首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
In this study, a long-term comparative assessment of the potential of wave power in the Black Sea was conducted using the calibrated and validated SWAN (Simulating WAves Nearshore) model forced by two well-known wind fields. The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim and National Centers for Environmental Prediction/Climate Forecast System Reanalysis (NCEP/CFSR) wind fields were used, covering data from 1979 to 2018. In general, the wave power potential based on the results of the CFSR wind field was found to be slightly higher than that obtained with the ERA-Interim wind field. The greatest discrepancy between the results of the ERA-Interim and CFSR wind fields was observed in the northeastern Black Sea. The spatial distributions of the wave power were also evaluated on a seasonal scale using wave parameters obtained from the calibrated SWAN model. The wave climate obtained from both long-term and seasonal assessments indicates that the western Black Sea, especially the southwestern Black Sea, is characterized by higher wave power potential and lower variability, while the eastern Black Sea has lower wave power potential and higher variability. Stable and powerful long-term wave conditions in the southwestern Black Sea can indicate that this region is a suitable location for wave farms. In contrast, the effect of the long-term variability on wave power is greatest in the eastern Black Sea owing to the highly variable wave conditions in this region.  相似文献   

2.
采用欧洲中期天气预报中心ERA-interim再分析资料驱动WRF模式,对环渤海区域1981—2012年123次强风过程进行了模拟,并对不同天气系统形势下环渤海区域强风过程的气候特征进行了分析,得到以下结论:1)WRF数值模式可以较好地模拟环渤海区域强风过程的发展演变特征。2)西北路冷锋过程引起的环渤海区域强风强度较其他过程偏强,强风集中在辽东半岛西部、渤海海峡和山东半岛东部。黄河气旋引起的强风过程与冷锋相比,分布特征有着明显的不同,强风主要集中在山东半岛东部及黄海海域,渤海海域的强风相对偏弱。3)强风过程存在明显的季节变化,秋冬季强风持续时间长,风速大,春季次之,夏季最弱。4)强风过程在渤海海域的最大风速呈增加趋势,而在渤海海峡以东海域和山东半岛南部呈减小趋势。  相似文献   

3.
Interannual and longer-period variability of the Mediterranean sea surface temperature is studied in terms of standard deviations and linear trends based on the 1951–2000 data. It is shown that both standard deviations and linear SST trends in the Mediterranean Sea are clearly season-dependent. Seasonality of standard deviations is characterized by a zonally-oriented seesaw with opposite changes in standard deviations in the western and eastern parts of the basin from season to season. The SST trend seasonality is pronounced in winter in predominant negative SST trends, and in summer in positive trends. Such seasonal differences indicate that long-term Mediterranean SST variability has different mechanisms of formation.  相似文献   

4.
By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67 th pentad to the 24 th pentad the following year; when MEJS is weak, it is at 45°N from the 38 th pentad to the 44 th pentad. The first Empirical Orthogonal Function(EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31 st pentad is the spring-summer transition of MEJS, and the 54th-61 st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference(SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa.  相似文献   

5.
Using the NCAR/NCEP (National Center for Atmospheric Research/National Centers for Environmental Prediction) reanalysis and the NOAA Climate Prediction Center's merged analysis of precipitation (CMAP)during 1981-2000, we investigated the seasonal evolution of the southwesterly wind and associated precipitation over the eastern China-subtropical western North Pacific area and its relationship with the tropical monsoon and rainfall, and analyzed the reasons responsible for the onset and development of the wind. It was found that the persistent southwesterly wind appears over southern China and the subtropical western Pacific the earliest in early spring, and then expands southwards to the tropics and advances northward to the midlatitudes. From winter to summer, the seasonal variation of surface heating over western China and the subtropical western Pacific may result in an earlier reversal of the westward tropospheric temperature gradient over the subtropics relative to the tropics, which may contribute to the earliest beginning of the subtropical southwesterly wind. Additionally, the strengthening and eastward expanding of the trough near the eastern Tibetan Plateau as well as the strengthening and westward moving of the western Pacific subtropical high also exert positive influences on the beginning and development of the subtropical southwesterly wind.In early summer,the northward expansion of the southwesterly wind over southern China is associated with a northward shift of the subtropical high, while the southward stretch of the southwesterly wind is associated with a southward stretch of the trough in the eastern side of the plateau. With the beginning and northward expansion of the subtropical southwesterly wind (namely southwest monsoon), convergences of the low-level air and water vapor and associated upward motion in front of the strongest southwesterly wind core also strengthen and move northward, leading to an increase in rainfall intensity and a northward shift of the rain belt. Accordingly, the subtropical rainy season occurs the earliest over southern China in spring, moves northward to the Yangtze-Huaihe River valley in early summer, and arrives in North China in mid summer.Compared with the subtropical rainy season, the tropical rainy season begins later and stays mainly over the tropics, not pronouncedly moving into the subtropics. Clearly, the Meiyu rainfall over the Yangtze-Huaihe River valley in early summer results from a northward shift of the spring rain belt over southern China,instead of a northward shift of the tropical monsoon rain belt. Before the onset of the tropical monsoon,water vapor over the subtropical monsoon region comes mainly from the coasts of the northern Indo-China Peninsula and southern China. After the onset, one branch of the water vapor flow comes from the Bay of Bengal, entering into eastern China and the subtropical western Pacific via southwestern China and the South China Sea, and another branch comes from the tropical western North Pacific, moving northwestward along the west edge of the western Pacific subtropical high and entering into the subtropics.  相似文献   

6.
陈受钧  谢义炳 《气象学报》1965,37(2):166-173
低纬度100毫巴流场的季节变化东半球比西半球明显。在东半球低纬度冬季为绕极西风,而到夏季为强东风气流,并在亚非高空产生强大的副热带大陆高压。流场变化过程与东亚季节转换有一定程度的联系,作者建议这种现象可称为“大型季风”。沿30°N波数为1的振幅与位相的变化可作为大型季风转换的一个表征。  相似文献   

7.
The forcing efficiency for the first and the second baroclinic modes by the wind stress in tropical oceans has been discussed by calculating equivalent forcing depth from annual mean, seasonal, and pentadal density profiles of the observational data. In the annual mean field, the first mode is forced preferentially in the western Pacific and the Indian Ocean, whereas the second mode is more strongly excited in the Atlantic and the eastern Pacific. This difference is mostly due to the pycnocline depth; the second mode is more dominantly forced where the pycnocline depth is shallower. We also revealed large seasonal variations of the second mode's equivalent forcing depth in the western Indian Ocean. The first mode is more dominantly forced during boreal spring and fall in the western Indian Ocean, while the second mode becomes more dominantly forced during boreal summer and winter. Those are due to seasonal variations of both the zonal wind and the pycnocline depth. Moreover, we show that the excitation of the second mode in the western Pacific increases after the late 1970s, which is associated with the decreasing trend of the zonal pycnocline gradient. Revealing the variation of the equivalent forcing depth will be useful for understanding the oceanic response to winds in tropical oceans and the improvement in the predictability of air-sea coupled climate variability in the tropics.  相似文献   

8.
利用1981—2000年候平均NCEP/NCAR再分析资料和CMAP全球降水资料,分析了从中国东部大陆到西太平洋副热带地区季风和降水季节变化的特征及其与热带季风降水的关系,探讨了季风建立和加强的原因。夏季东亚—西太平洋盛行的西南风开始于江南和西太平洋副热带的春初,并向北扩展到中纬度,热带西南风范围向北扩展的迹象不明显。从冬到夏,中国西部和西太平洋副热带的表面加热季节变化可以使副热带对流层向西的温度梯度反转比热带早,使西南季风在副热带最早开始;从大气环流看,青藏高原东侧低压槽的加强和向东延伸,以及西太平洋副热带高压的加强和向西移动,都影响着副热带西南季风的开始和发展;初夏江南的南风向北扩展与副热带高压向北移动有关,随着高原东侧低压槽向南延伸,槽前的偏南风范围向南扩展。随着副热带季风建立和向北扩展,其最大风速中心前方的低层空气质量辐合和水汽辐合以及上升运动也加强和向北移动,导致降水加强和雨带向北移动。热带季风雨季开始晚,主要维持在热带而没有明显进入副热带,江淮梅雨不是由热带季风雨带直接向北移动而致,而是由春季江南雨带北移而致。在热带季风爆发前,副热带季风区水汽输送主要来自中南半岛北部和中国华南沿海,而在热带季风爆发后,水汽输送来自孟加拉湾和热带西太平洋。  相似文献   

9.
This study analyzes extremes of geostrophic wind speeds derived from sub-daily surface pressure observations at 13 sites in the European region from the Iberian peninsula to Scandinavia for the period from 1878 or later to 2007. It extends previous studies on storminess conditions in the Northeast (NE) Atlantic-European region. It also briefly discusses the relationship between storminess and the North Atlantic Oscillation (NAO). The results show that storminess conditions in the region from the Northeast Atlantic to western Europe have undergone substantial decadal or longer time scale fluctuations, with considerable seasonal and regional differences (especially between winter and summer, and between the British Isles-North Sea area and other parts of the region). In the North Sea and the Alps areas, there has been a notable increase in the occurrence frequency of strong geostrophic winds from the mid to the late twentieth century. The results also show that, in the cold season (December–March), the NAO-storminess relationship is significantly positive in the north-central part of this region, but negative in the south-southeastern part.  相似文献   

10.
郭莉  祝从文 《大气科学》2022,46(4):1017-1029
青藏高原是我国的水塔,西风与季风及其相互作用是导致亚洲天气和气候变化最重要的环流系统。本文基于1981~2020年大气再分析资料,采用经验正交函数分解方法(Empirical Orthogonal Function,EOF)提取了西风与季风季节循环分量在青藏高原的耦合模态,并对其季节变化特征进行分析。研究发现,第一主模态方差贡献率高达78.39%,主要反映的是东亚季风、南亚季风和对流层高层中纬度西风的季节循环特征及各个季节的年际变化特征。夏季在对流层高层高原及其南侧主要为东风气流,范围从北纬5°至35°,对流层低层则表现为典型的绕高原气旋式季风环流系统,热带和副热带地区为西南季风控制,冬季的环流结构刚好相反。耦合模态的冬、夏季节转换节点与东亚季风和南亚季风的季节转换时间基本一致。从年际变化的角度来看,各个季节耦合模态的强度偏强时,东亚季风和南亚季风均偏强,西风带位置偏北;反之,季风偏弱,西风带位置偏南。厄尔尼诺—南方涛动(El Ni?o–Southern Oscillation,ENSO)是影响西风与季风耦合模态年际变化的关键外强迫,拉尼娜(La Ni?a)事件发生的前夏、前秋和次年夏季耦合模态的强度均增强,冬季至次年春季耦合模态的强度均减弱。西风与季风耦合的第二主模态主要表现为对流层高层高原上的东风及其南侧西风,以及低层南亚季风区的西南季风和西北太平洋反气旋的协同变化特征。该模态的方差贡献率为4.68%,表现出明显年际差异的同时还呈现显著减弱的长期趋势,尤其是在冬季。  相似文献   

11.
杨辉  陈隽  孙淑清 《大气科学》2005,29(3):396-408
利用海气耦合和大气气候模式研究东亚冬季风异常对夏季环流的影响, 结果表明, 东亚冬季风异常对于后期环流及海洋状态异常都起了很大的作用.一般情况下, 强的冬季风与后期弱的东亚夏季风和较强的南海季风相对应.与强(弱)冬季风异常相关的风应力的改变可以使热带太平洋海温从冬季至夏季呈现La Nina (El Nio)型异常分布.试验得到的由冬季风异常所产生的海洋及夏季环流的变化与实况是相当接近的.在异常的冬季风偏北风分量强迫下, 西太平洋上形成的偏差气旋环流在夏季已不存在, 这时东亚夏季风反而增强.而冬季赤道西风分量所产生的影响, 则在西太平洋上形成显著的偏差气旋环流, 使东亚副热带夏季风减弱, 南海夏季风加强.对于东亚大气环流而言, 与强弱冬季风对应的热带海洋海温异常强迫下, 不仅是冬季, 后期春季和夏季环流的特征都能得到很好的模拟.但是从分区看, 西太平洋暖池区的海温异常比东太平洋更为重要.单纯的热带中东太平洋的海温异常对东亚大气环流的影响主要表现在冬季, 对后期的影响并不十分清楚.整个热带海洋的异常型分布(不论是El Nio还是La Nia)型, 对冬夏季风的影响是重要的, 而单纯的某个地区的海温异常都比它的整体影响要小.从试验结果看, 海温在大尺度冬夏季环流的隔季相关中起了十分重要的作用.  相似文献   

12.
The long-term variations of wave characteristics in the Black Sea are evaluated by using a third-generation wave model (Simulating WAves Nearshore, SWAN), forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim and National Centers for Environmental Prediction/Climate Forecast System Reanalysis (NCEP/CFSR) wind data, covering the period of 1979−2018. The model results were calibrated and validated with buoy measurements at seven stations along the Black Sea. The comparative study shows that the CFSR dataset predicted slightly greater significant wave heights than the ERA-Interim dataset. The greatest difference between two datasets in terms of wave characteristics was found in the northeastern part of the Black Sea. The long-term averages and the variations of long-term trends for wave characteristics show that southwestern part of the Black Sea was characterized by greater significant wave heights, longer mean wave periods and storm durations, and lower variability, while the northeastern part of the basin was characterized by lower significant wave heights, shorter mean wave periods and storm durations, and higher variability. The long-term trends indicate that the wave characteristics over the 40-year period are more likely to be exposed to higher variation on the eastern part of the Black Sea than the western part of the basin.  相似文献   

13.
SeasonalTransitionofSummerRainySeasonoverIndochinaandAdjacentMonsoonRegionJunMatsumotoDepartmentofGeography,UniversityofTokyo...  相似文献   

14.
Using the 5-day averaged data from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and precipitation from rain gauge stations in China for the period 1981–2000, we investigated seasonal variations and associated atmospheric circulation and precipitation of the southwesterly wind over eastern China. The southwesterly wind over eastern China begins earliest over southeastern China and strengthens gradually from spring to the early summer, as it extends northward. The strengthening of the spring southwesterly wind, the tropospheric upward motion, and the convergence of low-level water vapor over southeastern China results in the beginning of the local rainy season. The beginning of the Mei-yu (Plum rainfall) is connected with the northward march of the southwesterly wind. The southwesterly wind reaches the valley of the Yangtze River in the early summer and northern China in the middle summer. This signifies an onset of the large-scale southwesterly wind over eastern China. Accordingly, the rain belt over southeastern China moves to the valley of the Yangtze River in the early summer and to northern China in the middle summer. Moreover, the southerly wind extends southward to the South China Sea from the spring to summer, though it does not stretch from the South China Sea to southeastern China at those times. The strengthening of the southerly wind over southeastern China is associated with a weakening/strengthening of the eastward/westward subtropical tropospheric temperature gradient between southwestern China and the western North Pacific. The developments of a low-pressure system over southwestern China and the subtropical high-pressure system over the western North Pacific may contribute to the strengthening of the southwesterly wind. A northward advance of the high-pressure system favors the southwesterly wind stretching from southeastern China to northern China. The onset of the Indian summer monsoon also strengthens the summer southwesterly wind over eastern China.  相似文献   

15.
The mean onset and withdrawal of summer rainy season over the Indochina Peninsula were investigated using 5-day averaged rainfall data (1975-87). The mean seasonal transition process during onset and retreat phases in Indochina, India and the South China Sea is also examined using 5-day mean OLR (1975-87) and 850 hPa wind (1980-88) date. It was found that the onset of summer rainy season begins earlier in the inland region of Indochina (Thailand) in late April to early May than in the coastal region along the Bay of Bengal. This early onset of rainy sea-son is due to pre-monsoon rain under the mid-latitude westerly wind regime. The full summer monsoon circulation begins to establish in mid-May, causing active convective activity both over the west coast of Indochina and the cen-tral South China Sea. In case of withdrawal, the earliest retreat of summer rainy season is found in the central northern part of Indochina in late September. The wind field, on the other hand, already changes to easterlies in the northern South China Sea in early September. This easterly wind system covers the eastern part of Indochina where post-monsoon rain is still active. In late October, the wind field turns to winter time situation, but post monsoon rain still continues in the southern part of the Indochina Peninsula until late November  相似文献   

16.
利用2012年海南岛沿海6个常规气象站、2个海岛站的逐时风向、风速资料,分别对全年以及不同季节内近地面风速大小、风速日变化以及风向频率分布等进行了统计分析.结果表明:2012年全年海南岛沿海近地面风速约在1.8~5.7 m/s之间,其中三亚站风速最大,冬季高达6.5 m/s,大部分站点夏季风速最弱,最大风速出现在春、冬季;海南岛南部沿海风速大于北部,东部大于西部;各站24 h风速基本呈现白天大、夜晚小的典型特征,由于所处地形、植被独特,三亚部分季节风速呈现相反的日变化特征;全年各站基本存在两个盛行风向,大部分站点近地面风向与南海季风的风向变化较为一致,夏季以南风、西南风为主,冬季以北风、东北风为主;各季沿海近地面风向南北部差异较大,东西部差异较小,随着季节转变,南部沿海盛行风转向最明显,东西部次之,北部则不明显.  相似文献   

17.
基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。  相似文献   

18.
1999年东亚夏季风异常活动的物理机制研究   总被引:8,自引:0,他引:8  
孙颖  丁一汇 《气象学报》2003,61(4):406-420
文中从海-气相互作用的角度探讨了1999年东亚夏季风及与其相联系的雨带异常活动的物理机制。结果表明,由于1998年春季至1999年南海-热带西太平洋出现了近20 a最强的异常暧海温,该地强异常海-气相互作用的维持使得这种局地的热力强迫成为1999年东亚夏季风和降水异常的最主要外强迫机制,并使得1999年的季风活动和降水分布有别于一般的统计情形。从1998年秋到1999年,由于热带大气对南海-西太平洋暧海温所诱发的局地强加热的响应,热带西太平洋地区所出现的Gill模态的异常环流分布从冬季一直发展到夏季,并因此在海洋和大气之间形成了局地的强烈正反馈,不仅使得异常环流得以持续发展,而且也使得暖海温得以维持,成为影响1999年环流异常的最强前期信号。随着从冬到夏的季节演变,大气基本态对上述持续性异常环流的影响导致了冬、夏异常环流呈现出不同的纬向非对称,诱发了盛夏期间东亚到北美沿岸的遥相关波列。在东亚沿岸异常气旋性环流的影响下,大尺度异常东风在东亚沿岸的维持形成了极不利于季风西风在南海北部转向的条件,导致了季风在中国东部北进的异常偏弱和低纬西风转向位置的异常偏东。  相似文献   

19.
西北太平洋海域风浪、涌浪、混合浪波浪能资源特征   总被引:1,自引:0,他引:1  
用ECMWF的ERA-40海浪再分析资料,应用波浪能流密度计算方法,对西北太平洋海域的风浪能、涌浪能、混合浪能展开研究。结果表明:(1)波浪能流密度呈现出显著季节性差异。混合浪能流密度表现为冬高夏低;春、夏、秋季的涌浪能流密度明显大于风浪能流密度,冬季相反;(2)混合浪能流密度的大值区主要分布于阿留申群岛附近海域,高值中心可达60 kW/m以上;近海的大值区主要分布于琉球群岛—巴士海峡—传统的南海大风区一带,年平均值在4 kW/m以上,南海北部可达12 kW/m以上;(3)黄渤海的涌浪和混合浪能流密度峰值出现在8—9月,波谷出现在6月。风浪能流密度峰值出现在11月—次年3月,波谷出现在6—8月,均呈现双峰型月变化特征。东海、南海北部、南海中南部海域能流密度的月变化特征相似,都为双峰型,12月—次年4月的能流密度整体较高,波峰出现在12月,波谷出现在5—7月;(4)2 kW/m以上混合浪能流密度出现的频率较高,近海低于大洋;(5)0.5 m以上有效波高出现的频率都非常高,中国近海稍低于大洋;(6)涌浪能流密度的稳定性明显好于风浪能流密度;大洋的能流密度稳定性明显强于近岸。1月份能流密度的稳定性最好,4月和7月次之,10月的稳定性最差。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号