首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The vertical distribution of reduced sulfur species (RSS including H2S/HS, S0, electroactive FeS) and dissolved Fe(II) was studied in the anoxic water column of meromictic Lake Pavin. Sulfide concentrations were determined by two different analytical techniques, i.e. spectophotometry (methylene blue technique) and voltammetry (HMDE electrode). Total sulfide concentrations determined with methylene blue method (∑H2SMBRS) were in the range from 0.6 µM to 16.7 µM and were substantially higher than total reduced sulfur species (RSSV) concentrations determined by voltammetry, which ranged from 0.1 to 5.6 μM. The observed difference in the sulfide concentrations between the two methods can be assigned to the presence of FeS colloidal species.Dissolved Fe was high (> 1000 µM), whereas dissolved Mn was only 25 µM, in the anoxic water column. This indicates that Fe is the dominant metal involved in sulfur redox cycling and precipitation. Consequently, in the anoxic deep layer of Lake Pavin, “free” sulfide, H2S/HS, was low; and about 80% of total sulfide detected was in the electroactive FeS colloidal form. IAP calculations showed that the Lake Pavin water column is saturated with respect to FeSam phase. The upper part of monimolimnion layer is characterized by higher concentrations of S(0) (up to 3.4 µM) in comparison to the bottom of the lake. This behavior is probably influenced by sulfide oxidation with Fe(III) oxyhydroxide species.  相似文献   

2.
The pH and fO 2 dependences of the [Se2–]/[S2–] ratio in chloride solutions at 100°, 200° and 300°C are predicted thermodynamically. Under the high fO 2 conditions where sulfate species are dominant in solution, the [Se2–]/[S2–] ratio always increases with increasing pH and/or fO 2. Under the low fO 2 conditions where sulfide species are dominant in solution, the pH and fO 2 dependences of the [Se2–]/[S2–] ratio are seriously affected by the presence of native selenium. With native selenium present, the [Se2–]/[S2–] ratio decreases with increasing fO 2, but almost independent of pH in geologically important pH regions. When native selenium is absent, the [Se2–]/[S2–] ratio is solely a function of pH and independent of fO 2. Combining the above with the pH and fO 2 dependences of 34S value of aqueous sulfur species, we discuss the possible influences of the pH and fO 2 of ore-forming solutions on the relationship between the Se/S ratio and 34S value of hydrothermal sulfide minerals. The results are applied to some Japanese sulfide ore deposits.  相似文献   

3.
Cinnabar (α-HgS) and metacinnabar (β-HgS) dissolved at environmentally significant rates in oxygenated slurry experiments simulating a low-flow fluvial system. Based on SO42− production, cinnabar dissolution rates were 2.64 to 6.16 μmol (SO42−) m− 2 day− 1, and metacinnabar dissolution rates were 1.20 to 1.90 μmol (SO42−) m− 2 day− 1. Monodentate-bound thiosulfate (S2O32−) was identified as an oxidation product on the HgS surface by ATR-IR spectroscopy based on strong infrared absorption bands in the 1140–1145 cm− 1 and 1006–1014 cm− 1 regions. The presence of sulfide oxidation intermediates on the HgS surface indicates that SO42− concentration underestimates α-HgS and β-HgS dissolution in this setting. Mercury release rates during dissolution were more than two orders of magnitude less than SO42− production, but were significant: 0.47 mg (Hg) m− 2 y− 1 from cinnabar [6.45 nmol (Hg) m− 2 day− 1], and 0.17 mg (Hg) m− 2 y− 1 from metacinnabar [2.29 nmol (Hg) m− 2 day− 1]. The Hg mobilized during α-HgS and β-HgS dissolution is sufficient to form natural Au–Hg amalgam in downstream placer settings. The proportion of mercury that is not remobilized during α-HgS and β-HgS dissolution likely adsorbs to the dissolving mercuric sulfide. Adsorption of Hg2+ to cinnabar was detected in situ by anodic stripping voltammetry using a cinnabar-modified carbon paste electrode following accumulation of Hg2+ on the electrode at open circuit potential.  相似文献   

4.
We have performed experiments to constrain the effect of sulfur fugacity (fS2) and sulfide saturation on the fractionation and partitioning behavior of Pt, Pd and Au in a silicate melt–sulfide crystal/melt–oxide–supercritical aqueous fluid phase–Pt–Pd–Au system. Experiments were performed at 800 °C, 150 MPa, with oxygen fugacity (fO2) fixed at approximately the nickel–nickel oxide buffer (NNO). Sulfur fugacity in the experiments was varied five orders of magnitude from approximately log fS2 = 0 to log fS2 = −5 by using two different sulfide phase assemblages. Assemblage one consisted initially of chalcopyrite plus pyrrhotite and assemblage two was loaded with chalcopyrite plus bornite. At run conditions pyrrhotite transformed compositionally to monosulfide solid solution (mss), chalcopyrite to intermediate solid solution (iss), and in assemblage two chalcopyrite and bornite formed a sulfide melt. Run-product silicate glass (i.e., quenched silicate melt) and crystalline materials were analyzed by using both electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. The measured concentrations of Pt, Pd and Au in quenched silicate melt in runs with log fS2 values ranging from approximately 0.0 to −5.0 do not exhibit any apparent dependence on fS2. The measured Pt, Pd and Au concentrations in mss do vary as a function of fS2. The measured Pt, Pd and Au concentrations in iss do not appear dependent on fS2. The data suggest that fS2, working in concert with fO2, via the determinant role that these variables play in controlling the magmatic sulfide phase assemblage and the solubility of Pt, Pd and Au as lattice bound components in magmatic sulfide phases, is a controlling factor on the budgets of Pt, Pd and Au during the evolution of magmatic systems.  相似文献   

5.
The Ortosa deposit (NW Spain) in the northern part of the Rio Narcea Gold Belt (RNGB) is located in the Cantabrian Zone of the Iberian Massif. This zone corresponds to the westernmost exposure of the European Hercynides. The deposit is hosted by marine shales, siltstones, calcareous siltstones and interbedded sandy limestones of the upper part of the Silurian Furada Formation. These rocks are intruded by a main stock and numerous sills and dikes consisting of a reduced, ilmenite-bearing quartz-monzodiorite (Ortosa intrusion). Skarn metasomatism and associated gold mineralization overprinted these sedimentary and igneous rocks, forming endo- and exoskarns.The earliest stage of alteration involved potassium metasomatism from which metasomatic biotite developed in the hornfels around the intrusion. In the endoskarn, the first metasomatic mineral to form is actinolite. Subsequently, quartz, pyroxene (Hd30–45), and sulfides (mainly arsenopyrite and pyrrhotite) formed, followed by a second generation of amphibole (ferroactinolite and ferrohornblende). The exoskarn is a pyroxene-garnet skarn, which is often banded. The prograde minerals are pyroxene (Hd10–30) and grossular garnet. The retrograde mineralogy consists of hedenbergite-rich pyroxene (Hd50–87), amphibole (ferroactinolite–ferrohornblende), and the metallic minerals with minor fluorapatite, K-feldspar, albite, epidote–clinozoisite, vesuvianite and calcite. A final stage of retrograde alteration is characterized by calcite, quartz, and chlorite.Pyrrhotite and arsenopyrite are the more abundant metallic minerals, and löllingite, chalcopyrite, pyrite and sphalerite are present in smaller amounts. The gold occurs as native gold and maldonite, and is accompanied by hedleyite, native bismuth, and bismuthinite. These Au–Bi–Te mineral assemblages occupy cavities and fractures in the arsenopyrite or in the pyrrhotite.Estimated physiochemical conditions of formation based on the composition and stability fields of major calc-silicate and sulfide minerals indicate that the hedenbergite-rich pyroxene and the earliest sulfides (löllingite–pyrrhotite–arsenopyrite) crystallized at temperatures between 470 and 535°C at low log fS2 between −10 and −6.5 and low log fO2 of −22. The Ortosa skarns can be included in the reduced gold skarn subtype defined by Meinert (Mineralogical Association of Canada, Quebec city, Que., Canada, 1998, 26,359–414 ).  相似文献   

6.
Despite the common belief that AuI complexes with hydrogen sulfide ligands (H2S/HS) are the major carriers of gold in natural hydrothermal fluids, their identity, structure and stability are still subjects of debate. Here we present the first in situ measurement, using X-ray absorption fine structure (XAFS) spectroscopy, of the stability and structure of aqueous AuI–S complexes at temperatures and pressures (T–P) typical of natural sulfur-rich ore-forming fluids. The solubility of native gold and the local atomic structure around the dissolved metal in S–NaOH–Na2SO4–H2SO4 aqueous solutions were characterized at temperatures 200–450 °C and pressures 300–600 bar using an X-ray cell that allows simultaneous measurement of the absolute concentration of the absorbing atom (Au) and its local atomic environment in the fluid phase. Structural and solubility data obtained from XAFS spectra, combined with quantum-chemical calculations of species geometries, show that gold bis(hydrogensulfide) Au(HS)2 is the dominant Au species in neutral-to-basic solutions (5.5  pH  8.5; H2O–S–NaOH) over a wide range of sulfur concentrations (0.2 < ΣS < 3.6 mol/kg), in agreement with previous solubility studies. Our results provide the first direct determination of this species structure, in which two sulfur atoms are in a linear geometry around AuI at an average distance of 2.29 ± 0.01 Å. At acidic conditions (1.5  pH  5.0; H2O–S–Na2SO4–H2SO4), the Au atomic environment determined by XAFS is similar to that in neutral solutions. These findings, together with measured high Au solubilities, are inconsistent with the predominance of the gold hydrogensulfide Au(HS)0 complex suggested by recent solubility studies. Our spectroscopic data and quantum-chemical calculations imply the formation of species composed of linear S–Au–S moieties, like the neutral [H2S–Au–SH] complex. This species may account for the elevated Au solubilities in acidic fluids and vapors with H2S concentrations higher than 0.1–0.2 mol/kg. However, because of the complex sulfur speciation in acidic solutions that involves sulfite, thiosulfate and polysulfide species, the formation of AuI complexes with these ligands (e.g., AuHS(SO2)0, Au(HS2O3)2, Au(HSn)2) cannot be ruled out. The existence of such species may significantly enhance Au transport by high T–P acidic ore-forming fluids and vapors, responsible for the formation of a major part of the gold resources on Earth.  相似文献   

7.
The Huize Pb–Zn deposit of Yunnan Province, China, is located in the center of the Sichuan–Yunnan–Guizhou Pb–Zn–Ag district. Four primary orebodies (orebody No. 1, No. 6, No. 8 and No. 10), with Pb + Zn reserves from 0.5 Mt to 1 Mt, have been found at depth in this deposit. This paper provides new data on the sulfur isotopic compositions of the four orebodies. The data show that the principal sulfide minerals (galena, sphalerite and pyrite) in the four orebodies are enriched in heavy sulfur, the δ34S values between 10.9‰ and 17.7‰ and where δ34Spyrite > δ34Ssphalerite > δ34Sgalena. The δ34S values of sulfide are close to that of the sulfates from the carbonate strata within the region. The similarity in sulfur isotope composition between sulfides and sulfates indicates the sulfur in the ore-forming fluids was likely derived by thermochemical sulfate reduction of sulfates contained within carbonate units.  相似文献   

8.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

9.
The metamorphism on the island of Sifnos is characterized by the Eocene development of a coherent highpressure blueschist terrane and an early Miocene greenschist facies overprint. This study documents the metamorphic evolution of the blueschist assemblages, still preserved in the northern parts of the island, and their subsequent transformation into greenschists in the central and southern parts.The oxygen isotope geothermometry is based on calibrations for quartz, pyroxenes and magnetite (Matthews et al. 1983a) augmented by revised calibrations for the minerals muscovite ( Qz–Mu=1.55×106 T –2), epidote ( Qz–Ep= 1.56+1.92 ps)106 T –2), and rutile ( Qz–Ru=4.54×106 T –2).Oxygen isotope analyses of minerals from the Blueschist unit of northern Sifnos give consistent fractionations which are independent of rock type. An average temperature of 455° C was obtained, although the scatter in temperatures deduced from the various geothermometers suggests that equilibration occurs under slightly changing physicochemical conditions. Analyses of minerals and whole rocks shows that pervasive equilibration in the presence of a common metamorphic fluid has not occurred.The minerals and whole rocks of the greenschists of central Sifnos are systematically enriched in 18O relative to the blueschist assemblages. Chemical data indicate that the greenschist overprint was accompanied by a metasomatic enrichment of Ca2+ and CO2. The petrologic, isotopic and chemical evidence favour a metamorphism governed by the infiltration of 18O-CO2 enriched aqueous solutions. It is reasonable to assume that this is connected with the Miocene magmatic activity observed throughout the Cyclades. The marbles separating the Blueschist from the Greenschist unit probably acted as barriers to fluid infiltration into the blueschists and were responsible for their preservation.The pressure of the blueschist metamorphism is estimated at 14±2 kbar, corresponding to a depth of ca. 50 km. The structural style and stratigraphy of Sifnos are suggestive of the subduction of a continental margin sequence. It is clear that the considerable tectonic depression may be associated with continental collision and underthrusting.  相似文献   

10.
Heterogeneous shallow Plio-Quaternary formations of the Souss Plain represent the most important aquifer in southern High Atlas Mountains in Morocco. The present work was conducted in the Souss Upstream Basin to identify the chemical characteristics and the origin of groundwater in an aquifer under semi-arid climate. Isotopic and hydrochemical compositions combined with geological and hydrogeological data were used for this purpose. The total dissolved solids vary from 239 to 997 mg l−1, and the following groundwater types are recognized: Ca2+–Mg2+–HCO3, Ca2+–Mg2+–SO42− and Ca2+–Mg2+–Cl. The groundwater is saturated and slightly supersaturated with respect to carbonate minerals and undersaturated with respect to evaporite minerals, which means that the groundwater composition is largely controlled by the dissolution of carbonate rocks known in the basin. The isotopic contents of groundwaters ranged from −8‰ to −5.2‰ for δ18O, from −52‰ to −34‰ for δD, and from 0 to 5.5 TU for tritium. The hydrogen (δD) and oxygen (δ18O) isotope signatures reveal a significant infiltration before evaporation takes place, indicating a major recharge directly from fractures in the crystalline and limestone formations of Atlas Mountains (above 800 m a.s.l.) and infiltration of surface water in the alluvial cones at the border of the Atlas basins. The very low tritium values suggest that the groundwater recharge follows a long flow path and a mixing between old and modern water is shown. However, a slight evaporation effect is noted in the southern part of the basin close to the Anti-Atlas Mountains.  相似文献   

11.
Yongliang Xiong   《Ore Geology Reviews》2003,23(3-4):259-276
In this study, an attempt has been made to assess aqueous speciation of selenium and solubility product constants of common selenides at elevated temperatures (up to 300 °C) by using various extrapolation methods. This study predicts that reduced selenium species are dominant species in many geological processes even under relatively oxidized conditions such as those dictated by the magnetite–hematite buffer. On the basis of extrapolated equilibrium constants and solubility product constants for common Se-bearing mineral phases, critical ∑Se/∑S ratios (molal ratios) in mineralizing fluids are proposed for independent selenium mineralization. The minimum ∑Se/∑S ratios in mineralizing fluids for independent selenium mineralization should be at least 10−6, 10−5 and 10−4 at 100, 200 and 300 °C, respectively. For giant independent selenium deposits such as the La'erma and Qiongmo Au–Se deposits in the western Qingling mountains, and Yutangba Se deposits in Hubei Province, China, the mineralizing fluids have reached much higher ∑Se/∑S ratios ranging from 10−1 to 10−3 at 200 °C. This study also suggests that the equilibrium assemblage of pyrite–ferroselite among the common ore minerals requires the highest ∑Se/∑S ratios in mineralizing fluids, followed in decreasing order by the assemblages of stibnite–antimonselite, galena–clausthalite, cinnabar–tiemannite, and acanthite/argentite–naumannite. The assemblage of pyrite–ferroselite can also be formed under relatively oxidizing conditions where [∑H2Se]/[∑H2S] ratios can be high enough for the formation of independent ferroselite.  相似文献   

12.
The Mapocho river, which crosses downtown Santiago, is one of the most important rivers in contact with a population of about six million inhabitants. Anthropogenic activities, industrialization, farming activities, transport, urbanization, animal and human excretions, domestic wastes and copper mining have affected the river, contaminating it and its sediments with heavy metals. Concentration and distribution of Cu, Zn, Pb and Cd were studied with the purpose of determining their bioavailability and their relation with the characteristics of the sediments. Freshly deposited seasonal sediments were collected from 0–8 cm depths from 6 locations (S1 to S6) along the 30-km long channel length, in the four seasons of year on the following dates: May 2001 (D1, autumn); August 2001 (D2, winter); October 2001 (D3, spring) and January 2002 (D4, summer). The dried samples were sifted to obtain the < 63-μm sediment fraction, since it has been shown that large amounts of heavy metals are bound in the fine-grained fraction of the sediment. Cu and Zn were analyzed by atomic absorption spectrophotometry and Pb and Cd by square wave anodic stripping voltammetry. The highest concentrations of Cu (2850 μg g− 1) were found in the northern part of the river (S1, average D1–D4), near the mountains and a copper mine, and then decreased downstream to 209 μg g− 1 (S6). Total Zn showed an irregular variation, with higher values at S1 (1290 μg g− 1) and high values in some winter sampling (1384 μg g− 1 S4, S5–D2). Pb showed different trends, increasing from S1 to S6 (17 to 61 μg g− 1), with the highest values in the summer samples (83 μg g− 1, S4–S6, D4), and total Cd increased slightly from mean values of 0.2 and 0.5 μg g− 1. Partition into five fractions was made using Tessier's analytical sequential extraction technique; the residue was treated with aqua regia for recovery studies, although this step is not part of the Tessier procedure. The results show that Cu, Zn and Pb in the sediments were dependent on the sampling places along the river, and variation in two years was low (D1–D4). The highest values of total organic matter, carbonate and conductivity were found in S6, which has the smallest size particles, while at S1 the sediments were predominantly sand and contain larger amounts of silica. Cu associated with carbonate decreased gradually from 58% (1771 μg g− 1, S1) to 16% (32 μg g− 1, S6); Cu bonded to reducible fraction was almost constant (33% to 37%), and Cu associated with oxidizable fraction increased from 7% (S1) to 34% (S6), but copper content was lower (214 to 68 μg g− 1). Zn had a similar fractionation profile. However, Pb bound to oxidizable fraction did not show significant percent variation along the river (20% to 19%), but the amount bounded was 4 to 12 μg g− 1. The residual fraction increased from 24% to 41% (5 to 25 μg g− 1, S1 to S6). The distribution of Cd in the sediment was almost independent of the sampling stations and was bound to carbonate, reducible and residual fraction in similar proportion. Cu and Zn at S1 were mainly bound to carbonates and reducible phases with 91% and 73% (2779 and 965 μg g− 1, respectively), and with a change in the pH and/or the redox potential of the sediment–water system, these contaminants could easily enter the food chain. In S6 the amount of Cu and Zn in these phases was 50% and 53% (100 to 313 μg g− 1, respectively).  相似文献   

13.
Measurements of low-level dissolved-sulfide concentrations in estuarine water from San Francisco Bay have been made using the sulfide-specific electrode after preservation, separation, and preconcentration of the sulfide species. The separation and preconcentration were acheived by coprecipitation of ZnS with Zn(OH)2 followed by collection and dissolution of the precipitate, giving concentration factors up to 160-fold Preconcentration provided sulfide solutions that were adequately measurable within the practical working range of the specific-ion electrode The sulfide detection limit with the preconcentration step is 0 02 μg/l Spike recoveries in the range of 81 to 10 1% have been achieved for laboratory-prepared samples having S2− concentrations as low as 0 6 μg/l and 84 to 100% for an estuarine sample spiked in the field with 2 μg/l (S(−II) Positive correlations have been found between dissolved S(−II) concentrations and concentrations of dissolved Cd, Cu, and Ni, negative correlations have been found between bisulfide (HS) activity and activities of Cd2+, Cu2+, and Ag+ species  相似文献   

14.
The wetland constructed at the Big Five Tunnel in Idaho Springs, Colorado was designed to remove, passively, heavy metals from acid mine drainage. In optimizing the design of such a wetland, an improved understanding of the chemical processes operating there was required, particularly SO42− reduction and sulfide precipitation. For this purpose, field and laboratory data were collected to study the balance of S in the system. Field data collected included water analyses of the mine drainage and wetland effluents and measurements of H2S gas emissions from the wetland. The concentration of sulfide in the wetland effluent ranged from 10−4 to 10−3 mol/l. The average rates of H2S emission from the surface of the substrate were 150 nmol/cm2/d in the summer and 0.17 and 0.35 nmol/cm2/d in the winter. This maximum estimated loss of sulfide was not significant in reducing the amount of sulfide available for precipitation with metals. Sequential extraction experiments for S on wetland substrates showed that acid volatile sulfides (AVS) increased with time in the wetland substrate. A serum bottle experiment was conducted to study the S balance in the Big Five wetland by quantitatively measuring the amount of S in different phases as microbial SO42− reduction progressed. The increase in AVS reasonably balanced the decrease in SO42− concentration in the experiment, suggesting that the decrease in SO42− concentration represented the amount of SO42− reduced and that nearly all of the sulfide produced was precipitated as AVS. Sulfide precipitation was determined to be the primary metal removal process in the wetland system and amorphous FeS is the primary iron sulfide formed in the substrate.  相似文献   

15.
The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The δ34S-values of pyrite down to −38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.  相似文献   

16.
A complete analysis of a sulfide rich water from a sedimentary area has been achieved. The formation of metastable sulfur species (polysulfide ions, colloidal sulfur and thiosulfate) is very important. The relative concentrations of the sulfur species is controlled by bacterial processes (Desulfovibrio and Thiobacteriaceae). Electrochemical measurements and results of the analyses are in agreement. A possible repartition of polysulfide ions is S2?6 ≈- S2?5 >S2?4. This repartition, although out of equilibrium, is characteristic of the processes leading to the formation of the metastable sulfur species.The water is in equilibrium with amorphous FeS formation. When sulfide, polysulfide and thiosulfate complexing of trace metals Cu, Cd and Pb is taken into account, an agreement is reached between their concentrations in water and their concentrations in the FeS precipitate.  相似文献   

17.
Dissolution of the synthetic hydroxylapatite (HAP) and fluorapatite (FAP) in pure water was studied at 25 °C and 45 °C in a series of batch experiments. The XRD, FT-IR and SEM analyses indicated that the synthetic, microcrystalline HAP and FAP with apatite structure used in the experiments were found to have no obvious variation after dissolution except that the existence of OH groups in FT-IR spectra for FAP after 2880 h dissolution was observed. During the HAP dissolution (0–4320 h), the aqueous calcium and phosphate concentrations reached the maxima after 120 h and then decreased slowly with time. For the FAP dissolution in pure water, after a transient time of 1440 h (< 60 d), element concentrations and pH became constant suggesting attainment of a steady-state between the solution and solid. During early stages of the FAP dissolution reaction (< 72–120 h), mineral components were released in non-stoichiometric ratios with reacted solution ratios of dissolved Ca:P, Ca:F and P:F being lower than mineral stoichiometric ratios of Ca5(PO4)3F, i.e., 1.67, 5.0 and 3.0, respectively. This indicated that F were preferentially released compared to Ca from the mineral structure. The mean Ksp values were calculated by using PHREEQC for HAP of 10− 53.28 (10− 53.02–10− 53.51) and for FAP of 10− 55.71 (10− 55.18–10− 56.13) at 25 °C, the free energies of formation ΔGfo[HAP] and ΔGfo[FAP] were calculated to be − 6282.82 kJ/mol and − 6415.87 kJ/mol, respectively.  相似文献   

18.
On the south-eastern edge of Russia, the chemical composition of rainwater is controlled by sea salts, terrestrial material, as well as volcanic (Kuril islands volcanic area) and anthropogenic emissions, mostly in the southern part of the area. The predominant major ions of the Primorye, Sakhalin and the Kuril Islands rainwaters were respectively HCO3–SO42−, Ca–Na, and of Cl–Na. Concentration of trace elements changes within 1–2 orders of magnitude but some difference in the distribution of the elements between continental and island rainwater is found. The concentration of the chemical elements in the particulate fraction varies from < 10% to 90% of the total concentration (dissolved + particulate) with the following distribution: Tl, Na, Ca, Sr, Zn, Cd (< 10%)–Be, Th, Bi, Rb, U, K, Sc (10–20%)–Cu, Mn, Mg, Mo, Se, Ba, Ni, As, Ag, Cs, Co, Y, Ga, V (20–50%)–Sb, Pb, Ge, Cr, Fe, Al (50–90%).The concentration of elements of the particulate fraction of the rainwater usually is significantly different from concentrations in the crust, including both higher and lower concentrations. The terrestrial contribution to dissolved elements was evaluated and follows the decreasing order: Fe > K, Mg, Ca > Ba, Sr > Na (65–1%). Close order was found for total (dissolved and solid) concentrations. Sea salt contribution to dissolved element concentration in the rainwater decrease in the following order: Cl, Mg > K, SO4 > Ca > HCO3, Ba, Fe (78–0.1%). Calculation of anthropogenic and volcanic inputs for two ions (Cl and SO42−) shows that anthropogenic inputs for the Vladivostok and Yuzno-Sakhalinsk cities can be evaluated as 15–20% of Cl and up to 80–90% of SO42−. Volcanic components in the Kuril Islands, where anthropogenic inputs are absent, can reach up to 76% of SO42− and 36% of Cl.  相似文献   

19.
The chromites from the alpine type ultramafic intrusive of Sukinda, India, display a typical partly inverse spinel form and occur in two distinct zones: Brown Ore Zone (BOZ) and Grey Ore Zone (GOZ). The host ultramafites are mostly altered and are represented by the serpentinite, tremolite-talc(chlorite) schist, talc-serpentine schist and chlorite rock. The less altered variants are dunite, harzburgite and websterite. A dyke of orthopyroxenite runs through the main ultramafic body.The composition of olivine (Fo92), orthopyroxene (En92–89) and Al2O3 contents of the parental liquid (10.40–11.45%) determined from chromites, suggest that the parent melt is of boninitic affinity. The chemical plot of TiO2 content against cr# of chromites corroborates a boninitic parental melt. The Fe–Mg partitioning in olivine and chromite depicts the temperature for chromitites as 1200 °C. A compositional plot of mg# and cr# suggests crystallization at high pressure conditions, corresponding to the kimberlite xenolith field. From the PT diagram of pyrolite melting and mineral assemblage, the pressure of crystallization is stipulated to be ≥1.2 GPa. The fO2 values estimated from Fe3+/Cr+Al+Fe3+ ratios range from 10−8.3 to 10−9.3 for the GOZ and 10−7.1 to 10−7.3 for the BOZ. The fO2 values together with the pressure range suggest crystallization at upper mantle conditions. The heterogeneity in chemical composition and fO2 conditions for the GOZ and BOZ could be linked to heterogeneity in the upper mantle.  相似文献   

20.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号