首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broadband seismic data collected on Ruapehu volcano, New Zealand, in 1994 and 1998 show that the 1995-1996 eruptions of Ruapehu resulted in a significant change in the frequency content of tremor and volcanic earthquakes at the volcano. The pre-eruption volcanic seismicity was characterized by several independent dominant frequencies, with a 2 Hz spectral peak dominating the strongest tremor and volcanic earthquakes and higher frequencies forming the background signal. The post-eruption volcanic seismicity was dominated by a 0.8-1.4 Hz spectral peak not seen before the eruptions. The 2 Hz and higher frequency signals remained, but were subordinate to the 0.8-1.4 Hz energy. That the dominant frequencies of volcanic tremor and volcanic earthquakes were identical during the individual time periods prior to and following the 1995-1996 eruptions suggests that during each of these time periods the volcanic tremor and earthquakes were generated by the same source process. The overall change in the frequency content, which occurred during the 1995-1996 eruptions and remains as of the time of the writing of this paper, most likely resulted from changes in the volcanic plumbing system and has significant implications for forecasting and real-time assessment of future eruptive activity at Ruapehu.  相似文献   

2.
The concept of a time-depth correlation between tectonic earthquakes at depth beneath some volcanoes, and their eruptions, developed by the author since 1962, has been confirmed by new observations and successful prediction of renewed volcanic activity in New Zealand.Regular earthquake migrations are observed along the Benioff zone, and volcanic eruptions are found to be related to these seismic migrations beneath the volcanoes, as follows:
Therefore, in island arcs and continental margins, volcanic activity is the result of two processes occurring beneath the volcanoes: (1) a “tectonic process”, a migration of strain release along the downgoing lithosphere, of which the earthquakes are the manifestation; (2) a “magmatic process”, a relatively fast vertical ascent of magmatic material from the deep root of the volcano, where the observed shocks may be the starting signal from this level.The rate of migration of tectonic earthquakes increases with depth in the upper mantle.An empirical time relationship between the earthquakes occurring at depth beneath a volcano and its eruptions, has been successfully tested for renewed activity at White Island in New Zealand, over the period 1977–1978.  相似文献   

3.
The digitising system installed at the Chateau Observatory, in the North Island of New Zealand, to monitor Ruapehu and Ngauruhoe volcanoes is used to digitise the seismic records from three seismometers, and to calculate the power spectra of volcanic tremor in real-time, with the smoothed power spectra being recorded every 5 minutes on magnetic disk. The 5-minute averages are later processed to remove the effects of earthquakes and interference before hourly averages are calculated. This system has a better dynamic range than visual chart records, and analysis of the data requires much less labour.  相似文献   

4.
Many earthquakes within the crust near Ruapehu and Ngauruhoe volcanoes, recorded at epicentral distances less than 20 km on vertical seismometers, show S-waves of lower dominant frequency than the P-waves. A large number also have amplitudes in the S-group less than those of the P-waves. Whereas the reduced amplitude of S-waves relative to that of P-waves can be a source mechanism effect, the corresponding reduction in dominant frequency should be independent of the source radiation pattern. The most plausible reason for such a reduction in dominant S-wave frequency is that the waves have passed through a zone of partially molten rock. The data are therefore interpreted in terms of the presence of magma in restricted zones near the volcanoes.Using ray paths from 232 hypocentres to three permanent seismograph stations, together with paths from three additional earthquakes to one permanent and two temporary stations, an interpretation in three dimensions has been made of the source of the anomalous attenuation at depths between 2 and 10 km below datum (Ruapehu Crater Lake). Wave paths which lie largely at depths shallower than 2 km cannot be used, as almost all such paths show evidence of enhanced S-wave attenuation, and this is attributed to the presence of superficial pyroclastic and unconsolidated laharic material within 2 km of the surface.At Ruapehu, the data suggest the presence of three principal intrusions, one underlying much of the southwest slopes and reaching as far east as Crater Lake, one beneath the eastern side of the Summit Plateau, and one beneath part of the northeast slopes of the volcano. All three are essentially vertical or steeply dipping structures, detectable to a depth of between 7 and 9 km. The first appears to extend to within about 5 km of the surface, whereas the other two have intruded to within 2 or 3 km. Other, less well-defined, and comparatively small bodies exist beneath both the western and eastern slopes of Ruapehu.In the Ngauruhoe area, few earthquakes have occurred and all have been at depths less than 6 km. Therefore, only shallow attenuating areas can be defined. A small area of anomalous S-wave attenuation occurs beneath the northwest slopes of Ngauruhoe, and another, elongated, body appears to coincide with a fault zone west of the volcano. Both of these lie at depths of about 3 km below datum (less than 2 km below surface in one locality).Finally, areas of high attenuation, at depths of 4–5 km below datum, appear to define a narrow east-west zone about 6 km long in the immediate area of Whakapapa village. Other zones exist east of the volcanic axis, defining a line which cuts the axis on the north east slopes of Ruapehu, at a point where a parasite crater formed a few thousand years ago.  相似文献   

5.
The most common volcanic tremor produced by Ruapehu is a continuous signal with a dominant frequency of about 2 Hz. This signal has a sharply peaked spectrum, and an autocorrelation function with a high degree of coherence, even for lags of over 20 seconds. These characteristics strongly suggest that the cause of this tremor is a single resonator, probably a fluid-filled cavity resonating in an “organ-pipe” mode.The stochastic simulation of such a resonator uses the equation of motion of a Simple Harmonic Oscillator, which applies to an “organ-pipe” fundamental resonance, with either the characteristics of the oscillator, or the forcing function, containing a random element. A “white noise” forcing function, which would be appropriate for excitation of the cavity by a high pressure gas input, gave good agreement with the observed spectra and autocorrelation functions. Another possible model used an oscillator with a damping factor which varied randomly, and was sometimes negative, so oscillations built up, rather than decayed. This also gave a reasonable simulation of Ruapehu tremor.The third excitation model used a Poisson process, in which during each time interval there was a certain probability of applying a fixed impulse to the resonator. It was found that the impulses had to be frequent, i.e. several times a second, to match the characteristics of Ruapehu tremor.It has been suggested that tremor is composed of a succession of low-frequency (“B-type”) earthquakes. The results of this simulation show that at Ruapehu tremor could be produced by a resonator with positive feedback just sustaining oscillation, or by a resonator excited by external impulses. The most promising model for low-frequency earthquakes describes them as the result of a major external disturbance of the resonator.  相似文献   

6.
Mount Erebus (3794 m), located on Ross Island in McMurdo Sound, is one of the few active volcanoes in Antartica. A high-sensitivity seismic network has been operated by Japanese and US parties on and around the Volcano since December, 1980. The results of these observations show two kinds of seismic activity on Ross Island: activity concentrated near the summit of Mount Erebus associated with Strombolian eruptions, and micro-earthquake activity spread through Mount Erebus and the surrounding area.Seismicity on Mount Erebus has been quite high, usually exceeding 20 volcanic earthquakes per day. They frequently occur in swarms with daily counts exceeding 100 events.Sixteen earthquake swarms with more than 250 events per day were recorded by the seismic network during the three year period 1982–1984, and three notable earthquake swarms out of the sixteen were recognized, in October, 1982 (named 82-C), March–April, 1984 (84-B) and July, 1984 (84-F).Swarms 84-B and 84-F have a large total number of earthquakes and large Ishimoto-Iida's “m”; hence these two swarms are presumed to constitute on one of the precursor phenomena to the new eruption, which took place on 13 September, 1984, and lasted a few months.  相似文献   

7.
Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day withb value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and withb values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (α=3.0±0.2 km/sec.).  相似文献   

8.
 Virtually all the seismicity within Ruapehu Volcano recorded during a 2-month deployment in early 1994, with 14 broadband seismographs around the Tongariro National Park volcanoes in the North Island of New Zealand, was associated with the active vent and occurred within approximately 1 km of Ruapehu Crater Lake. High-frequency volcano-tectonic earthquakes and low-frequency events (similar to bursts of 2 Hz volcanic tremor) were both found to have sources in this region. The high-frequency events, which often consisted of a smaller precursor event followed approximately 2 s later by the main event, had sharp onsets and were locatable using standard techniques. The depth of these events ranged from the surface down to approximately 1500 m below Crater Lake. The low-frequency events did not have sharp onsets and were located by phase-correlation methods. Nearly all occurred under a small region on the east side of Crater Lake, at depths from 200 to 1000 m below the surface. This low-frequency earthquake source region, in which no high-frequency events occurred, may be the steam zone within the actual vent of Ruapehu Volcano. Received: 30 June 1996 / Accepted: 16 February 1998  相似文献   

9.
In thirteen years (1973–1986) of seismic monitoring of Pavlof Volcano, 488 episodes of volcanic tremor have been recorded, only 26 of which have been previously described in the literature. This paper tabulates and describes all the tremor episodes and reports on the results of all analyses to date. Pavlof tremor durations range from 2 minutes to greater than 1 week; episodes accompanying magmatic eruptions have durations greater than 1 hour, and sustained amplitudes of greater than 6 mmP-P (=54 nanometers at 1.5 Hz) on station PVV, 8.5 km from the vent. Digital data provide much better amplitude resolution than helicorders do. Helicorders, however, provide continuous coverage, whereas digital data are intermittent. Correlations of tremor with visual eruption observations shows that tremor amplitudes are roughly correlated with heights of lava fountains, but the correlation of tremor amplitudes with plume heights is more problematic. Fast Fourier Transform (FFT) spectra show that Pavlof tremor is quite statinary for the entire time period, 1973–1983. All principal spectral peaks lie between 0.8 and 3.0 Hz, and may be caused by resonance of magma and gas, and resonance of the volcanic pile. Preliminary analysis of 2-and 3-component data shows thatP, S, PL, and Rayleigh waves may be present in Pavlof volcanic tremor. Other waveforms can be misidentified as tremor, most commonly those caused by storms orS-waves of regional earthquakes. A strategy is proposed to distinguish tremor from noise using automatic seismic data acquisition and analysis systems. Pavlof's volcanic tremor is briefly compared with a preliminary sample of over 1100 cases of tremor from 84 volcanoes worldwide. Finally, several recommendations for monitoring and reporting volcanic tremor are discussed.  相似文献   

10.
Some months prior to the 1995 eruption of Mt Ruapehu (New Zealand), a series of shallow earthquake swarms occurred about 15–20 km west of the summit of Ruapehu. Several earthquakes in these swarms were felt, and the largest event was ML 4.8. Crustal earthquakes of ML≥3.0 within 20 km of the summit of Ruapehu have been rather uncommon in recent years. Furthermore, the two periods of strongest activity were both just before times when the temperature of Crater Lake showed rapid increases. The second of these rapid heating phases was immediately followed by increases in the Mg2+ ion concentration in Crater Lake, indicating that chemical interactions were occurring between fresh magmatic material and the lake water. The coincidence between seismicity and lake changes suggested a link with the following eruption. A 1-D simultaneous inversion to locate the earthquakes more accurately showed that most of the earthquakes fell into three spatial clusters, each cluster having a small horizontal cross-section. The predominant depth was about 10–16 km. The b-value of this swarm was 0.74, quite compatible with ordinary tectonic earthquakes. Each cluster of earthquakes lies close to the normal Raurimu Fault which runs predominantly north–south to the west of Ruapehu, with an east-trending branch splaying off near its northern end (see Fig. 1b). Composite focal mechanisms of events in the two more southern clusters are oblique-normal, while the other cluster to the north has an oblique-reverse mechanism. The two oblique-normal mechanisms suggest that extension has occurred on part of the fault. This stress pattern was also observed in the focal mechanism solutions of events that occurred after the eruption, when a denser network of portable seismographs covered the region. Although we cannot definitely connect the occurrence of these swarms to the eruptions later in 1995, there is a strong suggestion that the seismicity was connected to the process of magma movement, which temperature and chemical changes in Crater Lake suggest was occurring during the first half of 1995.  相似文献   

11.
Pavlof Volcano (55° 25′N, 161° 54′W) exhibits two eruption styles: magmatic eruptions of one-to-two-days duration, and phreatic-phreatomagmatic activity lasting several days to two months. Thirty-four eruptions have occurred in historic times; of these the largest are Volcano Explosivity Index=3. Nine magmatic and 13 phreatomagmatic eruptions occurred between 1973–1983. All the magmatic eruptions occurred in the fall, between Sept. 9–Nov. 20. Four magmatic eruptions occurred during November 11–15, but in four different years. A 3-year-long period of eruptive activity between 1973–1976 bears striking resemblance to a period of activity between 1980–1983. No locatable shallow earthquakes (<50 km) have occurred within 30 km of Pavlof since 1973, which is quite unusual for an active island-arc volcano. Shallow events in the adjacent are segments have focal mechanisms with P-axes perpendicular to the arc (and parallel to plate convergence). Deep earthquakes (> 100 km) are clustered beneath Pavlof and several other volcanoes. Their T-axes show downdip tension within the slab. Deep teleseisms (> 160 km) mostly occurred between 1977–1979 when the volcano was not erupting. Catalogued volcanic activity throughout the Alaska/Aleutian arc shows a weak tendency to increase around the time of great (M > 7.8) earthquakes.  相似文献   

12.
A quasi-stationary magma flow rate in asthenospheric and crustal conduits of central type volcanoes and volcanic centres was studied analytically under the following conditions. Magma rises through cylindrical channels in which the magma temperature does not change with time, but the wall rocks are gradually heated. The magma rates were calculated for basaltic, andesitic and dacitic volcanoes using the “continental” and “oceanic” geotherms. It follows from these calculations that the magma supply rate may determine the kind of activity of a volcanic centre, being constant for large and very active volcanoes, intermittent for usual volcanic centres of island arcs or sporadic for volcamic fields, clusters of cinder cones and areal volcanism. Theoretical conclusions are consistent with observational data.  相似文献   

13.
The contribution of volcanic material to the stratosphere from major eruptions within the last two centuries has been estimated using volcanological criteria, including eruption type, eruption column height, volume and duration of eruption, and composition and degree of fragmentation of magma. The chronology of major explosive volcanic eruptions is compared with a record of mean surface-temperature deviation (ΔT) for the same interval constructed from all available temperature data. The temperature records are divided into 6 latitudinal zones, allowing analysis for individual zones where temperature changes induced by aerosol perturbation might be intensified.We focus on the explosive volcanic events which by our estimates injected the most material into the stratosphere. These include Tambora 1815, Krakatau 1883, Santa Maria 1902, Katmai 1912 and Quizapu 1932. Such eruptions appear to have produced a consistent but small temperature decrease on the order of 0.2° to 0.5°C on a hemispheric scale for periods ranging from one to five years, although these changes are similar to background temperature variations. The maximum change in ΔT after some of these explosions appears to lag by up to three years in going from equatorial to polar latitudes.Somewhat smaller eruptions, e.g. Agung 1963 and possibly Cosiguina 1835, seem to have produced about the same perturbation in ΔT as the larger eruptions. This suggests either a limiting mechanism on loading of the aerosol layer after a volcanic eruption or, that the composition of injected material (i.e., the ratio of silicate “dust” to volatiles, and composition of the volatiles) may significantly effect stratospheric optical depth perturbation. Temperatures do not remain depressed for a longer period after a series of closely timed eruptions (e.g., the 1881–1889 or the 1902–1903 sequences) than after single events.  相似文献   

14.
Two types of continuously recording tiltmeter and a new “integrating seismometer” were tested on Etna during the period September to December 1976. The primary object was the investigation of techniques for the surveillance and prediction of volcanic activity, but some information on the internal structure and mechanism of Etna was also obtained. It was concluded that a network of tiltmeters combined with seismic monitoring (using standard and/or integrating seismometers) offers the best dual approach to the problem of determining the true state of dormant volcanoes, and predicting the date and site of possible future eruptions.  相似文献   

15.
The classification of earthquakes at White Island volcano, New Zealand, has been revised to address problems in existing classification schemes, to better reflect new data and to try to focus more on source processes. Seismicity generated by the direct involvement of magmatic or hydrothermal fluids are referred to as volcanic, and that generated by fault movement in response to stresses caused by those fluids, regional stresses, thermal effects and so on are referred to as volcano-tectonic. Spasmodic bursts form a separate category, as we have insufficient information to classify them as volcanic or volcano-tectonic. Volcanic seismicity is divided into short-duration, long-period volcanic earthquakes, long-duration volcanic earthquakes, and harmonic- and non-harmonic volcanic tremor, while volcano-tectonic seismicity is divided into shallow and deep volcano-tectonic earthquakes. Harmonic volcanic tremor is related to sub-surface intrusive processes, while non-harmonic volcanic tremor originates close to active craters at shallow depth, and usually occurs during eruptive activity. Short-duration, long-period volcanic earthquakes come from a single source close to the active craters, but originate deeper than non-harmonic volcanic tremor, and are not related to eruptive activity. Long-duration volcanic earthquakes often accompany larger discrete eruptions. The waveform of these events consists of an initial low-frequency part from a deep source, and a later cigar-shaped part of mixed frequencies from a shallow crater source.  相似文献   

16.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

17.
Seismic and eruptive activities that occurred at Etna volcano during the decade 1978–1987 have been analyzed statistically. The seismic activity consists of about 7500 events. This catalog has been found complete above the magnitude threshold 2.8. On the basis of the complete catalog (1458 earthquakes), the clustering features of seismicity have been investigated. The hypothesis of a Simple Poisson process is rejected. Applying a Generalized Poisson process of the Shlien and Toksoz (1970) type, the “E” parameter of cluster size appears to be strongly dependent on the chosen time interval. The application of Gasperini and Mulargia (1989) algorithm for identifying the single earthquake sequences indicates that the whole period is composed of only three sequences. Etnean seismicity appears therefore characterized by a “diffuse” low-magnitude (less than about 3.0) earthquake occurrence. From the volcanological point of view, two time series of eruptions (flank and flank + summit) have been analyzed in order to identify different regimes in both magma output and inter-event time. No change-points are apparent in the magma output series, while both inter-event time series of flank and flank + summit eruptions are characterized by one change-point each. No evident relation between the series of eruptions and the identified earthquake sequences is apparent.  相似文献   

18.
Perceptions of hazard and risk on Santorini   总被引:1,自引:0,他引:1  
Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged >50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no “emergency plan” for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.  相似文献   

19.
A review is presented of the effects influencing the ionosphere which are caused by acoustic emission from different sources (chemical and nuclear explosions, bolides, meteorites, earthquakes, volcanic eruptions, hurricanes, launches of spacecrafts and flights of supersonic jets). A terse statement is given of the basic theoretical principles and simplified theoretical models underlying the physics of propagation of infrasonic pulses and gravity waves in the upper atmosphere. The observations of “quick” response by the ionosphere are pointed out. The problem of magnetic disturbances and magnetohydrodynamic (MHD) wave generation in the ionosphere is investigated. In particular, the supersonic propagation of ionospheric disturbances, and the conversion of the acoustic energy into the so-called gyrotropic waves in the ionospheric E-layer are considered.  相似文献   

20.
A new method is outlined for estimating the annual injection of volcanic acids (mainly sulphuric) into the upper troposphere and the stratosphere. The potentiality of the method is demonstrated by data on a number of historically well-known eruptions. Analyses of annual layers in a mid-Greenland ice core reveal a continuous year-by-year record of the volcanic activity north of 20°S back to A.D. 553. Comparison with various climatic records suggests that periods of frequent and violent eruptions usually coincide with cold climatic conditions. For example, the highest volcanic activities since A.D. 553 occurred in A.D. 1250–1500 and A.D. 1550–1700, i.e. in the initial and the culminating phases of “the Little Ice Age”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号