首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Using the data obtained from the Pioneer 10 and 11 observations, a theoretical model is proposed for the bow shock and the magentosphere of Jupiter. This indicates that the distance of the magnetopause from Jupiter on the sunlit side is (50–55) × rJ (rJ: Jupiter radius, = 7 × 109 cm) and that the ratio of the stand-off distance to this distance is about equal to or slightly larger than unity. Hence the Mach number of the solar wind seems to be less than 1.5 at Jupiter's orbit. This result necessarily leads to a blunt body model of the Jovian magnetosphere, the tail region of which is not as extended as observed in the Earth's case.  相似文献   

2.
Simple photochemical models cannot reconcile Jupiter's ionospheric electron density profiles with the observed neutral atmosphere. The location of the peak electron density predicted when the neutral atmosphere determined by theVoyager Ultraviolet Spectrometer is combined with simple models falls about 1000km lower than the peak determined by radio occultation. The locations and magnitudes of the peaks in electron density can be accounted for by including the effects of vertical transport of ions in the ionospheric models. This vertical transport may be induced by meridional winds in the neutral atmosphere or external electric fields. It is probable that precipitating particles and an altitude-variable H2 vibrational temperature play important roles in determining the character of the iono?phere. In view of the complex relationship between the ionosphere and neutral atmosphere, an attempt to infer one from the other cannot succeed. However, combining independent information on the two leads to new insights into the coupling of the neutral atmosphere, the ionosphere and the magnetosphere.  相似文献   

3.
Because of relative motion between the innermost Galilean satellite Io and Jupiter's ionosphere, a current is drawn from the ionosphere that can be a source of both deposition on, and sputtering from, the surface of Io. We show that the ions in this current strike lo in a localized region in the quadrant bounded by a line connecting lo and Jupiter and a tangent line extended in the direction of Io's orbital motion. If these ions are the principal source of sodium that is sputtered from Io, then this current provides a simple explanation of the observation of a localized area from which sodium ions escape from Io. The geometry of this current may also affect the optical surface of Io. We suggest several experimental tests that can determine the compatibility of this hypothesis with the directly observable properties of Io's surface.  相似文献   

4.
T.A. Heppenheimer 《Icarus》1975,24(2):172-180
The problem of the origin of Jupiter's outer satellites is treated within the framework of the theory of capture through collinear libration points. Lower bounds for the satellites' semimajor axes are found from a corrected rederivation of Bailey's capture theory. Upper bounds are found from a new derivation of the stability limit for satellites, based on Floquet stability theory.It is shown that if the bodies had near-zero relative velocity when passing the libration point, direct orbits would lie outside retrograde orbits, which is not the case for Jupiter. It is found that the dimensions and distributions of the direct group are well explained by libration-point capture with Jupiter's mass = 11730 solar mass, which is interpreted as indicating capture soon after Jupiter's formation. But ad hoc assumptions are required for this capture model to explain the retrograde group. It is concluded that the direct and retrograde groups may have had different mechanisms of origin.  相似文献   

5.
The atmospheric transmission window at 2.7 μm in Jupiter's atmosphere was observed at a spectral resolution of 0.1 cm?1 from the Kuiper Airborne Observatory. From analysis of the CH4 abundance (~80m-am) and the H2O abundance (<0.0125cm-am) it was determined that the penetration depth of solar flux at 2.7 μm is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 μm and other recent results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. The search for H2S in Jupiter's atmosphere yielded an upper limit of ~0.1cm-am. The corresponding limit to the elemental abundance ratio [S]/[H] was ~1.7 × 10?8, about 10?3 times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.  相似文献   

6.
A.J. Dessler 《Icarus》1980,44(2):291-295
Theoretical arguments have been presented to the effect that both plasma and energy are supplied to the Jovian magnetosphere primarily from internal sources. If we assume that Io is the source of plasma for the Jovian magnetosphere and that outward flow of plasma from the torus is the means of drawing from the kinetic energy of rotation of Jupiter to drive magnetospheric phenomena, we can obtain a new, independent estimate of the rate of mass injection from Io into the Io plasma torus. We explicitly assume the solar wind supplies neither plasma nor energy to the Jovian magnetosphere in significant amounts. The power expended by the Jovian magnetosphere is supplied by torus plasma falling outward through the corotational-centrifugal-potential field. A lower limit to the rate of mass injection into the torus, which on the average must equal the rate of mass loss from the torus, is therefore derivable if we adopt a value for the power expended to drive the various magnetospheric phenomena. This method yields an injection rate of at least 103 kg/sec, a value in agreement with the results obtained by two other independent methods of estimating mass injection rate. If this injection rate from Io and extraction of energy from Jupiter's kinetic energy of rotation has been maintained over geologic time, then approximately 0.1% of Io's mass (principally in the form of sulfur and oxygen) has been lost to the Jovian magnetosphere, and Jupiter's spin rate has been reduced by less than 0.1%.  相似文献   

7.
The magnetosphere of Jupiter has been the subject of extensive research in recent years due to its detectable radio emissions. Observations in the decimetric radio band have been particular helpful in ascertaining the general shape of the Jovian magnetic field, which is currently believed to be a dipole with minor perturbations. Although there is no direct evidence for thermal plasma in the magnetosphere of Jupiter, theoretical considerations about the physical processes that must occur in the ionosphere and magnetosphere surrounding Jupiter have lead to estimates of the thermal plasma distribution. These models of the Jovian magnetic field and thermal plasma distribution, specify the characteristic plasma and cyclotron frequencies in the magnetosplasma and thereby provide a basis for estimating thelocal electromagnetic and hydromagnetic noise around Jupiter. Spatial analogs of the well-known Clemmow-Mullaly-Allis (CMA) diagrams have been constructed to identify the loci of electron and ion resonances and cutoffs for the different field and plasma models. Regions of reflection, mode coupling, and probable amplification are readily identified. The corresponding radio noise properties may be estimated qualitatively on the basis of these various electromagnetic and hydromagnetic wave mode regions. Frequency bands and regions of intense natural noise may be estimated. On the basis of the models considered, the radio noise properties around Jupiter are quite different from those encountered in the magnetosphere around the Earth. Wave particle interactions are largely confined to the immediate vicinity of the zenographic equatorial plane and guided propagation from one hemisphere to the other apparently does not occur, except for hydromagnetic modes of propagation. The characteristics of these local signals are indicative of the physical processes occurring in the Jovian magnetosphere. Thus, as a remote sensing tool, their observation will be a vital asset in the exploration of Jupiter.  相似文献   

8.
William M. Sinton 《Icarus》1973,20(3):284-296
An atmosphere containing 0.5 cm atm of ammonia is assumed on Io. Such an atmosphere will be frozen at the unilluminated pole during the solstices, but will evaporate at the equinoctial seasons. The ammonia atmosphere will explain: (1) the posteclipse brightenings and their observed times of occurrence and nonocurrence; (2) the observed departure from a two-layer model beating curve upon emergence from eclipse; (3) the discordant temperatures obtained at 10 and 20 μm; and (4) discordant temperatures obtained at 10 and 20 μm during the total phase of an eclipse by Jupiter.In order to explain items 3 and 4 above, a proton flux in Jupiter's magnetosphere of 1.1 × 109 cm?2s? at an energy of 0.5MeV at io's distance from Jupiter is assumed. This flux is 40 times the flux in Divine's (1972) “upper-limit” model of the Jovian radiation belts, while the proton energy is eight times less. The proton flux, plus the solar ultraviolet and infrared flux absorbed by the ammonia, will heat the atmosphere to 245 ± 10°K. At this temperature the occultation atmospheric upper limit allows the addition of 4 cmatm of nitrogen.  相似文献   

9.
Graboske et al. (1973) have shown that Jupiter's luminosity was orders of magnitude larger during its initial contraction phase than it is today. As a result, during Jupiter's earliest contraction history, ices would have preferentially been prevented from condensing within the region containing the orbits of the inner satellites. The observed variation of the mean density of the Galilean satellites with distance from Jupiter implies that the satellite formation process was operative on a time scale of about five million years. Another consequence of the high luminosity phase is that water should be the only ice present in significant proportions in any of the Galilean satellites.  相似文献   

10.
The hydrogen bulge is a feature in Jupiter's upper atmosphere that co-rotates with the planetary magnetic field (i.e. the hydrogen bulge is fixed in System III coordinates). It is located approximately 180° removed in System III longitude from the active sector, which has been identified as the source region for Jovian decametric radio emission and for release of energetic electrons into interplanetary space. According to the magnetic-anomaly model, the active sector is produced by the effect of the large magnetic anomaly in Jupiter's northern hemisphere. On the basis of the magnetic-anomaly model, it has been theoretically expected for some time that a two-cell magnetospheric convection pattern exists within the Jovian magnetosphere. Because the convection pattern is established by magnetic-anomaly effects of the active sector, the pattern co-rotates with Jupiter. (This is in contrast to the Earth's two-cell convection pattern that is fixed relative to the Sun with the Earth rotating beneath it.) The sense of the convection is to bring hot magnetospheric plasma into the upper atmosphere in the longitude region of the hydrogen bulge. This hot plasma contains electrons with energies of the order of 100keV that dissociate atmospheric molecules to produce the atomic hydrogen that creates the observed longitudinal asymmetry in hydrogen Lyman alpha emission. We regard the existence of the hydrogen bulge as the best evidence available thus far for the reality of the expected co-rotating magnetospheric convection pattern.  相似文献   

11.
The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Alien belt is attributed to solar wind particles diffused in towards the planet by dynamo electric fields from ionospheric neutral winds and consequences of this theory are given.  相似文献   

12.
H.R. Miller  A.G. Smith 《Icarus》1975,26(1):16-23
The present analysis confirms the contention that the majority of Jupiter's decametric radio emissions occur when Io is above the northern magnetic hemisphere of Jupiter. However, a substantial portion of the non-Io-related component of source A was found to occur when Io was above southern magnetic latitudes of Jupiter.  相似文献   

13.
An analysis is made to calculate input impedance of a loop antenna for radiation of the VLF whistler mode in the magnetosphere. The magnetosphere is assumed to be represented by a cold, uniform and collisionless magnetoplasma medium. Assuming a uniform current distribution of a circular loop, oriented at an arbitrary angle with respect to the Earth's magnetic field line, several closed-form expressions for the loop impedance have been derived. It is found that the loop input reactance is in substantial agreement with the self-inductance of a loop in free space and that the radiation resistance for a small loop can be as large as ~10 2 Ω. It is also found that a second order quasi-static theory is quite valid for determining the input impedance for small loops radiating VLF whistlers in the magnetosphere.  相似文献   

14.
A calculation has been made of the gravitational contraction of a homogeneous, quasi-equilibrium Saturn model of solar composition. The calculations begin at a time when the planet's radius is ten times larger than its present size, and the subsequent gravitational contraction is followed for 4.5 × 109 years. For the first million years of evolution, the Saturn model contracts rapidly like a pre-main sequence star and has a much higher luminosity and effective temperature than at present. Later stages of contraction occur more slowly and are analogous to the cooling phase of a degenerate white dwarf star.Examination of the interior structure of the models indicates the presence of a metallic hydrogen region near the center of the planet. Differences in the size of this region for Jupiter and Saturn may, in part, be responsible for Saturn having a weaker magnetic field. While the interior temperatures are much too high for the fluids in the molecular and metallic regions to become solids by the current epoch, the temperature in the outer portion of the metallic zone falls below Stevenson's [Phys. Rev. J. (1975)] phase separation curve for helium after 1.2 billion years of evolution. This would lead to a sinking of helium from the outer to the inner portion of the metallic region, as described by Salpeter [Astrophys. J.181, L83–L86 (1973)].At the current epoch, the radius of the model is about 9% larger, while its excess luminosity is comparable to the observed value of Rieke [Icarus26, 37–44 (1975)], as refined by Wright [Harvard College Obs. Preprint No. 480 (1976)]. This behavior of the Saturn model may be compared to the good agreement with both Jupiter's observed radius and excess luminosity shown by an analogous model of Jupiter [Graboske et al., Astrophys. J.199, 255–264 (1975)]. The discrepancy in radius of our Saturn model may be due to errors in the equations of state and/or our neglect of a rocky core. However, arguments are presented which indicate that helium separation may cause an expansion of the model and thus lead to an even bigger discrepancy in radius. Improvement in the radius may also foster a somewhat larger predicted luminosity. At least part and perhaps most of Saturn's excess luminosity is due to the loss of internal thermal energy that was built up during the early rapid contraction, with a minor contribution coming from Saturn's present rate of contraction. These two sources dominate Jupiter's excess luminosity. If helium separation makes an important contribution to Saturn's excess luminosity, then planetwide segregation is required.Finally, because Saturn's early high luminosity was about an order of magnitude smaller than Jupiter's, water-ice satellites may have been able to form closer to Saturn to Jupiter.  相似文献   

15.
High-altitude spectra of Jupiter obtained from the Kuiper Airborne Observatory are analyzed for the presence of germane (GeH4) in Jupiter's atmosphere. Comparison with laboratory spectra shows that the strong Q branch of the ν3 band of germane at 2111 cm?1 is prominent in the Jovian spectra. The abundance of germane in Jupiter's atmosphere is 0.006 (±0.003) cm-am corresponding to a mixing ratio of 0.6 ppb. This trace amount of germane is consistent with chemical equilibrium calculations if the germane present at ~1000°K is carried up by convection to the spectroscopically observable region at ~300°K.  相似文献   

16.
Kaare Aksnes 《Icarus》1974,21(1):100-111
Two series of predictions have been published for the 1973–1974 mutual phenomena of Jupiter's satellites, one (June–October, 1973) by Milbourn and Carey, and the other (February 1973–May 1974) by Brinkmann and Millis. The main purpose of this paper is to investigate some significant discrepancies between these two sets of predictions. New predictions are calculated for the period June 1973–May 1974. They agree very nearly with the predictions by Milbourn and Carey, but frequently differ by several minutes (up to 30 min when Jupiter III and IV are involved) from those by Brinkmann and Millis. Unlike the previous predictions, the new ones also give the estimated light decreases during the phenomena. The method of prediction is documented for future applications to Jupiter's and Saturn's satellites. The paper concludes with a brief discussion of the problems involved in extracting information about the positions, radii, and albedos of the satellites from observed light curves.  相似文献   

17.
S. Cortesi 《Icarus》1978,33(2):410-413
We have quantitatively determined the phase exaggeration effect (Phillips effect) as a function of the planet's phase angle for the correction of the longitude of spots on the Jupiter disk. This was done on the basis of over 1000 visual observations of the longitude of permanent details of Jupiter's surface compared with photographic observations. We also propose the existence of a systematic error (+0°.6 zenographic) in our visual observations. As this error is probably caused by unidirectional motion of the detail over the planetary disk, we named it the “shift effect”.  相似文献   

18.
Models of convection in Jupiter's interior are studied to test the hypothesis that internal heat balances the absorbed sunlight at each latitude. Such a balance requires that the ratio of total emitted heat to absorbed sunlight be above a critical value 4/π ≈ 1.27. The necessary horizontal heat transport then takes place in the interior instead of in the atmosphere. Regions of stable stratification can arise in the interior owing to the effects of solar heating and rotation. In such regions, upward heat transfer takes place on sloping surfaces, as in the Earth's atmosphere, provided there are horizontal temperature gradients. Potential temperature gradients are found to be small, and the time constant for the pattern to reach equilibrium is found to be short compared to the age of the solar system. It is suggested that Jupiter and Saturn owe their axisymmetric appearance to internal heat flow, which eliminates differential heating in the atmosphere that would otherwise drive meridional motions.  相似文献   

19.
Some natural satellites may have been captured due to the gas drag they experienced in passing through primordial circumplanetary nebulas. This paper models such an encounter and derives the testable parameters from the known properties of current solar system objects and Bodenheimer's (1977, Icarus 31) model of the earliest phases of Jupiter's evolution. We propose that the clusters of prograde and retrograde irregular satellites of Jupiter originated when two parent bodies were decelerated and fragmented as they passed through an extended primordial Jovian nebula. Fragmentation occured because the gas dynamic pressure exceeded the parent bodies' strengths. These events must have occurred only shortly before the primordial nebula experienced hydrodynamical collapse so that subsequently the fragments underwent only limited orbital evolution. Because self-gravity exceeded the relative drag force, the fragments initially remained together, only to be dispersed at a later time by a collision with a stray body. Predictions of this hypothesis, such as orbital distance of the irregular satellites and size of the parent bodies, are found to be consistent with the observed properties of Jupiter's irregular satellites. In addition nebular drag at a later time may have caused the inner three Galilean satellites to undergo a modest amount of orbital evolution, accounting for their present orbital resonance. Gas drag capture of Saturn's Phoebe and Iapetus and Neptune's Nereid and Triton may also be possible. Reasonable differences in properties could explain why these satellites, in contrast to the Jovian ones, did not fracture upon capture. The current irregular satellites represent only a tiny fraction of the bodies captured by primordial nebulas. The dominant fraction would have spiraled into the center of the nebula as a result of continued gas drag and thus offer one source for the heavy element cores of the outer planets. If one is willing to postulate the presence of a massive gaseous nebula around primordial Mars, then gas drag capture could account for the origin of the Martian moons. We hypothesize that a single parent body was captured in a region of the nebula where the gas velocity approached the Keplerian value, that it fragmented upon deceleration into at least two bodies, Phobos and Deimos, and that continued nebular drag led to the low eccentricity and inclination that characterize the satellites' current orbits. Following the dissipation of this nebula, the more massive Phobos tidally evolved to its current position.  相似文献   

20.
It is shown that the sheared flow of electrons and ions in the presence of heavy stationary dust gives rise to unstable Alfvén waves. The coupling of newly studied low frequency electrostatic current-driven mode with the electromagnetic Alfvén and drift waves is investigated. The instability conditions and the growth rates of both inertial and kinetic Alfvén waves are estimated. The theoretical model is applied to the night side boundary regions of Jupiter’s magnetosphere which contain positive dust. The growth rates increase with increase in sheared flow speed. In the nonlinear regime, both inertial and kinetic Alfvén waves form dipolar vortices whose speed and amplitude depend upon the magnitude of the zero-order current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号