首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Themagnetorotational instability (MRI) in cylindrical Taylor‐Couette flow with external helical magnetic field is simulated for infinite and finite aspect ratios. We solve the MHD equations in their small Prandtl number limit and confirm with timedependent nonlinear simulations that the additional toroidal component of the magnetic field reduces the critical Reynolds number from O (106) (axial field only) to O (103) for liquid metals with their small magnetic Prandtl number. Computing the saturated state we obtain velocity amplitudes which help designing proper experimental setups. Experiments with liquid gallium require axial field ∼50 Gauss and axial current ∼4 kA for the toroidal field. It is sufficient that the vertical velocity uz of the flow can be measured with a precision of 0.1 mm/s.We also show that the endplates enclosing the cylinders do not destroy the traveling wave instability which can be observed as presented in earlier studies. For TC containers without and with endplates the angular momentum transport of the MRI instability is shown as to be outwards. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The instability of a stratified layer of a self-gravitating plasma has been studied to include jointly the effects of viscosity, Coriolis forces and the finite Larmor radius (FLR). For a plasma permeated by a uniform horizontal magnetic field, the stability analysis has been carried out for a transverse mode of wave propagation. The solution has been obtained through variational methods for the case when the direction of axis of rotation is along the magnetic field. The analysis for the case when the direction of rotation is transverse to the magnetic field has also been considered and the solutions for this case have been obtained through integral approach. The dispersion relations have been derived in both the cases and solved numerically. It is found that both the viscous and FLR effects have a stabilizing influence on the growth rate of the unstable mode of disturbance. Coriolis forces are found to have stabilizing influence for small wave numbers and destabilizing for large wave numbers.  相似文献   

3.
The stability of magnetic fields in the solar tachocline is investigated. We present stability limits for higher azimuthal wave numbers and results on the dependence of the stability on the location of toroidal magnetic fields in latitude. While the dependence of the wave number with the largest growth rate on the magnetic field strength and the magnetic Prandtl number is small, the dependence on the magnetic Reynolds number Rm indicates that lowest azimuthal modes are excited for very high Rm. Upon varying the latitudinal position of the magnetic field belts, we find slightly lower stability limits for high latitudes, and very large stability limits at latitudes below 10°, with little dependence on latitude in between. An increase of the maximum possible field was achieved by adding a poloidal field. The upper limit for the toroidal field which can be stored in the radiative tachocline is then 1000 G, compared to about 100 G for a purely toroidal field as was found in an earlier work. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The nonaxisymmetric Tayler instability of toroidal magnetic fields due to axial electric currents is studied for conducting incompressible fluids between two coaxial cylinders without endplates. The inner cylinder is considered as so thin that the limit of Rin → 0 can be computed. The magnetic Prandtl number is varied over many orders of magnitudes but the azimuthal mode number of the perturbations is fixed to m = 1. In the linear approximation the critical magnetic field amplitudes and the growth rates of the instability are determined for both resting and rotating cylinders. Without rotation the critical Hartmann numbers do not depend on the magnetic Prandtl number but this is not true for the corresponding growth rates. For given product of viscosity and magnetic diffusivity the growth rates for small and large magnetic Prandtl number are much smaller than those for Pm = 1. For gallium under the influence of a magnetic field at the outer cylinder of 1 kG the resulting growth time is 5 s. The minimum electric current through a container of 10 cm diameter to excite the instability is 3.20 kA. For a rotating container both the critical magnetic field and the related growth times are larger than for the resting column (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The effect of a uniform axial magenetic field on the nonlinear instability of a self-gravitating infinite cylinder is examined. Using the method of multiple scales, it is found that while the nonlinear (modulational) instability cannot be completely suppressed, the presence of a magnetic field does increase the range of stable wave numbers. The evolution of the amplitude is governed by a non-linear Schrödinger equation which gives the criterion for modulational instability.Department of Chemical Engineering and Technology.Department of Mathematics.  相似文献   

6.
To make the analysis more tractable, we simplify the equations of Part I to apply to two superposed layers of fluid, with horizontal variations in the motion and magnetic field represented by a small number of Fourier harmonics. The resulting set of eighteen ordinary nonlinear differential equations in time for the Fourier amplitudes is integrated numerically. We analyze in detail the dynamo action from a typical Rossby wave motion and compare it with the solar cycle.The field reversal process is similar in some respects to that put forth by Babcock. Toroidal fields are dragged up by vertical motions in the Rossby waves to form large-scale vertical fields, whose polarities alternate with longitude roughly like bipolar magnetic regions. Vertical fields of preferentially one polarity are carried toward the pole by the meridional motion in the wave to form an axisymmetric poloidal field. This poloidal field is then stretched out by the differential rotation into a new toroidal field of the opposite sign from the original. The poloidal field changes sign when the toroidal and bipolar region like fields are maximum, and vice versa.For the case studied, the reversal period is too short ( 2 years) and the poloidal fields too large ( 40 G) for the sun. Improvements for the model are discussed.Part I has been published in Solar Phys. 8, 316.  相似文献   

7.
The instability of a supercritical Taylor‐Couette flow of a conducting fluid with resting outer cylinder under the influence of a uniform axial electric current is investigated for magnetic Prandtl number Pm = 1. In the linear theory the critical Reynolds number for axisymmetric perturbations is not influenced by the current‐induced axisymmetric magnetic field but all axisymmetric magnetic perturbations decay. The nonaxisymmetric perturbations with m = 1 are excited even without rotation for large enough Hartmann numbers (“Tayler instability”). For slow rotation their growth rates scale with the Alfvén frequency of the magnetic field but for fast rotation they scale with the rotation rate of the inner cylinder. In the nonlinear regime the ratio of the energy of the magnetic m = 1 modes and the toroidal background field is very low for the non‐rotating Tayler instability but it strongly grows if differential rotation is present. For super‐Alfv´enic rotation the energies in the m = 1 modes of flow and field do not depend on the molecular viscosity, they are almost in equipartition and contain only 1.5 % of the centrifugal energy of the inner cylinder. The geometry of the excited magnetic field pattern is strictly nonaxisymmetric for slow rotation but it is of the mixed‐mode type for fast rotation – contrary to the situation which has been observed at the surface of Ap stars. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Ap star magnetism is often attributed to fossil magnetic fields which have not changed much since the pre‐main‐sequence epoch of the stars. Stable magnetic field configurations are known which could persist probably for the entire mainsequence life of the star, but they may not show the complexity and diversity exhibited by the Ap stars observed. We suggest that the Ap star magnetism is not a result of stable configurations, but is the result of an instability based on strong toroidal magnetic fields buried in the stars. The highly nonaxisymmetric remainders of the instability are reminiscent of the diversity of fields seen on Ap stars. The strengths of these remnant magnetic fields are actually between a few per cent up to considerable fractions of the internal toroidal field; this means field strengths of the order of kGauss being compatible with what is observed. The magnetic fields emerge at the surface rather quickly; rough estimates deliver time‐scales of the order of a few years. Since rotation stabilizes the instability, normal A stars may still host considerable, invisible toroidal magnetic fields (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The spectrum of propagating waves and instabilities on a current-carrying, zero gas pressure, twisted magnetic flux loop is analysed for several models of the magnetic field structure. A surface wave mode of the fast Alfvén wave is found to exist, with damping of the wave when Alfvén resonance absorption occurs. If the loop is surrounded by a uniform, purely axial magnetic field, then the surface wave is always stable. If the loop is surrounded by a nonuniform field which is continuous with the loop's field, then the surface wave may connect to the unstable external kink mode.  相似文献   

10.
For the case in which the gas of a magnetized filamentary cloud obeys a polytropic equation of state, gravitational collapse of the cloud is studied using a simplified model. We concentrate on the radial distribution and restrict ourselves to a purely toroidal magnetic field. If the axial motions and poloidal magnetic fields are sufficiently weak, we could reasonably expect our solutions to be a good approximation. We show that while the filament experiences gravitational condensation and the density at the centre increases, the toroidal flux-to-mass ratio remains constant. A series of spatial profiles of density, velocity and magnetic field for several values of the toroidal flux-to-mass ratio and the polytropic index, is obtained numerically and discussed.  相似文献   

11.
A third-order theory has been developed to study the instability of an infinite cylinder in the presence of a uniform axial magnetic field. By use of strained coordinates, the growth of the surface waves is calculated for wave numbers less than the critical wave number. It is observed that the perturbed surface of an infinite cylinder assumes a non-sinusoidal shape resulting in secondary waves due to energy transfer between the harmonics of different orders.Department of Chemical Engineering and Technology.Department of Mathematics.  相似文献   

12.
Propagation of torsional Alfvén waves in the magnetosphere is examined for two models of the Earth's magnetic field, one where the field is toroidal, the other being a dipole field. Both models yield magnetically guided torsional wave modes which are strongly localized in all directions transverse to the steady magnetic field. The transverse structure is determined by a self-consistent solution of the ideal MHD equations. It is shown that the torsional wave is guided even when b is finite, where b is the component of the wave magnetic field in a direction parallel to the steady magnetic field.  相似文献   

13.
Particle acceleration via Poynting vector with toroidal magnetic field is studied in 3D PIC simulation of electron-positron plasma. We choose two different initial magnetic field configurations to compare how the particle acceleration is affected by the expansion of electromagnetic wave. In the cylindrical case, the electromagnetic field strength decays as (ct)−2, and particles are accelerated in the radial direction as well as the axial direction. Rayleigh-Taylor instability is also observed at the center of the cylinder. In the torus case, the field strength decays as (ct)−3, making the acceleration less efficient. Particles accelerated in the axial direction by E × B force creates strong charge separation.  相似文献   

14.
In this paper an excitation of waves is considered during the time interval in which the undisturbed magnetic field changes its direction. If this interval is taken to be 2 years, which is shorter than the 11-year cycle, then the undisturbed components of the magnetic field may be linearly dependent on time and independent of the coordinates. The excitation of waves is due to the undisturbed stationaryV 0 flow with divV 0 = 0 and with (V 0 rot0) = constant.We use the local Cartesian coordinate system, which is immovable towards the solar centre, and consider the case when the toroidal component of the undisturbed magnetic field changes its sign simultaneously with one of the axial components. The third component does not change its direction.The efficiency of the enhancement of the magnetic field and velocity disturbances depends on the Alfvén wave frequency, A. When A = 0, the component of the disturbed velocity, which is directed along the constant component of the undisturbed magnetic field, increases. In this case the shear waves excite the carrier (high) frequency (KV 0), whereK is the wave vector. Due to the shear instability the amplitude of the velocity increases during 1 year before the moment of reversal of the global magnetic field polarity (RGMFP) for an arbitrary latitude. It reaches a maximum at RGMFP and decreases in the next year. When A > 0, then the amplitudes of the disturbed values reach maxima before the moment of RGMFP, and when A < 0, they reach maxima after it.We argue that the shear waves propagate from middle latitudes to the pole and equator. Using the results of the analytical solutions and leaning on the evidence of the observational data (Gigolashvili and Japaridze, 1992), we derive the result that the component of the undisturbed magnetic field, which is perpendicular to the solar surface, changes its sign simultaneously with the toroidal component.  相似文献   

15.
The gravitational instability of an infinite homogeneous finitely conducting viscid fluid through porous medium is studied in the presence of a uniform vertical magnetic field and finite ion Larmor radius (FLR) effects. The medium is considered uniformly rotating along and perpendicular to the direction of the prevalent magnetic field. A general dispersion relation is obtained from the relevant linearized perturbation equations of the problem. Furthermore, the wave propagation along and perpendicular to the direction of existing magnetic field has been discussed for each direction of the rotation. It is found that the simultaneous presence of viscosity finite conductivity, rotation, medium porosity, and FLR corrections does not essentially change the Jeans's instability condition. The stabilizing influence of FLR in the case of transverse propagation is reasserted for a non-rotating and inviscid porous medium. It is shown that the finite conductivity has destabilizing influence on the transverse wave propagation whereas for longitudinal propagation finite conductivity does not affect the Jean's criterion.  相似文献   

16.
Internal gravity waves excited by overshoot at the bottom of the convection zone can be influenced by rotation and by the strong toroidal magnetic field that is likely to be present in the solar tachocline. Using a simple Cartesian model, we show how waves with a vertical component of propagation can be reflected when traveling through a layer containing a horizontal magnetic field with a strength that varies with depth. This interaction can prevent a portion of the downward traveling wave energy flux from reaching the deep solar interior. If a highly reflecting magnetized layer is located some distance below the convection zone base, a duct or wave guide can be set up, wherein vertical propagation is restricted by successive reflections at the upper and lower boundaries. The presence of both upward and downward traveling disturbances inside the duct leads to the existence of a set of horizontally propagating modes that have significantly enhanced amplitudes. We point out that the helical structure of these waves makes them capable of generating an α-effect, and briefly consider the possibility that propagation in a shear of sufficient strength could lead to instability, the result of wave growth due to over-reflection.  相似文献   

17.
We examine the non-radial modes of oscillation, belonging to spherical harmonics of ordersl=1 andl=3, of a gaseous polytrope with a toroidal magnetic field. We find that a toroidal magnetic field increases the growth rate of convective instability for deformations belonging to the spherical harmonicl=1 whereas it decreases the growth rate of convective instability for deformations belonging to the harmonicsl=2 andl=3. The frequencies of the ‘acoustic’ mode and the ‘Kelvin’ mode are decreased by the presence of the toroidal magnetic field.  相似文献   

18.
The effect of a magnetic field on the nonlinear capillary instability of a fluid jet is examined using the method of multiple scales. It is a well-known result that a sufficiently strong magnetic field can, in the limit of zero viscosity and resistivity, completely suppress the linear capillary instability. It turns out that while the nonlinear (modulational) instability cannot be completely suppressed, the presence of a magnetic field does greatly increase the range of stable wave numbers.  相似文献   

19.
The oscillations and stability of a homogeneous self-gravitating rotating cylinder in a toroidal magnetic field are investigated. It is assumed that the field is proportional to the distance to the axis of the cylinder. We show the existence of four infinite discreta spectra of magnetic (or rotational) modes. Rotation stabilizes the magneticm=1 instability. The magnetic field decreases the growth rate of rotational instability and reduces the interval of unstable wavenumbers. Ifm=1, instability always occurs with the exception of the equipartition state. Ifm>1, the instability can be suppressed by a sufficiently large magnetic field. Resistivity decreases the growth rate of magnetic instability, but increases the growth rate of rotational instability. For zero wavenumber perturbations secular instability occurs due to the action of resistivity before a neutral point is attained where a second secular instabiliity initiates due to the action of resistivity.  相似文献   

20.
We propose a scenario to explain the observed phenomenon of double maxima of sunspot cycles, including the generation of a magnetic field near the bottom of the solar convection zone (SCZ) and the subsequent rise of the field from the deep layers to the surface in the royal zone. Five processes are involved in the restructuring of the magnetic field: the Ω-effect, magnetic buoyancy, macroscopic turbulent diamagnetism, rotary ?ρ-effect, and meridional circulation. It is found that the restructuring of magnetism develops differently in high-latitude and equatorial domains of the SCZ. A key role in the proposed mechanism of the double maxima is played by two waves of toroidal fields from the lower base of the SCZ to the solar surface in the equatorial domain. The deep toroidal fields are excited by the Ω-effect near the tachocline at the beginning of the cycle. Then these fields are transported to the surface due to the combined effect of magnetic buoyancy, macroscopic turbulent diamagnetism, and the rotary magnetic ?ρ-flux in the equatorial domain. After a while, these magnetic fragments can be observed as bipolar sunspot groups at the middle latitudes in the royal zone. This first, upward-directed wave of toroidal fields produces the main maximum of sunspot activity. However, the underlying toroidal fields in the high-latitude polar domains are blocked at the beginning of the cycle near the SCZ bottom by two antibuoyancy effects — the downward turbulent diamagnetic transfer and the magnetic ?ρ-pumping. In approximately 1 or 2 years, a deep equatorward meridional flow transfers these fields to low-latitude parts of the equatorial domain (where there are favorable conditions for magnetic buoyancy), and the belated magnetic fields (the second wave of toroidal fields) rise to the surface. When this second batch of toroidal fields comes to the solar surface at low latitudes, it leads to the second sunspot maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号