首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
归纳总结2017年度全球81座活火山的活动情况,共计活动1058座次,平均每周记录20座活火山的活动信息。根据火山潜在喷发的危险性和火山活动的强弱程度对上述火山进行分级描述,火山活动主要反映了地球表层的构造活动,其中大角度俯冲带的弧后火山最为强烈,小角度的俯冲带、拉张裂谷和走滑为主的板块边界火山活动较为平静,火山活动频繁的印度尼西亚岛链是受灾最为严重的区域。预计全球火山活动将进一步加剧,印尼岛链受火山灾害威胁的程度依然较大。位于印尼岛链巴厘岛上的阿贡火山自2017年9月开始活动以来,整个喷发过程极具代表性,监测阿贡火山喷发过程可为全球典型火山喷发事件研究提供参考。  相似文献   

2.
长白山天池火山减灾对策初探   总被引:7,自引:0,他引:7  
国内外专家学者认为,长白山天池火山是一座具潜在灾害性喷发危险的活火山,因此制定火山减灾对策理应提到议事日程。针对天池火山研究现状和火山灾害特点,制定了火山活动各阶段的减灾对策。中长期阶段应加强火山监测与研究和火山知识宣传工作,采取必要的工程防护措施,重大工程进行火山安全性评价,制定火山喷发应急预案;短期阶段请求国际火山流动监测台网给予支援;临近喷发阶段重点是有组织的撤离;喷发及其后阶段应及时救灾抢险,对火山喷发趋势进行科学判定,合理地重建家园。  相似文献   

3.
2010年3月开始的冰岛埃亚菲亚德拉火山喷发,火山灰肆虐欧洲,迫使很多机场关闭,航班取消,对世界的空中交通造成了极大的影响。本文分析了冰岛埃亚火山的喷发机制和灾害效应,回顾了近些年来我国在活动火山监测与研究领域取得的进展和存在的不足,强调了迅速加大我国火山监测与研究工作力度的重要性。  相似文献   

4.
Starting from the 1980's of last century, China has launched the national plan of constructing nuclear power plants along the coastline region in eastern China. Currently, in some of these candidate sites, nuclear facilities have been installed and are in operation, but some other nuclear power plants are still under construction or in site evaluation. In 2012 the Atomic Energy Commission issued the specific guide for volcanic hazards in site evaluation for nuclear installations(IAEA Safety Standards Series No. SSG-21), which was prepared under the IAEA's program for safety standards. It supplements and provides recommendations for meeting the requirements for nuclear installations established in the safety requirements publication on site evaluation for nuclear installations in relation to volcanic hazards. To satisfy the safety standards for volcanic hazard, we follow the IAEA SSG-21 guidelines and develop a simple and practical diffusion program in order to evaluate the potential volcanic hazard caused by tephra fallout from the explosive eruptions. In this practice, we carried out a case study of the active volcanoes in north Hainan Province so as to conduct the probabilistic analysis of the potential volcanic hazard in the surrounding region. The Quaternary volcanism in north Hainan Island, so-called Qiongbei volcanic field is characterized by multi periodic activity, in which the most recent eruption is dated at about 4 000a BP. According to IAEA SSG-21, a capable volcano is one for which both 1)a future eruption or related volcanic event is credible; and 2)such an event has the potential to produce phenomena that may affect a site. Therefore, the Qiongbei volcanic field is capable of producing hazardous phenomena that may reach the potential nuclear power plants around. The input parameters for the simulation of tephra fallout from the future eruption of the Qiongbei volcanic field, such as the size, density and shape of the tephra, the bulk volume and column height, the diffusion parameter P(z), wind direction and intensity, were obtained by field investigation and laboratory analysis. We carried out more than 10000 tephra fallout simulations using a statistical dataset of wind profiles which are obtained from China Meteorological Data Sharing Service System(CMDSSS). Tephra fallout hazard probability maps were constructed for tephra thickness threshold of 1cm. Our results show that the tephra produced by the future large-scale explosive eruption from the Qiongbei volcanic field can affect the area in a range about 250km away from the eruption center. In summary, the current key technical parameters related to volcanic activity and potential hazards in IAEA/SSG-21 guidelines, such as 10Ma volcanic life cycle and 1×10-7 volcanic disaster screening probability threshold, etc. are based on the volcanic activity characteristics in the volcanic island arc system. In consideration of the relatively low level of volcanic activity compared with volcanic island arc system due to the different tectonic background of volcanism in mainland China, the time scale of volcanic disaster assessment in IAEA SSG-21 guideline is relatively high for volcanoes in mainland China. We suggest that the study of "conceptual model" of volcanic activity should be strengthened in future work to prove that there is no credible potential for future eruptions, so that these volcanoes should be screened out at early stage instead of further evaluation by probabilistic model.  相似文献   

5.
Soil gas investigation is a useful tool to detect active faults. The sudden appearance of soil gas anomalies in zones of deep-reaching faults represents a promising potential precursor of earthquakes and volcanic eruptions. In volcanic areas the development of soil gas monitoring techniques is particularly important, as they can represent, together with remote sensing techniques, the only geochemical methods that can be safely applied during volcanic unrest, when it becomes impossible or too dangerous to sample crater fumaroles. A soil gas survey was carried out in June 1993 at the main island of Thera, in the Santorini volcanic complex. CO2 flux and CO2 and helium concentrations were measured at 50 cm depth for 76 points covering the entire island, with a spacing of 500 m or less. Several anomalous soil degassing sites have been detected. The main anomalies correspond to the Kolumbos line and to the Kameni line, two volcano-tectonic fault systems that controlled all the historic volcanic activity of Santorini. A third anomaly is related to a gas-leaking fault cutting the geothermal field of southern Thera. Soil gas data, together with geovolcanological and seismological evidence, indicate that the Kolumbos and Kameni lines are the most probable sites for future volcanic or seismic reactivation, and provide the basis for the establishment of a new geochemical monitoring technique at Thera.  相似文献   

6.
In a companion paper, a methodology for ranking volcanic hazards and events in terms of risk was presented, and the likelihood and extent of potential hazards in the Auckland Region, New Zealand investigated. In this paper, the effects of each hazard are considered and the risk ranking completed. Values for effect are proportions of total loss and, as with likelihood and extent, are based on order of magnitude.Two outcomes were considered – building damage and loss of human life. In terms of building damage, tephra produces the highest risk by an order of magnitude, followed by lava flows and base surge. For loss of human life, risk from base surge is highest. The risks from pyroclastic flows and tsunami are an order of magnitude smaller. When combined, tephra fall followed by base surge produces the highest risk. The risks from lava flows and pyroclastic flows are an order of magnitude smaller. For building damage, the risk from Mt. Taranaki volcano, 280 km from the Auckland CBD, is largest, followed by Okataina volcanic centre, an Auckland volcanic field eruption centred on land, then Tongariro volcanic centre. In terms of human loss, the greatest risk is from an Auckland eruption centred on land. The risks from an Auckland eruption centred in the ocean, Okataina volcanic centre, and Taupo volcano are more than an order of magnitude smaller. When combined, the risk from Mt. Taranaki remains highest, followed by an Auckland eruption centred on land. The next largest risks are from the Okataina and Tongariro volcanic centres, followed by Taupo volcano.Three alternative situations were investigated. As multiple eruptions may occur from the Auckland volcanic field, it was assumed that a local event would involve two eruptions. This increased risk of a local eruption occurring on land so that it was equal to that of an eruption from Mt. Taranaki. It is possible that a future eruption may be of a similar, or larger size, to the previous Rangitoto eruption. Risk was re-calculated for local eruptions based on the extent of hazards from Rangitoto. This increased the risk of lava flow to greater than that of base surge, and the risk from an Auckland land eruption became greatest. The relative probabilities used for Mt. Taranaki volcano and the Auckland volcanic field may only be minimum values. When the probability of these occurring was increased by 50%, there was no change in either ranking.Editorial responsibility: J. S. Gilbert  相似文献   

7.
国外火山减灾研究进展   总被引:4,自引:1,他引:3  
徐光宇  皇甫岗 《地震研究》1998,21(4):397-405
概述了国外近期火山灾害减轻进展,内容包括:火山灾害分类,识别高危险性火山,灾害识别、评价和分带,火山监测和喷发预测。减轻火山灾害的工程措施以有火山应急管理等方面。并对几次重大火山喷发灾难实例作了介绍和分析比较  相似文献   

8.
The concept of a time-depth correlation between tectonic earthquakes at depth beneath some volcanoes, and their eruptions, developed by the author since 1962, has been confirmed by new observations and successful prediction of renewed volcanic activity in New Zealand.Regular earthquake migrations are observed along the Benioff zone, and volcanic eruptions are found to be related to these seismic migrations beneath the volcanoes, as follows:
Therefore, in island arcs and continental margins, volcanic activity is the result of two processes occurring beneath the volcanoes: (1) a “tectonic process”, a migration of strain release along the downgoing lithosphere, of which the earthquakes are the manifestation; (2) a “magmatic process”, a relatively fast vertical ascent of magmatic material from the deep root of the volcano, where the observed shocks may be the starting signal from this level.The rate of migration of tectonic earthquakes increases with depth in the upper mantle.An empirical time relationship between the earthquakes occurring at depth beneath a volcano and its eruptions, has been successfully tested for renewed activity at White Island in New Zealand, over the period 1977–1978.  相似文献   

9.
Disasters from explosive volcanic eruptions are infrequent and experience in emergency planning and mitigation for such events remains limited. The need for urgently developing more robust methods for risk assessment and decision making in volcanic crises has become increasingly apparent as world populations continue to expand in areas of active explosive volcanism. Nowhere is this more challenging than at Vesuvius, Italy, with hundreds of thousands of people living on the flanks of one of the most dangerous volcanoes in the world. We describe how a new paradigm, evidence-based volcanology, has been applied in EXPLORIS to contribute to crisis planning and management for when the volcano enters its next state of unrest, as well as in long-term land-use planning. The analytical approach we adopted enumerates and quantifies all the processes and effects of the eruptive hazards of the volcano known to influence risk, a scientific challenge that combines field data on the vulnerability of the built environment and humans in past volcanic disasters with theoretical research on the state of the volcano, and including evidence from the field on previous eruptions as well as numerical simulation modelling of eruptive processes. Formal probabilistic reasoning under uncertainty and a decision analysis approach have provided the basis for the development of an event tree for a future range of eruption types with probability paths and hypothetical casualty outcomes for risk assessment. The most likely future eruption scenarios for emergency planning were derived from the event tree and elaborated upon from the geological and historical record. Modelling the impacts in these scenarios and quantifying the consequences for the circumvesuvian area provide realistic assessments for disaster planning and for showing the potential risk–benefit of mitigation measures, the main one being timely evacuation, but include for consideration protecting buildings against dilute, low dynamic pressure surges, and temporary roof supports in the most vulnerable buildings, as well as hardening infrastructure and lifelines. This innovative work suggests that risk-based methods could have an important role in crisis management at cities on volcanoes and small volcanic islands.  相似文献   

10.
A quasi-stationary magma flow rate in asthenospheric and crustal conduits of central type volcanoes and volcanic centres was studied analytically under the following conditions. Magma rises through cylindrical channels in which the magma temperature does not change with time, but the wall rocks are gradually heated. The magma rates were calculated for basaltic, andesitic and dacitic volcanoes using the “continental” and “oceanic” geotherms. It follows from these calculations that the magma supply rate may determine the kind of activity of a volcanic centre, being constant for large and very active volcanoes, intermittent for usual volcanic centres of island arcs or sporadic for volcamic fields, clusters of cinder cones and areal volcanism. Theoretical conclusions are consistent with observational data.  相似文献   

11.
通过对2016年全球活动火山监测信息的统计,2016年共有96座火山记录到喷发活动,主要分布在环太平洋俯冲带及印度板块与欧亚板块碰撞边界上。火山预警等级共有4个,可以标识火山的危险程度,本文根据火山每个预警等级在全年52次监测信息报道中的出现次数,将96座活动火山按危险程度划为4类,并对每类的火山活动作出了详细描述。2016年的火山喷发也造成了人员伤亡和财产损失,印度尼西亚是受火山灾害影响最严重的国家。此外,根据火山灰柱海拔高度的整理及近年活动火山数量的调查,推测2016年的火山活动仅会使火山附近区域的天气受到影响,应不会引起全球性的气候异常。   相似文献   

12.
LI Yu-che 《地震地质》2017,39(5):1079-1089
The historical document record is of vital significance to determine the volcanic eruption history age in the volcanology research and it cannot be replaced by 14C dating and other methods. The volcanoes are widely distributed in the northeast area of China, but there is lack of relevant historical records. However, there are the records of the volcanic eruption in the historical documents of Goryeo Dynasty(AD918-1392)and Joseon Dynasty(AD1391-1910)in the Korean Peninsula which is separated by a river with China only. Some of the records have been widely used as important information to the research of Changbaishan Tianchi volcano eruption history by researchers both at home and abroad, but they have different opinions. On the basis of the historical documents in the Korean Peninsula, that is, the History of Goryeo Dynasty and the Annals of the Joseon Dynasty so on, the phenomena of volcanic eruptions, including the intuitive eruptive events and the doubtful volcanic eruption phenomenon such as "the ash fall", "the white hair fall", "the sky fire", "the dust fall" are investigated and put in order systematically in this paper. The results are as follows:1)The intuitive eruptive events are the 1002AD eruption of Mt. Halla volcano on Jeju Island, Korea Peninsula, and the 1007AD volcanic eruption offshore to the west of Jeju Island, Korea Peninsula, as well as the 1597AD eruption of Mt. Wangtian'e volcano in Changbai County, Jilin Province, China; 2)"The ash fall" is airborne volcanic ash, and those "ash falls" happening in 1265, 1401-1405, 1668, 1673 and 1702AD are possibly the tephra of Changbaishan Tianchi volcano; 3)"The white hair fall" is Pele's hair and it is speculated that the "white hair fall "happening in 1737AD is related to Changbaishan Tianchi volcanic eruption; 4)If regarding "the sky fire" as the volcanic eruption phenomenon, "the sky fire" happening in 1533AD is possibly the Changbaishan volcanic eruption event, and "the sky fire" in 1601-1609AD may be the eruptive event of the Longgang volcano in Jilin Province, China or Changbaishan Tianchi volcano; 5)"The dust fall" is recorded in many historical documents. However, "the dust fall" is not the volcanic ash fall but the phenomenon of loess fall. So, it is improper to determine the eruptive events of Changbaishan Tianchi volcano on the basis of "the dust fall".  相似文献   

13.
Cladistics is a systematic method of classification that groups entities on the basis of sharing similar characteristics in the most parsimonious manner. Here cladistics is applied to the classification of volcanoes using a dataset of 59 Quaternary volcanoes and 129 volcanic edifices of the Tohoku region, Northeast Japan. Volcano and edifice characteristics recorded in the database include attributes of volcano size, chemical composition, dominant eruptive products, volcano morphology, dominant landforms, volcano age and eruptive history. Without characteristics related to time the volcanic edifices divide into two groups, with characters related to volcano size, dominant composition and edifice morphology being the most diagnostic. Analysis including time based characteristics yields four groups with a good correlation between these groups and the two groups from the analysis without time for 108 out of 129 volcanic edifices. Thus when characters are slightly changed the volcanoes still form similar groupings. Analysis of the volcanoes both with and without time yields three groups based on compositional, eruptive products and morphological characters. Spatial clusters of volcanic centres have been recognised in the Tohoku region by Tamura et al. (Earth Planet Sci Lett 197:105–106, 2002). The groups identified by cladistic analysis are distributed unevenly between the clusters, indicating a tendency for individual clusters to form similar kinds of volcanoes with distinctive but coherent styles of volcanism. Uneven distribution of volcano types between clusters can be explained by variations in dominant magma compositions through time, which are reflected in eruption products and volcanic landforms. Cladistic analysis can be a useful tool for elucidating dynamic igneous processes that could be applied to other regions and globally. Our exploratory study indicates that cladistics has promise as a method for classifying volcanoes and potentially elucidating dynamic and evolutionary volcanic processes. Cladistics may also have utility in hazards assessment where spatial distributions and robust definitions of a volcano are important, as in locating sensitive facilities such as nuclear reactors and repositories.  相似文献   

14.
Acid rain and ongoing eruptive activity at Rincón de la Vieja volcano in northwestern Costa Rica have created a triangular, deeply eroded “dead zone” west-southwest of the Active Crater. The barren, steep-walled canyons in this area expose one of the best internal stratigraphic profiles of any active or dormant volcano in Costa Rica. Geologic mapping along the southwestern flank of the volcano reveals over 300 m of prehistoric volcanic stratigraphy, dominated by tephra deposits and two-pyroxene andesite lavas. Dense tropical forests and poor access preclude mapping elsewhere on the volcano. In the “dead zone” four stratigraphic groups are distinguished by their relative proportions of lava and tephra. In general, early volcanism was dominated by voluminous lava emissions, with explosive plinian eruptions becoming increasingly more dominant with time. Numerous phreatic eruptions have occurred in historic times, all emanating from the Active Crater. The stratigraphic sequence is capped by the Río Blanco tephra deposit, erupted at approximately 3500 yr B.P. Approximately 0.25 km3 (0.1 km3 DRE) of tephra was deposited in a highly asymmetrical dispersal pattern west-southwest of the source vent, indicating strong prevailing winds from the east and east-northeast at the time of the eruption. Grain-size studies of the deposit reveal that the eruption was subplinian, attaining an estimated column height of 16 km. A qualitative hazards assessment at Rincón de la Vieja indicates that future eruptions are likely to be explosive in style, with the zone of greatest hazard extending several kilometers north from the Active Crater.  相似文献   

15.
We consider the identification and diagnostics of active and potentially active volcanic features (regional zones of cinder cones, fields sheet volcanism, fields of concentrated multivent extrusive volcanism, calderas, and underwater eruption centers in the sea) in the Kuril-Kamchatka island arc and in the Commander Islands link of the Aleutian island arc, as well as the condition of this region as of late 2007. We have identified and examined three periods in the research of active and potentially active volcanic features in the region: the early (1697–1934), the new (1935–1962), and the most recent, still in progress (1963 until today). We provide a new definition of the term “active volcano,” which is scientifically well-grounded, for the first time here. We present modified (compared with those available until now) catalogs of active and potentially active volcanic forms in Kamchatka and the Kuril Islands. For typical multieruption volcanoes now in phase I (the active) and II (the passive) of their evolution, we provide long-term forecasts of the character and parameters of future eruptions and the associated volcanic hazard.  相似文献   

16.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

17.
The Aegean volcanic arc is the result of a lithosphere subduction process during the Quaternary time. Starting from the Soussaki area, from west to east, the arc proceeds through the islands of Egina, Methana, Milos, Santorini, the Columbus Bank, Kos and Nisyros. Volcano-tectonic activities are still pronounced at Santorini and Nisyros in form of seismic activity, craters of hydrothermal explosions, hot fumaroles and thermal springs. A significant number of cold water springs emerge in the vicinity of hot waters on these islands.Chemical and isotopic analyses were applied on water and fumaroles samples collected in different areas of the volcanic arc in order to attempt the assessment of these fluids. Stable isotopes of water and carbon have been used to evaluate the origin of cold and thermal water and CO2.Chemical solute concentrations and isotopic contents of waters show that the fluids emerging in Egina, Soussaki, Methana and Kos areas represent geothermal systems in their waning stage, while the fluids from Milos, Santorini and Nisyros proceed from active geothermal systems.The δ2H–δ18O–Cl? relationships suggest that the parent hydrothermal liquids of Nisyros and Milos are produced through mixing of seawater and Arc-Type Magmatic Water (ATMW), with negligible to nil contribution of local ground waters and with very high participation of the magmatic component, which is close to 70% in both sites. A very high magmatic contribution to the deep geothermal system could occur at Santorini as well, perhaps with a percentage similar to Nisyros and Milos, but it cannot be calculated because of steam condensation heavily affecting the fumarolic fluids of Nea Kameni before the surface discharge.The parent hydrothermal liquid at Methana originates through mixing of local groundwaters, seawater and ATMW, with a magmatic participation close to 19%. All in all, the contribution of ATMW is higher in the central–eastern part of the Aegean volcanic arc than in the western sector. This difference, which is spotted in the variable isotopic composition of the sampled fluids from west to east along the arc, is probably due to several causes, including the tectonic regime, the depth of the deep reservoir below sea level, the age of volcanic activity and in general the geomorphologic state of each island.  相似文献   

18.
Longgang volcano cluster is 150km away from the Tianchi volcano, located in Jingyu and Huinan Counties, Jilin Province, China. It had a long active history and produced hundreds of volcanoes. The latest and largest eruption occurred between 1 500 and 1 600 years ago by Jinlongdingzi(JLDZ)volcano which had several eruptions in the history. This paper discusses the volcanic hazard types, and using the numerical simulations of lava flow obtained with the Volcflow model, proposes the hazard zonation of JLDZ volcano area. JLDZ volcano eruption type is sub-plinian, which produced a great mass of tephra fallout, covering an area of 260km2. The major types of volcanic hazards in JLDZ area are lava flow, tephra fallout and spatter deposits. Volcflow is developed by Kelfoun for the simulation of volcanic flows. The result of Volcflow shows that the flows are on the both sides of the previous lava flows which are low-lying areas now. According to the physical parameters of historical eruption and Volcflow, we propose the preliminary volcanic hazard zonation in JLDZ area. The air fall deposits are the most dangerous product in JLDZ. The highly dangerous region of spatter deposits is limited to a radius of about 2km around the volcano. The high risk area of tephra fallout is between 2km to 9km around the volcano, and between 9km to 14km is the moderate risk area. Out of 14km, it is the low risk area. Lava flow is controlled by topography. From Jinchuan Town to Houhe Village near the volcano is the low-lying area. If the volcano erupts, these areas will be in danger.  相似文献   

19.
Fifty-three major explosive eruptions on Iceland and Jan Mayen island were identified in 0–6-Ma-old sediments of the North Atlantic and Arctic oceans by the age and the chemical composition of silicic tephra. The depositional age of the tephra was estimated using the continuous record in sediment of paleomagnetic reversals for the last 6 Ma and paleoclimatic proxies (δ18O, ice-rafted debris) for the last 1 Ma. Major element and normative compositions of glasses were used to assign the sources of the tephra to the rift and off-rift volcanic zones in Iceland, and to the Jan Mayen volcanic system. The tholeiitic central volcanoes along the Iceland rift zones were steadily active with the longest interruption in activity recorded between 4 and 4.9 Ma. They were the source of at least 26 eruptions of dominant rhyolitic magma composition, including the late Pleistocene explosive eruption of Krafla volcano of the Eastern Rift Zone at about 201 ka. The central volcanoes along the off-rift volcanic zones in Iceland were the source of at least 19 eruptions of dominant alkali rhyolitic composition, with three distinct episodes recorded at 4.6–5.3, 3.5–3.6, and 0–1.8 Ma. The longest and last episode recorded 11 Pleistocene major events including the two explosive eruptions of Tindfjallajökull volcano (Thórsmörk, ca. 54.5 ka) and Katla volcano (Sólheimar, ca. 11.9 ka) of the Southeastern Transgressive Zone. Eight major explosive eruptions from the Jan Mayen volcanic system are recorded in terms of the distinctive grain-size, mineralogy and chemistry of the tephra. The tephra contain K-rich glasses (K2O/SiO2>0.06) ranging from trachytic to alkali rhyolitic composition. Their normative trends (Ab–Q–Or) and their depleted concentrations of Ba, Eu and heavy-REE reflect fractional crystallisation of K-feldspar, biotite and hornblende. In contrast, their enrichment in highly incompatible and water-mobile trace elements such as Rb, Th, Nb and Ta most likely reflect crustal contamination. One late Pleistocene tephra from Jan Mayen was recorded in the marine sequence. Its age, estimated between 617 and 620 ka, and its composition support a common source with the Borga pumice formation at Sør Jan in the south of the island.  相似文献   

20.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号