首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
电离层是地球空间的重要组成部分,电离层延迟是全球导航卫星系统(global navigation satellite system,GNSS)数据处理的重要误差源,电离层的影响主要表现为地面站接收到的卫星载波和伪距信号的附加时延效应,最大可达几十米,精确的电离层模型可以有效提高GNSS单频数据处理的精度。利用GNSS观测值研究电离层,一般采用无几何距离组合的码和相位观测值,使用相位平滑伪距方法得到平滑电离层观测值,但是该方法容易受到伪距多路径和观测噪声的影响,导致电离层估计不准确。因此,先基于非组合精密单点定位(precise point positioning,PPP)提取电离层,利用国际GNSS服务的轨道、钟差等产品,有效减少待估参数个数,提高电离层延迟的估计精度;再使用纬度差和太阳时角差的多项式拟合进行区域电离层建模。利用某省连续运行参考站系统数据提取了天顶方向总电子含量信息进行建模,与PPP解算结果进行比较,在测站天顶方向上的模型值和解算值差异较小(除个别卫星外),可达到2 TECU左右。  相似文献   

2.
沈朋礼  成芳  肖厦  肖秋龙  卢晓春 《测绘科学》2019,44(11):9-14,21
在高精度GNSS应用中,载波相位观测值中出现周跳问题直接影响到整周模糊度的解算及最终定位精度,针对北斗卫星导航系统三代卫星密集发射的现状,该文提出一种联合采用码伪距与相位伪距组合、MW组合和电离层残差组合进行北斗三号卫星双频数据周跳探测和修复的算法。该算法可以发挥单个组合优势有效进行周跳探测且能避免各自的探测盲区,联合3种组合观测量进行周跳值求解时,计算方法简单,可以直接取整得到周跳值。通过对北斗三号卫星双频实测数据的处理分析,验证了该算法能够准确地探测出所有周跳,并能够有效修复。  相似文献   

3.
针对现有的载波相位平滑伪距算法多基于GNSS双频观测值且在伪距平滑过程中易受电离层延迟累积干扰的问题,提出一种基于北斗三频观测值的载波相位平滑伪距算法。首先通过构建北斗三频优选线性组合,进一步削弱双差载波相位观测值的电离层延迟以及观测噪声;接着通过经典Hatch滤波平滑器,用优选三频双差载波相位观测值代替原始载波相位观测值对组合伪距观测值进行平滑,得到最终伪距平滑解用于伪距定位。最后采用0.004、14.4、61.7和131.6 km这4组不同基线长度的北斗三频实测数据对算法进行验证,给出了平滑前后伪距历元差对比图及算法对4组基线观测值的平滑率。结果表明,所提算法对短基线和中长基线三频观测值的平滑率均能达到90%以上。通过对4组基线条件下平滑效果进行比较分析,验证了本文中的理论推导及算法的有效性。  相似文献   

4.
基于球谐函数模型的GPS差分码延迟估计   总被引:1,自引:0,他引:1  
电离层延迟是GNSS观测值中最大的误差源,因此如何利用GNSS观测值确定高精度电离层模型逐渐成为实时导航、定位及大气相关研究的重要内容。在通常采用组合观测值建立模型的方法中,精确估计电离层总电子含量(TEC)的重要误差之一是差分码硬件延迟(DCBs)。为了实时得到P1、P2、C2相互间硬件差分码延迟偏差,本文采用IGS跟踪站的观测数据并利用载波平滑后的差分伪距建立观测方程,对卫星和接收机硬件差分码延迟偏差进行实时解算。经比较模型解算DCB值与IGS最大差异不超过0.8 ns,C1、P1码延迟偏差72%差异值小于0.3 ns,P1、P2的74%差异值小于0.3 ns。  相似文献   

5.
载波相位观测值是GNSS定位系统高精度的关键,而周跳是载波相位数据处理过程中必不可少的关键性问题。从载波相位测量原理入手,系统分析了周跳产生原因及特性,在此基础上,讨论了电离层残差法以及相位减伪距法探测周跳的适用性和优缺点。  相似文献   

6.
传统的单频载波相位平滑伪距算法因受到电离层延迟变化的影响,容易出现平滑结果发散和精度下降的问题,而现有的解决方案对精度提高有限或需要外部精密电离层改正数据的支持。本文研究了电离层的变化规律并建立回归模型,在此基础上提出了一种自模型化电离层延迟变化的单频载波相位平滑伪距算法。此算法利用伪距和载波观测量中含有的电离层延迟信息进行电离层延迟建模,从平滑伪距中扣除了历元间电离层延迟变化值,有效避免了平滑伪距的发散问题。利用自编软件GNSSer实现了电离层自模型化的载波平滑伪距算法,并采用静态与动态实测观测数据进行了定位试验和精度分析。算例结果表明:①长时段常规Hatch滤波受电离层影响非常严重;②自模型化电离层延迟可达厘米级的精度,在30 min窗口内,使用线性移动开窗拟合法效果最佳;③自模型化电离层改正可以有效消除平滑伪距电离层影响,随着时段窗口的增加,精度没有降低;④利用本文提出的算法进行逐历元单频平滑伪距单点定位,在静态与动态的NEU方向都达到了亚分米级别的定位精度,其中,动态定位测试中水平和高程方向精度为6.25和10.4 cm,比原始伪距分别提高了5.4倍和3.3倍。  相似文献   

7.
对北斗精密单点定位的观测残差进行了系统全面的分析;通过对一站多天、多站一天解的观测残差、天线相位中心偏差对观测残差的影响以及观测残差历元间的关系进行实验分析。结果表明,北斗GEO卫星的伪距和相位的无电离层组合观测残差存在着系统偏差,这一系统偏差与测站的观测环境无关;伪距的无电离层组合观测残差的系统偏差具有常数特性;相位的无电离层组合观测残差的系统偏差与天线相位中心偏差有关。  相似文献   

8.
许承权  吴文英  吴绍祖 《测绘科学》2010,35(4):23-24,128
单频GPS精密单点定位的逐次滤波法,将载波相位观测值在相邻历元间求差以消除电离层延迟误差的影响,并辅助伪距观测值进行高精度定位。本文详细分析该方法的随机模型和函数模型,讨论观测值先验方差的确定方法,包括指数函数经验模型、观测残差向量的开窗估计法等,并采用自编软件计算实测数据分析该模型的精度。  相似文献   

9.
联合双频GPS数据,利用相位平滑伪距算法,可得到包含斜向电离层总电子含量(slant total electron content,sTEC)、测站和卫星差分码偏差(differential code bias,DCB)的电离层观测值(称之为"平滑伪距电离层观测值"),常应用于与电离层有关的研究。然而,平滑伪距电离层观测值易受平滑弧段长度和与测站有关的误差影响。提出一种新算法:利用非组合精密单点定位技术(precise point positioning,PPP)计算电离层观测值(称之为"PPP电离层观测值"),进而估计sTEC和站星DCB。基于短基线试验,先用一台接收机按上述两种方法估计sTEC,用于改正另一接收机观测值的电离层延迟以实施单频PPP,结果表明,利用PPP电离层观测值得到的sTEC精度较高,定位结果的可靠性较强。随后,选取全球分布的8个IGS(internationalGNSS service)连续跟踪站2009年1月内某四天的观测数据,利用上述两种电离层观测值计算所有卫星的DCB,并将计算结果与CODE发布的月平均值进行比较,其中,平滑伪距电离层观测值的卫星DCB估值与CODE(Centre for Orbit Deter mination in Europe)发布值的差别较大,部分卫星甚至可达0.2~0.3 ns,而PPP电离层观测值而言,绝大多数卫星对应的差异均在0.1 ns以内。  相似文献   

10.
利用非组合精密单点定位(PPP)可以提取高精度的电离层延迟。测站多径误差会影响伪距和相位测量精度,影响实时PPP电离层延迟提取的精度以及收敛速度。对于静态观测站,利用对GPS卫星地面跟踪的时间重复性进行恒星日滤波可以消除多径误差的影响。通过事后处理提取前几日的码和载波相位残差序列,利用恒星日滤波建立多径误差改正模型,修正实时观测数据,可以改善实时电离层延迟估计性能。对IGS观测站的实测数据分析表明,应用恒星日滤波多径误差修正后,实时电离层延迟提取的精度由0.185m提高到0.028m,新进卫星的电离层参数估计收敛时间由80min减少为35min。  相似文献   

11.
Compared with the traditional GPS L1 C/A BPSK-R(1) signal, wideband global navigation satellite system (GNSS) signals suffer more severe distortion due to ionospheric dispersion. Ionospheric dispersion inevitably introduces additional errors in pseudorange and carrier phase observations that cannot be readily eliminated by traditional methods. Researchers have reported power losses, waveform ripples, correlation peak asymmetries, and carrier phase shifts caused by ionospheric dispersion. We analyze the code tracking bias induced by ionospheric dispersion and propose an efficient all-pass filter to compensate the corresponding nonlinear group delay over the signal bandwidth. The filter is constructed in a cascaded biquad form based on the estimated total electron content (TEC). The effects of TEC accuracy, filter order, and fraction parameter on the filter fitting error are explored. Taking the AltBOC(15,10) signal as an example, we compare the time domain signal waveforms, correlation peaks, code tracking biases, and carrier phase biases with and without this all-pass filter and demonstrate that the proposed delay-equalization all-pass filter is a potential solution to ionospheric dispersion compensation and mitigation of observation biases for wideband GNSS signals.  相似文献   

12.
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne–Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.  相似文献   

13.
The ionosphere can be modeled and studied using multi-frequency GNSS signals and their geometry-free linear combination. Therefore, a number of GNSS-derived ionospheric models have been developed and applied in a broad range of applications. However, due to the complexity of estimating the carrier phase ambiguities, most of these models are based on low-accuracy carrier phase smoothed pseudorange data. This, in turn, critically limits their accuracy and applicability. Therefore, we present a new methodology of estimating the phase bias of the scaled L1 and L2 carrier phase difference which is a function of the ambiguities, the ionospheric delay, and hardware delays. This methodology is suitable for ionospheric modeling at regional and continental scales. In addition, we present its evaluation under varying ionospheric conditions. The test results show that the carrier phase bias of geometry-free linear combination can be estimated with a very high accuracy, which consequently allows for calculating ionospheric TEC with the uncertainty lower than 1.0 TECU. This high accuracy makes the resulting ionosphere model suitable for improving GNSS positioning for high-precision applications in geosciences.  相似文献   

14.
This paper presents a general modeling strategy for ambiguity resolution (AR) and position estimation (PE) using three or more phase-based ranging signals from a global navigation satellite system (GNSS). The proposed strategy will identify three best “virtual” signals to allow for more reliable AR under certain observational conditions characterized by ionospheric and tropospheric delay variability, level of phase noise and orbit accuracy. The selected virtual signals suffer from minimal or relatively low ionospheric effects, and thus are known as ionosphere-reduced virtual signals. As a result, the ionospheric parameters in the geometry-based observational models can be eliminated for long baselines, typically those of length tens to hundreds of kilometres. The proposed modeling comprises three major steps. Step 1 is the geometry-free determination of the extra-widelane (EWL) formed between the two closest L-band carrier measurements, directly from the two corresponding code measurements. Step 2 forms the second EWL signal and resolves the integer ambiguity with a geometry-based estimator alone or together with the first EWL. This is followed by a procedure to correct for the first-order ionospheric delay using the two ambiguity-fixed widelane (WL) signals derived from the integer-fixed EWL signals. Step 3 finds an independent narrow-lane (NL) signal, which is used together with a refined WL to resolve NL ambiguity with geometry-based integer estimation and search algorithms. As a result, the above two AR processes performed with WL/NL and EWL/WL signals respectively, either in sequence or in parallel, can support real time kinematic (RTK) positioning over baselines of tens to hundreds of kilometres, thus enabling centimetre-to-decimentre positioning at the local, regional and even global scales in the future.  相似文献   

15.
The European Galileo system offers one dedicated signal that is superior to all other signals currently available in space, namely the broadband signal E5. This signal has a bandwidth of at least 51 MHz using an AltBOC modulation. It features a code range noise at centimeter level. Additionally, the impact of multipath effects on this signal is significantly lower compared to all other available GNSS signals. These unique features of Galileo E5 drastically improve the precision of code range measurements and hence enable precise single-frequency positioning. Certain scientific and non-scientific applications in the positioning domain could likely benefit from the exploitation of E5 measurements. A positioning approach based on an additive combination of code range and carrier phase measurements (CPC—“code-plus-carrier”) to eliminate the ionospheric delay could be used to perform precise positioning over long distances. Unfortunately, this derived observable contains the ambiguity term as an additional unknown what normally requires longer observation windows in order to allow sufficient convergence of the ambiguity parameters. For this reason, a rapid convergence algorithm based on Kalman filtering was implemented in addition to the conventional CPC approach that is also discussed. The CPC-based results yield a positioning precision of 2–5 cm after a convergence time of about 3 h. The rapid convergence filter allows fixing the ambiguity terms within a few minutes, and the obtained position results are at the sub-decimeter level. Regarding one selected test, real data from Galileo experimental satellite GIOVE A were used in order to confirm our assumptions. However, since the current Galileo constellation is not sufficient for real-world positioning trials yet, all major results are based on simulated data.  相似文献   

16.
电离层电子含量(TEC)受太阳活动影响较大,磁暴发生时,TEC变化在全球范围内变化不一,研究该时期的TEC扰动变化情况对电离层的研究至关重要.本文以2015年3月特大磁暴为研究对象,利用包括北斗系统在内的全球卫星导航系统(GNSS)TEC数据和中国区域的电离层测高仪f oF2数据,对此次电离层磁暴的扰动特性进行研究并讨论其可能的物理机制.   相似文献   

17.
电离层延迟是影响导航定位精度的最主要因素。北斗卫星导航系统采用Klobuchar模型修正单频接收机用户的电离层延迟误差,对于双频接收机,可以利用不同频率信号的伪距观测数据解算得到电离层延迟值。为比较两种方法在天津地区的电离层延迟修正效果,利用NovAtel GPStation6接收机(GNSS电离层闪烁和TEC监测接收机)采集到的卫星实测数据进行计算。以国际全球导航卫星系统服务组织(IGS)发布的全球电离层格网数据为参考,对两种方法的修正效果进行比较分析。结果表明,在天津地区,利用双频观测值解算电离层延迟比Klobuchar模型计算结果更加精确,且平均每天的修正值达到IGS发布数据的82.11%,比Klobuchar模型计算值高948%   相似文献   

18.
提出一种基于单频码和相位观测量的单频精密单点定位方法,将每个观测量的电离层延迟量与接收机钟差、对流层天顶延迟、接收机位置、相位模糊度一起作为未知参数。采用约化参数的平方根信息滤波与平滑算法进行参数解算。该方法适用于实时定位和事后处理,且不需要外部的电离层模型。采用全球分布的32个IGS监测站16 d实测数据进行静态解算试验,结果表明E、N、U方向的RMS分别为0.023 m、0.018 m、0.059 m;基于一组机载GPS数据进行动态解算试验,得到E、N、U方向的RMS(与载波相位动态相对定位结果比较)分别为0.168 m、0.151 m、0.172 m。  相似文献   

19.
金双根  汪奇生  史奇奇 《测绘学报》2022,51(7):1239-1248
全球导航卫星系统(GNSS)已发展至多频多系统时代,特别以我国北斗卫星导航系统(BDS)为代表的四大全球导航卫星系统可全天时、全天候播发十几个频率的伪距、相位和多普勒等观测信息。多频多系统GNSS为用户提供更多的观测数据和组合选择,为精密定位、导航和授时(PNT)应用带来了新的机遇,如高精度位置服务、大地测量、空间天气和灾害监测等。但多频多系统GNSS观测为精密单点定位(PPP)组合模型和系统偏差及大气延迟估计等带来诸多问题和挑战。本文给出了单频到五频多系统GNSS精密单点定位(PPP)模型,估计和评估了单频到五频多系统GNSS PPP定位精度、接收机钟差、对流层延迟、卫星和接收机硬件延迟,以及频间偏差。给出了GNSS PPP最新应用进展,包括GNSS气象学、电离层模拟、时间频率传递、建筑物安全和地震监测及其应用。结果表明,多频多系统极大地提高了GNSS PPP参数估计的精度和可靠性,具有重要的应用价值。最后给出了多频多系统GNSS PPP应用前景与展望。  相似文献   

20.
针对实时GNSS单频定位中电离层延迟改正问题,本文采用可用于实时GNSS单频定位的几种电离层模型对电离层延迟进行改正并分析其对GNSS单频单点定位性能的影响。其中,对单频SPP的电离层延迟采用模型直接进行改正,采用Klobuchar模型、CODE的预报产品c1pg、原国家测绘地理信息局的实时球谐电离层产品cosong和CODE事后产品codg计算的电离层精度依次提高;采用不同电离层模型作为电离层估计的先验约束进行单频PPP定位。结果表明:采用精度较好的电离层产品作为先验约束可加快单频PPP收敛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号