首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the effect of a supernova (SN) explosion in a very massive binary that is expected to form in a portion of Population III stars with the mass higher than  100 M  . In a Population III binary system, a more massive star can result in the formation of a black hole (BH) and a surrounding accretion disc. Such BH accretion could be a significant source of the cosmic reionization in the early Universe. However, a less massive companion star evolves belatedly and eventually undergoes a SN explosion, so that the accretion disc around a BH might be blown off in a lifetime of companion star. In this paper, we explore the dynamical impact of a SN explosion on an accretion disc around a massive BH, and elucidate whether the BH accretion disc is totally demolished or not. For the purpose, we perform three-dimensional hydrodynamic simulations of a very massive binary system, where we assume a BH of  103 M  that results from a direct collapse of a very massive star and a companion star of  100 M  that undergoes a SN explosion. We calculate the remaining mass of a BH accretion disc as a function of time. As a result, it is found that a significant portion of gas disc can survive through three-dimensional geometrical effects even after the SN explosion of a companion star. Even if the SN explosion energy is higher by two orders of magnitude than the binding energy of gas disc, about a half of disc can be left over. The results imply that the Population III BH accretion disc can be a long-lived luminous source, and therefore could be an important ionizing source in the early Universe.  相似文献   

2.
The UBV light curves of the early-type eclipsing binary V448 Cygni, obtained at the Abastumani Astrophysical Observatory from 1964 to 1967, are re-analysed here. The analysis was made assuming the presence of an accretion disc in the system, as inferred from the light-curve shape and spectroscopic characteristics of the system. The Roche model of a binary was used, containing a geometrically and optically thick accretion disc around the hotter and more massive star. By solving the inverse problem, the orbital elements and the physical parameters of the system components and of the accretion disc were estimated. This result is important for understanding the star formation and evolution processes in the systems with massive components.  相似文献   

3.
We present phase resolved optical spectroscopy and Doppler tomography of V1341 Cygni, the optical counterpart to the neutron star low-mass X-ray binary (LMXB) Cygnus X-2 (Cyg X-2). We derive a radial velocity (RV) curve for the secondary star, finding a projected RV semi-amplitude of   K 2= 79 ± 3 km s−1  , leading to a mass function of  0.51 ± 0.06 M, ∼30  per cent lower than the previous estimate. We tentatively attribute the lower value of K 2 (compared to that obtained by other authors) to variations in the X-ray irradiation of the secondary star at different epochs of observations. The limited phase coverage and/or longer timebase of previous observations may also contribute to the difference in K 2. Our value for the mass function implies a primary mass of  1.5 ± 0.3 M  , somewhat lower than previous dynamical estimates, but consistent with the value found by analysis of type-I X-ray bursts from this system. Our Doppler tomography of the broad He  ii λ4686 line reveals that most of the emission from this line is produced on the irradiated face of the donor star, with little emission from the accretion disc. In contrast, the Doppler tomogram of the N  iii λ4640.64 Bowen blend line shows bright emission from near the gas stream/accretion disc impact region, with fainter emission from the gas stream and secondary star. This is the first LMXB for which the Bowen blend is dominated by emission from the gas stream/accretion disc impact region, without comparable emission from the secondary star. This has implications for the interpretation of Bowen blend Doppler tomograms of other LMXBs for which the ephemeris may not be accurately known.  相似文献   

4.
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of   K R= 198 ± 5 km s−1  . The rotational velocity of the secondary star in V347 Pup is found to be   v sin  i = 131 ± 5 km s−1  and the system inclination is   i = 840 ± 23  . From these parameters we obtain masses of   M 1= 0.63 ± 0.04 M  for the white dwarf primary and   M 2= 0.52 ± 0.06 M  for the M0.5V secondary star, giving a mass ratio of   q = 0.83 ± 0.05  . On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.  相似文献   

5.
We consider the evolution of neutron stars during the X-ray phase of high-mass binaries. Calculations are performed assuming a crustal origin of the magnetic field. A strong wind from the companion can significantly influence the magnetic and spin behaviour of a neutron star even during the main-sequence life of the companion. In the course of evolution, the neutron star passes through four evolutionary phases ('isolated pulsar', propeller, wind accretion, and Roche lobe overflow). The model considered can naturally account for the observed magnetic fields and spin periods of neutron stars, as well as the existence of pulsating and non-pulsating X-ray sources in high-mass binaries. Calculations also predict the existence of a particular sort of high-mass binary with a secondary that fills its Roche lobe and a neutron star that does not accrete the overflowing matter because of fast spin.  相似文献   

6.
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R -band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of  0.05 M  on the secondary mass. For a  1.4 M  primary, this implies that the orbital inclination is low, ≲20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ∼0.085  M  , which implies an upper limit of  ∼2.4 M  for the primary mass.  相似文献   

7.
An asynchronous magnetic white dwarf affects the rate of orbital evolution in AM Herculis binaries. An over-synchronous star leads to a positive orbital magnetic torque which reduces the rate of shrinkage of the secondary star's Roche lobe, and hence reduces the mass transfer rate. An opposing effect occurs as a result of the orbital angular momentum loss via secondary mass transfer in the absence of an accretion disc. The modification of the magnetic braking-driven synchronous mass transfer rate is calculated for a range of degrees of asynchronism, and its effect is compared at different orbital periods.  相似文献   

8.
We have performed high-speed UBV photometric observations on the peculiar binary V Sagittae. Using three new eclipse timings we update the orbital ephemeris and convert it to a dynamical time-scale (TDB). We also searched for quasi-periodic oscillations but did not detect them. Using the Wilson–Devinney algorithm we have modelled the light curve to find the stellar parameters of V Sge. We find that the system is a detached binary but that the primary star is very close to filling its Roche lobe, while the secondary star fills 90 per cent of its Roche lobe volume. We find temperatures of the primary and the secondary star to be T 1=41 000 K and T 2=22 000 K. We find i =72° and masses of 0.8 M and 3.3 M for the primary and secondary stars respectively. De-archived Hubble Space Telescope ( HST ) spectroscopy of V Sge shows evidence of mass loss via a wind or winds. In addition we report radio observations of V Sge during an optical high state at 2 cm, 3.6 cm and 6 cm wavelengths. The 3.6 cm emission is increased by a factor of more than six compared with an earlier detection in a previous optical high state.  相似文献   

9.
We present spectroscopy of the eclipsing recurrent nova U Sco. The radial velocity semi-amplitude of the primary star was found to be     from the motion of the wings of the He  ii λ 4686-Å emission line. By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be     . From these parameters, we obtain a mass of     for the white dwarf primary star and a mass of     for the secondary star. The radius of the secondary is calculated to be     , confirming that it is evolved. The inclination of the system is calculated to be     , consistent with the deep eclipse seen in the light-curves. The helium emission lines are double-peaked, with the blueshifted regions of the disc being eclipsed prior to the redshifted regions, clearly indicating the presence of an accretion disc. The high mass of the white dwarf is consistent with the thermonuclear runaway model of recurrent nova outbursts, and confirms that U Sco is the best Type Ia supernova progenitor currently known. We predict that U Sco is likely to explode within ∼700 000 yr.  相似文献   

10.
We present the first of two papers describing an in-depth study of multiwaveband phase-resolved spectroscopy of the unusual dwarf nova WZ Sge. In this paper we present an extensive set of Doppler maps of WZ Sge covering optical and infrared emission lines, and describe a new technique for studying the accretion discs of cataclysmic variables using ratioed Doppler maps. Applying the ratioed Doppler map technique to our WZ Sge data shows that the radial temperature profile of the disc is unlike that predicted for a steady state α disc. Time-averaged spectra of the accretion disc line flux (with the bright spot contribution removed) show evidence in the shapes of the line profiles for the presence of shear broadening in a quiescent non-turbulent accretion disc. From the positions of the bright spots in the Doppler maps of different lines, we conclude that the bright spot region is elongated along the ballistic stream, and that the density of the outer disc is low. The velocity of the outer edge of the accretion disc measured from the H α line is found to be 723±23 km s−1. Assuming that the accretion disc reaches to the 3:1 tidal resonance radius, we derive a value for the primary star mass of 0.82 M. We discuss the implications of our results on the present theories of WZ Sge type dwarf nova outbursts.  相似文献   

11.
A succession of near-infrared (near-IR) spectroscopic observations, taken nightly throughout an entire cycle of SS 433's orbit, reveal (i) the persistent signature of SS 433's accretion disc, having a rotation speed of  ∼500 km s−1  , (ii) the presence of circumbinary disc recently discovered at optical wavelengths by Blundell, Bowler & Schmidtobreick (2008) and (iii) a much faster outflow than has previously been measured for the disc wind, with a terminal velocity of  ∼1500 km s−1  . The increased wind terminal velocity results in a mass-loss rate of  ∼10−4 M yr−1  . These, together with the newly (upwardly) determined masses for the components of the SS 433 system, result in an accurate diagnosis of the extent to which SS 433 has super-Eddington flows. Our observations imply that the size of the companion star is comparable with the semiminor axis of the orbit which is given by     , where e is the eccentricity. Our relatively spectral resolution at these near-IR wavelengths has enabled us to deconstruct the different components that comprise the Brackett-γ (Brγ) line in this binary system, and their physical origins. With this line being dominated throughout our series of observations by the disc wind, and the accretion disc itself being only a minority (∼15 per cent) contribution, we caution against use of the unresolved Brγ line intensity as an 'accretion signature' in X-ray binaries or microquasars in any quantitative way.  相似文献   

12.
We present ellipsoidal light-curve fits to the quiescent B , V , R and I light curves of GRO J1655–40 (Nova Scorpii 1994). The fits are based on a simple model consisting of a Roche-lobe-filling secondary and an accretion disc around the black hole primary. Unlike previous studies, no assumptions are made concerning the interstellar extinction or the distance to the source; instead these are determined self-consistently from the observed light curves. In order to obtain tighter limits on the model parameters, we used the distance determination from the kinematics of the radio jet as an additional constraint. We obtain a value for the extinction that is lower than was assumed previously; this leads to lower masses for both the black hole and the secondary star of  5.4±0.3  and  1.45±0.35 M  , respectively. The errors in the determination of the model parameters are dominated by systematic errors, in particular arising from uncertainties in the modelling of the disc structure and uncertainties in the atmosphere model for the chemically anomalous secondary in the system. A lower mass of the secondary naturally explains the transient nature of the system if it is in either a late case A or early case B mass-transfer phase.  相似文献   

13.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

14.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

15.
We report new radial velocity observations of V779 Cen, the optical companion to the X-ray pulsar Cen X-3. Two sets of results at two epochs yield very different radial velocity amplitudes. We demonstrate there are problems with the first set, not least that they are incompatible with the observed duration of the X-ray eclipse for all inclination angles. The anomalously high radial velocities are probably a result of changes in the outflow behaviour of the companion star. Although there is no reason to doubt the results from the second epoch when viewed in isolation, given the anomalous radial velocities of the first epoch, they must be treated with caution. Using these data, the semi-amplitude of the resulting radial velocity curve is found to be 24.4±4.1 km s−1. Given the accurately measured semi-amplitude of the orbit of the pulsar, 414.3±0.9 km s−1, the mass ratio of the system is 0.059±0.010. The inclination of the system is found to be 702±27, assuming that the optical component fills its Roche lobe, and that the system is in synchronous rotation. Hence the mass of the neutron star is 1.21±0.21 M, and the mass of the optical companion is 20.5±0.7 M. This is a smaller uncertainty than previously reported values, and is consistent with the canonical neutron star mass of 1.4 M.
In addition, we use our spectra to determine the spectral class of V779 Cen to be O6-7II-III.  相似文献   

16.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   

17.
We have carried out global three‐dimensional magnetohydrodynamic simulations of the star‐disc interaction region around a young solar‐type star. The magnetic field is generated and maintained by dynamos in the star as well as in the disc. The developing mass flows possess non‐periodic time‐variable azimuthal structure and are controlled by the nonaxisymmetric magnetic fields. Since the stellar field drives a strong stellar wind, accretion is anti‐correlated with the stellar field strength and disc matter is spiraling onto the star at low latitudes, both contrary to the generally assumed accretion picture. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We study the effects of winds on the time evolution of isothermal, self-gravitating accretion discs by adopting a radius-dependent mass-loss rate because of the existence of the wind. Our similarity and semi-analytical solution describes time evolution of the system in the slow accretion limit. The disc structure is distinct in the inner and outer parts, irrespective of the existence of the wind. We show that the existence of wind will lead to a reduction of the surface density in the inner and outer parts of the disc in comparison to a no-wind solution. Also, the radial velocity significantly increases in the outer part of the disc, however, the accretion rate decreases due to the reduced surface density in comparison to the no-wind solution. In the inner part of the disc, mass loss due to the wind is negligible according to our solution. But the radial size of this no-wind inner region becomes smaller for stronger winds.  相似文献   

19.
The concept of Roche lobe overflow is fundamental to the theory of interacting binaries. Based on potential theory, it is dependent on all the relevant material corotating in a single frame of reference. Therefore if the mass losing star is asynchronous with the orbital motion or the orbit is eccentric, the simple theory no longer applies and no exact analytical treatment has been found. We use an analytic approximation whose predictions are largely justified by smoothed particle hydrodynamic simulations (SPH). We present SPH simulations of binary systems with the same semi-major axis   a = 5.55 R  , masses   M 1= 1 M, M 2= 2 M  and radius   R 1= 0.89 R  for the primary star but with different eccentricities   e = 0.4, 0.5, 0.6  and 0.7. In each case the secondary star is treated as a point mass. When   e = 0.4  no mass is lost from the primary while at   e = 0.7  catastrophic mass transfer, partly through the L2 point, takes place near periastron. This would probably lead to common-envelope evolution if star 1 were a giant or to coalescence for a main-sequence star. In between, at   e ≥ 0.5  , some mass is lost through the L1 point from the primary close to periastron. However, rather than being all accreted by the secondary, some of the stream appears to leave the system. Our results indicate that the radius of the Roche lobe is similar to circular binaries when calculated for the separation and angular velocity at periastron. Part of the mass loss occurs through the L2 point.  相似文献   

20.
We present spectrophotometry of the eclipsing old nova BT Mon (Nova Mon 1939). By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be K R = 205 ± 5 km s−1 and its rotational velocity to be v  sin  i  = 138 ± 5 km s−1. We also measure the radial velocity semi-amplitude of the primary star to be K R = 170 ± 10 km s−1. From these parameters we obtain a mass of 1.04 ± 0.06 M⊙ for the white dwarf primary star and a mass of 0.87 ⊙ 0.06 M⊙ for the G8 V secondary star. The inclination of the system is found to be 82°.2 ± 32°.2 and we estimate that the system lies at a distance of 1700 ± 300 pc. The high mass of the white dwarf and our finding that BT Mon was probably a fast nova together constitute a new piece of evidence in favour of the thermonuclear runaway model of classical nova outbursts. The emission lines are single-peaked throughout the orbital cycle, showing absorption around phase 0.5, high-velocity S-wave components and large phase offsets in their radial velocity curves. In each of these respects, BT Mon is similar to the SW Sex stars. We also find quasi-periodic flaring in the trailed spectra, which makes BT Mon a candidate intermediate polar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号