration of radon measured in landslide zones varies from 3.1 Bq/l to 18.4 Bq/l in spring water and from 2.3 kBq/m3 to 12.2 kBq/m3 in the soil gas of the debris. Along the section of the slide, the radon values in water and soil are slightly higher in the upper slopes i.e. toward the crown portion of the landslide as compared to the distal portion. The relatively low concentration of radon both in soil gas and water in the toe portion of the landslide may be due to the high porosity of the debris, which does not allow radon to accumulate in the soil and water, whereas, towards the crown portion, the high frequency of fractures increases the surface area due to particle size reduction, and the near absence of debris enhances the radon emanation in soil.  相似文献   

13.
Radon gas is a human health hazard; long-term exposure to high radon concentrations through inhalation is the second leading cause of lung cancer. Nova Scotia has been previously identified as a potential high risk region because of the geology. As such, the gas transport through Halifax’s fine grained leucomonzogranite (FGL) unit of the South Mountain Batholith needed to be quantified to further remediation efforts. Using controlled laboratory experiments, four different soil columns were created using the Halifax Regional Municipality’s (HRM) highest producing field tills and bedrock. Permeability, diffusivity, radon-222 gas concentrations, and gas transit time/speed were measured in both dry tills (field moisture) and wet tills (simulated rain event moisture). Columns with HRM till displayed the highest radon concentrations, and were less permeable with additional moisture. Radon diffusivity calculated from CO2 was 7.52 × 10?8 m2 (dry), and 3.37 × 10?8 m2 (wet); diffusivity calculated from 222Rn was 7.30 × 10?7 m2 (dry), and 6.47 × 10?7 m2 (wet). The average FGL transit time in a 60 cm column was 3.57 days (dry), and 3.82 days (wet). Locally this study presents two different methods for diffusivity calculations, for a unit lacking previous diffusivity information. The radon gas concentrations and transport speeds quantified the transport mechanisms within the till. Globally, the correlation between soil moisture, and radon/permeability values was established using these results. The link between diffusivity and permeability was also confirmed using field tills. Implications were made for building foundations, as well as the depth and type of material necessary to reduce radon gas from reaching the surface.  相似文献   

14.
In the Alban Hills area, strong areally diffuse and localised spot degassing processes occur (Tivoli, Cava dei Selci, Solforata, Tor Caldara). The gas comprises a large proportion of CO2, with minor CH4, H2S and Rn. These advective features are generated by fluid leakage from buried reservoirs hosted in the structural highs of the Mesozoic carbonate basement. Gas migration towards the surface is controlled by fault and fracture systems bordering the structural highs of the carbonate formations (e.g. Ciampino high). His release is triggered when the total pressure of the fluid phase exceeds the hydrostatic pressure, thus forming a free gas phase. Furthermore, both the sudden and catastrophic, and slow and continuous gas release at surface, of naturally occurring toxic species (CO2, H2S and Rn) poses a serious health risk to people living in this geologically active area.This paper presents data obtained from soil gas and gas flux surveys, as well as gas isotopes analyses, which suggest the presence of a deep origin gas flux enriched in carbon dioxide and minor species (CH4 and H2S), as well as a channelled migration of geogas mixtures having a Rn component which is not produced in situ.In regards to the health risk to local inhabitants, it was found that some anomalous areas had been zoned as parkland while others had been heavily developed for residential purposes. For example, many new houses were found to have been built on ground which has soil gas CO2 concentrations of over 70% and a CO2 flux of about 0.7 kg m−2 day−1, as well as radon values of more than 250 kBq/m3. In addition, an indoor radon survey has been conducted in selected houses in the town of Cava dei Selci to search for a possible correlation between the local geology and the radon concentration in indoor air. Preliminary results indicate high indoor values at ground floor levels (up to 1000 Bq/m3) and very high values in the cellars (up to 250.000 Bq/m3). It is recommended that land-use planners incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk (i.e. volcanic or structurally active areas).  相似文献   

15.
Soil gas radon measurements were made in Chamba and Dharamshala regions of Himachal Pradesh, India, to study the correlation, if any, between the soil gas radon, radium activity concentration of soil, and the geology/active tectonics of the study region. Soil gas radon surveys were conducted around the local fault zones to check their tectonic activities using the soil gas technique. Soil gas radon activity concentration at thirty-five different locations in Dharamshala region has been found to be varying from 13.2 ± 1.5 to 110.8 ± 5.0 kBq m?3 with a geometrical mean of 35.9 kBq m?3 and geometrical standard deviation of 1.8. Radon activity concentration observed in the thirty-seven soil gas samples collected from the Chamba region of Himachal Pradesh varies from 5.2 ± 1.0 to 35.6 ± 2.5 kBq m?3, with geometrical mean of 15.8 kBq m?3 and geometrical standard deviation of 1.6. Average radium activity concentrations in thirty-four soil samples collected from different geological formations of Dharamshala region and Chamba region are found to be 40.4 ± 17 and 38.6 ± 1.7 Bq kg?1, respectively. It has been observed that soil gas radon activity concentration has a wide range of variation in both Dharamshala and Chamba regions, while radium activity concentrations in soil samples are more or less same in both the regions. Moreover, soil gas radon activity concentration has a better positive correlation with the radium activity concentration in soil samples collected from Chamba region as compared to Dharamshala region.  相似文献   

16.
Statistical analysis of the radon-222 potential of rocks in Virginia,U.S.A.   总被引:1,自引:0,他引:1  
More than 3,200 indoor radon-222 (222Rn) measurements were made seasonally in an area of about 1,000 square kilometers of the Coastal Plain and Piedmont physiographic provinces in Virginia, U.S.A. Results of these measurements indicate that some geological units are associated, on the average, with twice as much indoor222Rn as other geological units, and that indoor222Rn varies seasonally. The Kruskal-Wallis test was used to test whether indoor222Rn concentrations for data gathered over the winter and summer seasons differ significantly by rock unit. The tests concluded that indoor222Rn concentrations for different rock units were not equal at the 5-percent significance level. The rocks associated with the highest median indoor222Rn concentration are specific rocks in the Mesozoic Culpeper basin, including shale and siltstone units with Jurassic diabase intrusives, and mica schists in the Piedmont physiographic province. The pre-Triassic Peters Creek Schist has the highest ranking in terms of indoor222Rn concentration. The rocks associated with the lowest indoor222Rn concentrations include coastal plain sediments, the Occoquan Granite, Falls Church Tonalite, Piney Branch Mafic and Ultramafic complex, and unnamed mafic and ultramafic inclusions, respectively. The rocks have been ranked according to observed222Rn concentration by transforming the average rank of indoor222Rn concentrations to z scores.  相似文献   

17.
As natural gas becomes increasingly important in our daily life, studies have been carried out on trace elements such as mercury and arsenic within it. Other than those, the existence of radioactive gaseous radon from the combustion of natural gas indoors can cause severe diseases and damages to body organs, putting a hazardous impact on human health. At the same time, the radon can also corrode gas production and transportation equipment. A review of the literature on radon concentrations in natural gas produced from gas reservoirs in China and other countries have been studied. Radon is a decay product from 238U, which is closely related to the accumulation and migration of organic matter during diagenesis. Gas recovered from reservoirs with higher than average natural 238U contains higher than average levels of 222Rn. Massive fault systems and fracture zones appear to play a significant role in radon concentrations in natural gas.  相似文献   

18.
 Radon concentrations were measured in soil, air and groundwater in Bhilangana Valley, Garhwal Himalaya, India by using an LR-115 plastic track detector and radon emanometer. Radon concentrations were found to vary from 1 KBq/m3 to 57 KBq/m3 in soil , 5 Bq/l to 887 Bq/l in water and 95 Bq/m3 to 208 Bq/m3 in air. The recorded values are quite high due to associated uranium mineralization in the area. Radon concentration was also found to depend on the tectonic structure and geology of the area. Received: 22 July 1996 · Accepted: 8 January 1997  相似文献   

19.
Many water-supply systems in South America utilize the waters of the Guarani aquifer at least as part of their networks. However, there is little present knowledge in Brazil of the factors affecting Rn presence in the water supplied for end-users, despite the economic importance of Guarani aquifer. 222Rn analyzes of 162 water samples were performed at 8 municipalities in São Paulo State, Brazil, with the aim of investigating the major factors affecting its presence in solution. The 222Rn activity concentration ranged from 0.04 up to 204.9 Bq/L, with three samples exceeding the World Health Organization maximum limit of 100 Bq/L. Aeration was confirmed as the most important factor for Rn release, as expected due to its gaseous nature. Accumulation in pipes and stratification in the water column were other significant factors explaining the data obtained in some circumstances. The Rn daughters 214Pb and 214Bi were also determined in a set of selected samples and their presence was directly related to the occurrence of Rn dissolved in water.  相似文献   

20.
Analysis of one year measurements of in situ radon (222Rn) and its progenies along with surface air temperature, relative humidity and pressure near to the Earth’s surface has been carried out for the first time at the National Atmospheric Research Laboratory (NARL, 13.5°N and 79.2°E) located in a rural site in Gadanki, south India. The dataset was analysed to understand the behaviour of radon in relation to the surface air temperature and relative humidity at a rural site. It was observed that over a period of the 24 hours in a day, the activity of radon and its progenies reaches a peak in the morning hours followed by a remarkable decrease in the afternoon hours. Relatively, a higher concentration of radon was observed at NARL during fair weather days, and this can be attributed to the presence of rocky hills and dense vegetation surrounding the site. The high negative correlation between surface air temperature and activity of radon (R = – 0.70, on an annual scale) suggests that dynamical removal of radon due to increased vertical mixing is one of the most important controlling processes of the radon accumulation in the atmospheric surface layer. The annual averaged activity of radon was found to be 12.01±0.66 Bq m?3 and 4.25±0.18 Bq m?3 for its progenies, in the study period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号