首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ideally performed blasting operation enormously influences the mining overall cost. This aim can be achieved by proper prediction and attenuation of flyrock and backbreak. Poor performance of the empirical models has urged the application of new approaches. In this paper, an attempt has been made to develop a new neuro-genetic model for predicting flyrock and backbreak in Sungun copper mine, Iran. Recognition of the optimum model with this method as compared with the classic neural networks is faster and convenient. Genetic algorithm was utilized to optimize neural network parameters. Parameters such as number of neurons in hidden layer, learning rate, and momentum were considered in the model construction. The performance of the model was examined by statistical method in which absolutely higher efficiency of neuro-genetic modeling was proved. Sensitivity analysis showed that the most influential parameters on flyrock are stemming and powder factor, whereas for backbreak, stemming and charge per delay are the most effective parameters.  相似文献   

2.
Backbreak is one of the destructive side effects of the blasting operation. Reducing of this event is very important for economic of a mining project. Involvement of various parameters has made the backbreak analyzing difficult. Currently there is no any specific method to predict or control the phenomenon considering all the effective parameters. In this paper, artificial neural network (ANN) as a powerful tool for solving such complicated problems is used to predict backbreak in blasting operation of the Sangan iron mine, Iran. Network training was fulfilled using a collected database of the practiced operation including blast design details and rock condition. Trying various types of the networks, a network with two hidden layers was found to be optimum. Performance of the ANN model was compared with statistical analysis using datasets which were kept apart from the original database. According to the obtained results, for the ANN model there existed a higher correlation (R2 = 0.868) and lesser error (RMSE = 0.495) between the predicted and measured backbreak as compared to the regression model. Also, sensitivity analysis revealed that the inputs rock factor and number of rows are the most and the least sensitive parameters on the output backbreak, respectively.  相似文献   

3.
In the blasting operation, risk of facing with undesirable environmental phenomena such as ground vibration, air blast, and flyrock is very high. Blasting pattern should properly be designed to achieve better fragmentation to guarantee the successfulness of the process. A good fragmentation means that the explosive energy has been applied in a right direction. However, many studies indicate that only 20–30 % of the available energy is actually utilized for rock fragmentation. Involvement of various effective parameters has made the problem complicated, advocating application of new approaches such as artificial intelligence-based techniques. In this paper, artificial neural network (ANN) method is used to predict rock fragmentation in the blasting operation of the Sungun copper mine, Iran. The predictive model is developed using eight and three input and output parameters, respectively. Trying various types of the networks, it was found that a trained model with back-propagation algorithm having architecture 8-15-8-3 is the optimum network. Also, performance comparison of the ANN modeling with that of the statistical method was confirmed robustness of the neural networks to predict rock fragmentation in the blasting operation. Finally, sensitivity analysis showed that the most influential parameters on fragmentation are powder factor, burden, and bench height.  相似文献   

4.
The purpose of this article is to evaluate and predict the blast induced ground vibration using different conventional vibration predictors and artificial neural network (ANN) at a surface coal mine of India. Ground Vibration is a seismic wave that spread out from the blast hole when detonated in a confined manner. 128 blast vibrations were recorded and monitored in and around the surface coal mine at different strategic and vulnerable locations. Among these, 103 blast vibrations data sets were used for the training of the ANN network as well as to determine site constants of various conventional vibration predictors, whereas rest 25 blast vibration data sets were used for the validation and comparison by ANN and empirical formulas. Two types of ANN model based on two parameters (maximum charge per delay and distance between blast face to monitoring point) and multiple parameters (burden, spacing, charge length, maximum charge per delay and distance between blast face to monitoring point) were used in the present study to predict the peak particle velocity. Finally, it is found that the ANN model based on multiple input parameters have better prediction capability over two input parameters ANN model and conventional vibration predictors.  相似文献   

5.
Ground vibration due to blasting causes damages in the existence of the surface structures nearby the mine. The study of vibration control plays an important role in minimizing environmental effects of blasting in mines. Ground vibration regulations primarily rely on the peak particle velocity (PPV, mm/s). Prediction of maximum charge weight per delay (Q, kg) by distance from blasting face up to vibration monitoring point as well as allowable PPV was proposed in order to perform under control blasting and therefore avoiding damages on structures nearby the mine. Various empirical predictor equations have proposed to determine the PPV and maximum charge per delay. Maximum charge per delay is calculated by using PPV predictors indirectly or Q predictor directly. This paper presents the results of ground vibration measurement induced by bench blasting in Sungun copper mine in Iran. The scope of this study is to evaluate the capability of two different methods in order to predict maximum charge per delay. A comparison between two ways of investigations including empirical equations and artificial neural network (ANN) are presented. It has been shown that the applicability of ANN method is more promising than any under study empirical equations.  相似文献   

6.
Flyrock arising from blasting operations is one of the crucial and complex problems in mining industry and its prediction plays an important role in the minimization of related hazards. In past years, various empirical methods were developed for the prediction of flyrock distance using statistical analysis techniques, which have very low predictive capacity. Artificial intelligence (AI) techniques are now being used as alternate statistical techniques. In this paper, two predictive models were developed by using AI techniques to predict flyrock distance in Sungun copper mine of Iran. One of the models employed artificial neural network (ANN), and another, fuzzy logic. The results showed that both models were useful and efficient whereas the fuzzy model exhibited high performance than ANN model for predicting flyrock distance. The performance of the models showed that the AI is a good tool for minimizing the uncertainties in the blasting operations.  相似文献   

7.
Excavation of coal, overburden, and mineral deposits by blasting is dominant over the globe to date, although there are certain undesirable effects of blasting which need to be controlled. Blast-induced vibration is one of the major concerns for blast designers as it may lead to structural damage. The empirical method for prediction of blast-induced vibration has been adopted by many researchers in the form of predictor equations. Predictor equations are site specific and indirectly related to physicomechanical and geological properties of rock mass as blast-induced ground vibration is a function of various controllable and uncontrollable parameters. Rock parameters for blasting face and propagation media for blast vibration waves are uncontrollable parameters, whereas blast design parameters like hole diameter, hole depth, column length of explosive charge, total number of blast holes, burden, spacing, explosive charge per delay, total explosive charge in a blasting round, and initiation system are controllable parameters. Optimization of blast design parameters is based on site condition and availability of equipment. Most of the smaller mines have predesigned blasting parameters except explosive charge per delay, total explosive charge, and distance of blast face from surface structures. However, larger opencast mines have variations in blast design parameters for different benches based on strata condition: Multivariate predictor equation is necessary in such case. This paper deals with a case study to establish multivariate predictor equation for Moher and Moher Amlohri Extension opencast mine of India. The multivariate statistical regression approach to establish linear and logarithmic scale relation between variables to predict peak particle velocity (PPV) has been used for this purpose. Blast design has been proposed based on established multivariate regression equation to optimize blast design parameters keeping PPV within legislative limits.  相似文献   

8.
Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.  相似文献   

9.
The environmental effects of blasting must be controlled in order to comply with regulatory limits. Because of safety concerns and risk of damage to infrastructures, equipment, and property, and also having a good fragmentation, flyrock control is crucial in blasting operations. If measures to decrease flyrock are taken, then the flyrock distance would be limited, and, in return, the risk of damage can be reduced or eliminated. This paper deals with modeling the level of risk associated with flyrock and, also, flyrock distance prediction based on the rock engineering systems (RES) methodology. In the proposed models, 13 effective parameters on flyrock due to blasting are considered as inputs, and the flyrock distance and associated level of risks as outputs. In selecting input data, the simplicity of measuring input data was taken into account as well. The data for 47 blasts, carried out at the Sungun copper mine, western Iran, were used to predict the level of risk and flyrock distance corresponding to each blast. The obtained results showed that, for the 47 blasts carried out at the Sungun copper mine, the level of estimated risks are mostly in accordance with the measured flyrock distances. Furthermore, a comparison was made between the results of the flyrock distance predictive RES-based model, the multivariate regression analysis model (MVRM), and, also, the dimensional analysis model. For the RES-based model, R 2 and root mean square error (RMSE) are equal to 0.86 and 10.01, respectively, whereas for the MVRM and dimensional analysis, R 2 and RMSE are equal to (0.84 and 12.20) and (0.76 and 13.75), respectively. These achievements confirm the better performance of the RES-based model over the other proposed models.  相似文献   

10.
Blasting is sometimes inevitable in civil engineering work, to fragment the massive rock to enable excavation and leveling. In Minyak Beku, Batu Pahat also, blasting is implemented to fragment the rock mass, to reduce the in situ rock level to the required platform for a building construction. However, during blasting work, some rocks get an excessive amount of explosive energy and this energy may generate flyrock. An accident occurred on 15 July 2015 due to this phenomenon, in which one of the workers was killed and two other workers were seriously injured after being hit by the flyrock. The purpose of this study is to investigate the causes of the flyrock accidents through evaluation of rock mass geological structures. The discontinuities present on the rock face were analyzed, to study how they affected the projection and direction of the flyrock. Rock faces with lower mean joint spacing and larger apertures caused excessive flyrock. Based on the steoreonet analysis, it was found that slope failures also produced a significant effect on the direction, if the rock face failure lay in the critical zone area. Empirical models are often used to predict flyrock projection. In this study five empirical models are used to compare the incidents. It was found that none of the existing formulas could accurately predict flyrock distance. Analysis shows that the gap between predicted and actual flyrock can be reduced by including blast deign and geological conditions in forecasts. Analysis revealed only 69% of accuracy could be achieved if blast design is the only parameter to be considered in flyrock projection and the rest is influenced by the geological condition. Other causes of flyrock are discussed. Comparison of flyrock prediction with face bursting, cratering and rifling is carried out with recent prediction models.  相似文献   

11.
New Prediction Models for Mean Particle Size in Rock Blast Fragmentation   总被引:2,自引:1,他引:1  
The paper refers the reader to a blast data base developed in a previous study. The data base consists of blast design parameters, explosive parameters, modulus of elasticity and in situ block size. A hierarchical cluster analysis was used to separate the blast data into two different groups of similarity based on the intact rock stiffness. The group memberships were confirmed by the discriminant analysis. A part of this blast data was used to train a single-hidden layer back propagation neural network model to predict mean particle size resulting from blast fragmentation for each of the obtained similarity groups. The mean particle size was considered to be a function of seven independent parameters. An extensive analysis was performed to estimate the optimum value for the number of units for the hidden layer for each of the obtained similarity groups. The blast data that were not used for training were used to validate the trained neural network models. For the same two similarity groups, multivariate regression models were also developed to predict mean particle size. Capability of the developed neural network models as well as multivariate regression models was determined by comparing predictions with measured mean particle size values and predictions based on one of the most applied fragmentation prediction models appearing in the blasting literature. Prediction capability of the trained neural network models as well as multivariate regression models was found to be strong and better than the existing most applied fragmentation prediction model. Diversity of the blasts data used is one of the most important aspects of the developed models.  相似文献   

12.
Flyrock is a rock thrown to greater distance than desired and is a dangerous and unwanted phenomenon in surface mines, particularly, when blasting is proceeding close to human occupation and dwellings. The prediction of flyrock distance is critical in defining the statutory danger zone of blasting and has evaded blasters for quite some time. Control of flyrock with its distance prediction involves identification of key variables and understanding their influence. Theoretical models though provide a good understanding of the phenomenon, the confidence that can be assigned to such models is still very less. This study presents novel method to identify, merge and consolidate independent variables into a simplified equation for flyrock distance prediction without compromising on the actual field applications. Field investigations were carried out in several mines and relevant data were generated relating to flyrock. The key parameters, namely, explosive, blast design and rock mass nature were characterized and analysed. An empirical model involving the key contributors for flyrock generation and distance prediction were assimilated and a new equation was developed based on actual data collected by employing surface response analysis. The developed model was found to be statistically significant and validated. Sensitivity analysis was conducted to ascertain the role of independent factors on flyrock distance.  相似文献   

13.
Burden prediction is a vital task in the production blasting. Both the excessive and insufficient burden can significantly affect the result of blasting operation. The burden which is determined by empirical models is often inaccurate and needs to be adjusted experimentally. In this paper, an attempt was made to develop an artificial neural network (ANN) in order to predict burden in the blasting operation of the Mouteh gold mine, using considering geomechanical properties of rocks as input parameters. As such here, network inputs consist of blastability index (BI), rock quality designation (RQD), unconfined compressive strength (UCS), density, and cohesive strength. To make a database (including 95 datasets), rock samples are used from Iran’s Mouteh goldmine. Trying various types of the networks, a neural network, with architecture 5-15-10-1, was found to be optimum. Superiority of ANN over regression model is proved by calculating. To compare the performance of the ANN modeling with that of multivariable regression analysis (MVRA), mean absolute error (E a), mean relative error (E r), and determination coefficient (R 2) between predicted and real values were calculated for both the models. It was observed that the ANN prediction capability is better than that of MVRA. The absolute and relative errors for the ANN model were calculated 0.05 m and 3.85%, respectively, whereas for the regression analysis, these errors were computed 0.11 m and 5.63%, respectively. Moreover, determination coefficient of the ANN model and MVRA were determined 0.987 and 0.924, respectively. Further, a sensitivity analysis shows that while BI and RQD were recognized as the most sensitive and effective parameters, cohesive strength is considered as the least sensitive input parameters on the ANN model output effective on the proposed (burden).  相似文献   

14.
Blasting operations usually produce significant environmental problems which may cause severe damage to the nearby areas. Air-overpressure (AOp) is one of the most important environmental impacts of blasting operations which needs to be predicted and subsequently controlled to minimize the potential risk of damage. In order to solve AOp problem in Hulu Langat granite quarry site, Malaysia, three non-linear methods namely empirical, artificial neural network (ANN) and a hybrid model of genetic algorithm (GA)–ANN were developed in this study. To do this, 76 blasting operations were investigated and relevant blasting parameters were measured in the site. The most influential parameters on AOp namely maximum charge per delay and the distance from the blast-face were considered as model inputs or predictors. Using the five randomly selected datasets and considering the modeling procedure of each method, 15 models were constructed for all predictive techniques. Several performance indices including coefficient of determination (R 2), root mean square error and variance account for were utilized to check the performance capacity of the predictive methods. Considering these performance indices and using simple ranking method, the best models for AOp prediction were selected. It was found that the GA–ANN technique can provide higher performance capacity in predicting AOp compared to other predictive methods. This is due to the fact that the GA–ANN model can optimize the weights and biases of the network connection for training by ANN. In this study, GA–ANN is introduced as superior model for solving AOp problem in Hulu Langat site.  相似文献   

15.
Flyrock is an adverse effect produced by blasting in open-pit mines and tunneling projects. So, it seems that the precise estimations and risk level assessment of flyrock are essential in minimizing environmental effects induced by blasting. The first aim of this research is to model the risk level associated with flyrock through rock engineering systems (RES) methodology. In this regard, 62 blasting were investigated in Ulu Tiram quarry, Malaysia, and the most effective parameters of flyrock were measured. Using the most influential parameters on flyrock, the overall risk of flyrock was obtained as 32.95 which is considered as low to medium degree of vulnerability. Moreover, the second aim of this research is to estimate flyrock based on RES and multiple linear regression (MLR). To evaluate performance prediction of the models, some statistical criteria such as coefficient of determination (R2) were computed. Comparing the values predicted by the models demonstrated that the RES has more suitable performance than MLR for predicting the flyrock and it could be introduced as a powerful technique in this field.  相似文献   

16.
Blasting is well-known as an effective method for fragmenting or moving rock in open-pit mines. To evaluate the quality of blasting, the size of rock distribution is used as a critical criterion in blasting operations. A high percentage of oversized rocks generated by blasting operations can lead to economic and environmental damage. Therefore, this study proposed four novel intelligent models to predict the size of rock distribution in mine blasting in order to optimize blasting parameters, as well as the efficiency of blasting operation in open mines. Accordingly, a nature-inspired algorithm (i.e., firefly algorithm – FFA) and different machine learning algorithms (i.e., gradient boosting machine (GBM), support vector machine (SVM), Gaussian process (GP), and artificial neural network (ANN)) were combined for this aim, abbreviated as FFA-GBM, FFA-SVM, FFA-GP, and FFA-ANN, respectively. Subsequently, predicted results from the abovementioned models were compared with each other using three statistical indicators (e.g., mean absolute error, root-mean-squared error, and correlation coefficient) and color intensity method. For developing and simulating the size of rock in blasting operations, 136 blasting events with their images were collected and analyzed by the Split-Desktop software. In which, 111 events were randomly selected for the development and optimization of the models. Subsequently, the remaining 25 blasting events were applied to confirm the accuracy of the proposed models. Herein, blast design parameters were regarded as input variables to predict the size of rock in blasting operations. Finally, the obtained results revealed that the FFA is a robust optimization algorithm for estimating rock fragmentation in bench blasting. Among the models developed in this study, FFA-GBM provided the highest accuracy in predicting the size of fragmented rocks. The other techniques (i.e., FFA-SVM, FFA-GP, and FFA-ANN) yielded lower computational stability and efficiency. Hence, the FFA-GBM model can be used as a powerful and precise soft computing tool that can be applied to practical engineering cases aiming to improve the quality of blasting and rock fragmentation.  相似文献   

17.
Blasting operation should be performed satisfying some criteria, such as fragmentation, flyrock, and cost. To reach the most appropriate alternative among previous performed blast designs, all the criteria should be simultaneously considered in the analysis. To do so, rather new emerging approaches such as Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), a branch of multi-criteria decision-making techniques could be applied. Using TOPSIS method, the present study tries to investigate the blasting operation in the Tajareh limestone mine and select the most appropriate blasting pattern. According to the obtained results, alternative ten with hole diameter of 64 mm and staggered pattern designed by Ash formula, was selected to be the best decision. Application of this alternative comparatively satisfies both fragmentation and flyrock.  相似文献   

18.
This study addresses the effects of rock characteristics and blasting design parameters on blast-induced vibrations in the Kangal open-pit coal mine, the Tülü open-pit boron mine, the K?rka open-pit boron mine, and the TKI Çan coal mine fields. Distance (m, R) and maximum charge per delay (kg, W), stemming (m, SB), burden (m, B), and S-wave velocities (m/s, Vs) obtained from in situ field measurements have been chosen as input parameters for the adaptive neuro-fuzzy inference system (ANFIS)-based model in order to predict the peak particle velocity values. In the ANFIS model, 521 blasting data sets obtained from four fields have been used (r 2 = 0.57–0.81). The coefficient of ANFIS model is higher than those of the empirical equation (r 2 = 1). These results show that the ANFIS model to predict PPV values has a considerable advantage when compared with the other prediction models.  相似文献   

19.
Blasting is one of the primary mining operations for extracting minerals and ores however, if not designed properly, may have a varying degree of environmental and socio-economic impact in and around mining areas. In Indian mining industry, blast designs are fundamentally based on the experience and capability of the blasting crew and its assessment is more qualitative in nature, based on conventional trial and error basis. With the change in site geology and geotechnical parameters, the blast design parameters also require alterations, which can be standardized with the development of an intelligent system such as neural network. In this paper, the concept of artificial neural network and random forest algorithm has been used for better blast designs. Over 120 blast results from an opencast coal mine have been used for prediction of burden and energy factor with blast hole diameter, bench height to stemming ratio, nature of strata and average fragment size as input parameters. Out of 120 data sets 85 data sets recorded at a surface coal mine was used to train the model and 20 for the validation. Co-efficient of determination and root mean square error was chosen as the indicators to identify the optimum neural network and random forest model. The root mean square values obtained for energy factor is 0.153 while it is 0.1947 for burden. Similarly, the RMSE values obtained using random forest tree algorithm is 0.48 for burden while 50.76 for energy factor. The results revealed that random forest tree network system has potential to design better blast that is not generic and can be a potential tool for blasting engineers to design optimum blast for the mines.  相似文献   

20.
A hybrid dimensional analysis fuzzy inference system approach was introduced to predict blast-induced flyrock in surface mining, by integrating a dimensional analysis procedure and Mamdani’s fuzzy inference system. In the dimensional analysis, the blast-induced flyrock was considered as a function of the most effective parameters. Hence, a number of dimensionless products resulted and were used as input and output parameters of Mamdani’s fuzzy inference system. The capability of the hybrid approach was determined by comparing its results with the real measurement of flyrock in the case of a copper mine, based on a number of 320 in situ blasting datasets. Predictions by the system were close to the real measurements. Sensitivity analysis of the hybrid dimensional analysis fuzzy inference system showed that the most effective dimensionless products on flyrock distance were spacing, the multiplication of rock mass rating and hole length, and the subtraction of burden and hole length multiplication and stemming length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号