首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Major-element analyses (by electron microprobe) and copper contents (by ion-probe) are reported for primary biotite, amphibole, magnetite, pyroxene, ilmenite, sphene and secondary biotite from intrusive rocks from mineralizing and barren stocks. The districts studied include Christmas, Globe-Miami, Sierrita and Tombstone, in Arizona; Bingham and Alta, Utah; Ely, Nevada; and Brenda, British Columbia. Amphiboles from barren rocks are relatively iron-rich and display only minor compositional variation. In contrast, amphiboles from mineralizing rocks span the range from magnesio-hornblende to actinolite, commonly even within one grain. Barren intrusions (type B) that are temporally distinct from mineralizing intrusions, and barren intrusions outside areas of known mineralization have higher Cu contents in their constituent minerals than do mineralizing intrusions. Barren intrusions (type A) that are deep-level temporal equivalents of Cu-bearing porphyritic rocks are depleted in copper. This suggests that copper is abstracted from not only the apical portions of porphyries but from parts of the deeper parent intrusions. The Cu contents of biotites (av. 23 ppm) and magnetites (97 ppm) from barren type B intrusions contrast with those from mineralizing intrusions, with biotites containing 7 ppm Cu and magnetites 3 ppm Cu. Primary amphiboles from all intrusive rock types have low copper contents, typically 2 to 5 ppm. In the continental North American deposits, the amount of copper available by liberation from or non-incorporation into amphibole, biotite and magnetite during magmatic crystallization or the early hydrothermal stage is low, perhaps too low to be the sole source of copper mineralization, unless copper is abstracted from large volumes (∼ 100 km3) of rock. These results contrast with a study of the island-arc porphyry copper at Koloula, Guadalcanal, where it was argued that sufficient copper for mineralization could have been abstracted from relatively small volumes of host rocks that originally contained as much Cu as the contemporaneous barren rock types.  相似文献   

2.
The Miduk porphyry copper deposit is located in Kerman province, 85 km northwest of the Sar Cheshmeh porphyry copper deposit, Iran. The deposit is hosted by Eocene volcanic rocks of andesitic–basaltic composition. The porphyry‐type mineralization is associated with two Miocene calc‐alkaline intrusive phases (P1 and P2, respectively). Five hypogene alteration zones are distinguished at the Miduk deposit, including magnetite‐rich potassic, potassic, potassic–phyllic, phyllic and propylitic. Mineralization occurs as stockwork, dissemination and nine generations (magnetite, quartz–magnetite, barren quartz, quartz‐magnetite‐chalcopyrite‐anhydrite, chalcopyrite–anhydrite, quartz‐chalcopyrite‐anhydrite‐pyrite, quartz‐molybdenite‐anhydrite ± chalcopyrite ± magnetite, pyrite, and quartz‐pyrite‐anhydrite ± sericite) of veinlets and veins. Early stages of mineralization consist of magnetite rich veins in the deepest part of the deposit and the main stage of mineralization contains chalcopyrite, magnetite and anhydrite in the potassic zone. The high intensity of mineralization is associated with P2 porphyry (Miduk porphyry). Based on petrography, mineralogy, alteration halos and geochemistry, the Miduk porphyry copper deposit is similar to those of continental arc setting porphyry copper deposits. The Re‐Os molybdenite dates provide the timing of sulfide mineralization at 12.23 ± 0.07 Ma, coincident with U/Pb zircon ages of the P2 porphyry. This evidence indicates a direct genetic relationship between the Miduk porphyry stock and molybdenite mineralization. The Re‐Os age of the Miduk deposit marks the main stage of magmatism and porphyry copper formation in the Central Iranian volcano‐plutonic belt.  相似文献   

3.
The Beiya gold–polymetallic deposit is one of the largest gold deposits in China and is considered to be a typical porphyry-skarn system located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt. Massive magnetite is widespread in the Beiya ore district but its genesis is still the subject of debate. Five representative magnetite types are present in the Beiya deposit, namely magmatic magnetite (M1) from the ore-related porphyry, disseminated magnetite (M2) from the early retrograde alteration, massive magnetite (M3) from the early quartz-magnetite stage, massive magnetite (M4) from the middle quartz-magnetite stage and magnetite (M5) from the late quartz-magnetite stage. Compared with the M1 magnetite, the magnetites from stages M2 to M5 are depleted in Ti, Al and high field strength elements, implying a hydrothermal origin, distinct from the magmatic accessory magnetite in the ore-related porphyry (M1). The concentrations of cobalt in the hydrothermal magnetites decrease gradually from M2 to M5, and can be used to discriminate the magnetite types. The Al + Mn and Ti + V contents of the successively precipitated magnetite grains (M2–M5) suggests that the ore forming temperature decreased from M2 to M4, but increased from M4 to M5, possibly as the result of a new pulse of magma entering the chamber, which may have triggered the gold mineralization. The V content in the hydrothermal magnetite suggests that the oxygen fugacity increased from M2 to M4 but decreased as soon as the sulfides entered the system (M5).  相似文献   

4.
长江河流沉积物磁铁矿化学组成及其物源示踪   总被引:4,自引:0,他引:4  
运用电子探针分析了长江干流和主要支流河漫滩沉积物中磁铁矿的元素组成.磁铁矿中的FeO平均含量稍高于其标准组成,而Fe2O3平均含量则明显低于标准组成;Ti、Al、Cr、V、Mn、Mg、Co和Zn等元素在磁铁矿中含量变化大,不同支流的磁铁矿的元素组成不同,同一取样点不同样品磁铁矿的元素组成变化也较大.金沙江、湘江、汉江及长江干流磁铁矿与钛磁铁矿、钛尖晶石、钒钛磁铁矿和铬铁矿等出溶交生,TiO2、Cr2O3和V2O3等元素含量高且变化大.金沙江磁铁矿富Mg、Al和Cr;大渡河、雅砻江和岷江磁铁矿中微量元素含量大多低于0.5%;涪江、汉江磁铁矿富Ti和V,而湘江磁铁矿富Ti和Al;总体上,长江干流上游磁铁矿富Ti,而下游磁铁矿中Ti、Al、Cr、V、Mg和Mn含量低于0.15%.干流磁铁矿的元素组成变化反映主要支流源岩组成及对干流影响程度的差异.  相似文献   

5.
地质地球化学对比研究表明,玉龙含矿与非舍矿斑岩是由岩石圈地慢中交代成因的金云母-石榴石单斜辉石岩脉发生不同程度部分熔融而形成的。分矿斑岩是最早阶段熔融体,主要是由交代成因脉中副矿物(如磷灰石和碳酸盐矿物等)和舍水矿物金云母发生部分熔融而形成的,因而富含 F、Cl 和水等挥岌份,加上该阶段岩浆具有高氧化性特征,从而富含 Cu 等成矿元素;非含矿斑岩是交代成固咏相对较高熔融程度的产物,单斜辉石和石榴石介入了熔融作用,岩浆熔体相对贫乏F、Cl 和水等挥发份,加上该阶段岩浆具有较低的 f_(0_2),从而不利于成矿。斑岩体全岩的 F 和 Cl 含量(舍矿斑岩 F>1200 ppm,Cl>150 ppm;非含矿斑岩 F<1200 ppm,Cl<150 ppm)、K_2O/Na_2O(含矿斑岩>1.2,非含矿斑岩<1.2)和 Sm/Yb(含矿斑岩>6.5,非含矿斑岩<6.5)比值以及黑云母中的 Fe~(3 )/Fe~(2 )比值(含矿斑岩>0.7,非舍矿斑岩<0.7)是区分含矿与非含矿斑岩的重要地球化学参数。含矿斑岩与非分矿斑岩具有非常相似的 Sr-Nd-Pb 同位素组成,,表明含矿与非含矿班岩具有相同的源区。  相似文献   

6.
Abstract. Determinations of SO3 and Cl contents of igneous accessory apatite were carried out on Late Cenozoic intermediate to silicic intrusive and volcanic rocks in the Japanese island arcs of the western Pacific rim including the southwestern Kuril arc (eastern Hokkaido), Northeast Japan arc (southwestern Hokkaido through northeastern Honshu to central Honshu), Izu‐Bonin arc, Kyushu‐Palau ridge, Southwest Japan arc (northern Kyushu) and northern Ryukyu arc (southern Kyushu). These were compared to those from the Western Luzon arc, Philippines, to better understand the metallogenesis of porphyry Cu deposits in the western Pacific island arcs. In addition, SO3 and Cl contents of accessory apatite in the Cretaceous magnetite‐series granitic rocks in the Kitakami belt (northeastern Honshu) and the Miocene ilmenite‐series granitic rocks in the Outer Zone of Southwest Japan (southern Kyushu) were also examined. Microphenocrystic apatites in shallow intrusions associated with porphyry Cu deposits in the Western Luzon arc contain >0.1 wt% S as SO3. Such high SO3 contents of microphenocrystic apatite are a common characteristic of hydrous mag‐matism in the Western Luzon arc, from 15 Ma old tonalitic plutonic rocks of the Luzon Central Cordillera to present‐day volcanism at Mount Pinatubo. The accessory apatite in intrusive rocks associated with porphyry Cu deposits, especially those at the Santo Tomas II deposit, show significantly high Cl contents (>2 wt%). The SO3 contents of microphenocrystic apatite in most of the hydrous silicic rocks along the volcanic front, in andesites related to native sulfur deposits, and in Miocene and younger shallow granitic intrusions in northeastern Honshu, are generally <0.1 wt%. On the other hand, the SO3 contents of apatite in such rocks from eastern Hokkaido, southwestern Hokkaido, Izu, northern Kyushu and southern Kyushu are similar to those from the Western Luzon arc. The SO3 contents of accessory apatite in the Cretaceous magnetite‐series granitic rocks in the Kitakami belt are variable, whereas those of the Miocene ilmenite‐series granitic rocks in southern Kyushu are extremely low. The Cl contents of accessory apatite in some rocks of the Northeast Japan arc, Izu‐Bonin arc and Southwest Japan arc are significantly high. In terms of the Cl and SO3 contents of microphenocrystic apatite, Cenozoic Japanese arc magmatism show similarities with arc magmatism associated elsewhere with porphyry Cu mineralization, except for the most of northeastern Honshu of the Northeast Japan arc. Apatite commonly occurs as inclusions in other phenocrystic phases. Thus the variation in SO3 contents of apatite is a feature of early stage magmatic differentiation. The SO3 contents of microphenocrystic apatite are considered to reflect the redox state of the magma source region or fluids encountered during magma generation.  相似文献   

7.
中亚造山带中斑岩铜钼矿的Re,Pt,Pd和Au含量   总被引:1,自引:1,他引:1  
Precious metal(Pt,Pd and Au)and Re contents in rocks,ores and flotation concentrates of Siberian(Russia)andMongolian porphyry Cu-Mo and Mo-Cu deposits were studied.The following deposits are discussed:Early Devonian porphyry Mo-CuSora deposit(Kuznetsk Alatau Mountains,Russia)and porphyry Cu-Mo Aksug deposit,(northeastern Tuva,Russia);Triassicporphyry Cu-Mo Erdenetiin Ovoo deposit(northern Mongolia).The samples analyzed include unaltered host rocks of plutons,porphyryrocks of ore-bearing series,different types of altered rocks,mineral separate analyses of molybdenite,chalcopyrite and magnetite,aswell as flotation concentrates.Pt,Pd,Au and Re contents were determined using ICP/MS,AAS and inversion voltammetric analysis.PGE abundances in rocks and poorly mineralized samples span a large range from below detection limit to 65 ppb Pt and 74 ppbPd.Re concentrations in whole rock samples range from below detection limit to 89 ppb.Molybdenite has been shown to be the majorhost phase for Re.The results presented show that Aksug deposit reveals elevated PGE and Au contents in ore minerals and flotationconcentrates.High Pd contents in ores of the Aksug deposit are in accordance with the presence of palladium mineralization in the formof palladium telluride merenskyite(Pd,Pt)Te_2.The variety of precious metals and Re contents in the studied deposits could be caused by a complex interplay of several factors,including importance of primary metal concentrations derived from the source,transport of metals to the deposition area,physicochemical properties of the fluid(fo_2,pH,fs,T,P),and depositional conditions.Higher Re contents in molybdenite andchalcopyrite separates are typical for copper-rich Aksug and Erdenetiin Ovoo deposits.Rhenium concentration in sulfides frommolybdenum-rich Sora deposit is significantly lower.Highly oxidized,Cl-rich fluid style at Aksug and Erdenetiin Ovoo was favorable forhigh rhenium solubility and transport to depositional area.The occurrence of significant precious metals contents at Aksug were likelydue to:1)PGE and Au enriched source,2)favorable fluid style(high fo_2,high Cl-activity),promoting high solubility andtransportation of precious metals in ore-forming fluid as chloride complexes;3)moderately reducing depositional conditions from PGE-bearing solutions containing As and Te,facilitating PGM deposition.As for the porphyry systems at the Sora and Erdenetiin Ovoodeposits,they were probably devoid of precursors favorable for the enrichment in PGE and Au or the role of such precursors wasinsignificant.  相似文献   

8.
From a mineralogical point of view the La Unión ore field (SE Spain) can be regarded as an oddity as some of its hydrothermal, stratabound type deposits display an extremely unusual paragenesis comprising magnetite ± greenalite ± minnesotaite ± siderite and galena ± sphalerite (IOSC – LZS). Recent mineralogical studies have shown that this paragenesis is also present at the neighboring Mazarrón ore field. These ore fields share a similar geologic setting, involving metamorphic and sedimentary rocks (Paleozoic s.l. to Permian) hosting late Miocene high‐K calc‐alkaline volcanic and subvolcanic rocks. The latter have andesitic to dacitic composition, and triggered hydrothermal activity and ore deposition. This study discusses the detailed mineral chemistry of magnetite samples from Mazarrón and La Unión and provides some hints for the origin of the IOSC – LZS paragenesis. We performed electron microprobe (EPMA) analyses in magnetite samples from La Unión and Mazarrón to determine the contents of minor and trace elements (Zn, Ni, Mn, Cr, V, K, Ca, Ti, Al, Si, Mg). Given that some results fell below the detection limit for the EPMA instrumental conditions we used robust regression on order statistics (robust ROS), with the NADA package in R to deal with these data sets. The Ca + Al + Mn contents in magnetites from San Cristóbal and Emilia are equivalent to the mean contents of those of IOCG, Kiruna, BIF, Cu porphyry, skarn, VMS, hydrothermal and clastic Pb–Zn deposits, but they are low in Ti + V and Ni + Cr. The principal components analysis indicates that Zn, Ni, Cr, V, K, Ca, Ti, and Mg are roughly collinear, therefore correlated, being also independent from Fe. Besides, the function discriminant analysis of data shows that the magnetites from Emilia and San Cristóbal cluster in differentiated groups, thus probably reflecting some differences related to the distance to the magmatic source that triggered the hydrothermal system: proximal in the case of San Cristóbal and distal in Emilia.  相似文献   

9.
西藏列廷冈矿床是林周盆地Fe-Mo-Cu-Pb-Zn矿集区内近年来新发现不久、规模较大的矽卡岩型铁多金属矿床。矿区磁铁矿发育,主要包括块状、浸染状和脉状3种类型。基于详细的野外地质调查和室内矿相学研究,将矿床成矿期划分为矽卡岩期和热液期2期,进而划分为5个成矿阶段:早期矽卡岩阶段、退化蚀变阶段、早期热液阶段、石英-硫化物阶段和碳酸盐阶段,其中,块状磁铁矿主要形成于退化蚀变阶段,浸染状和脉状磁铁矿主要形成于早期热液阶段。以磁铁矿为主要研究对象,采用电子探针(EPMA)和单矿物微量稀土元素ICP-MS分析实验,重点对磁铁矿元素地球化学特征、成因矿物学进行系统研究。研究结果表明,3种不同类型磁铁矿内均含Ti、Si、Ca等次要元素以及Na、K、Cr、Ni、Co、Pb、Ba、Sn、Sr、Sb、Cu等多种可检测到的微量元素,且矿物内主要发生了Al、Mg、Mn等元素的类质同像置换,综合TiO_2-Al_2O_3-MgO、TiO_2-Al_2O_3-(MgO+Mn O)和(Ca+Al+Mn)-(Ti+V)、Ni/(Cr+Mn)-(Ti+V)等多种磁铁矿成因判别图解投图结果及矿体野外宏观地质特征,表明矿区磁铁矿均为热液成因。块状磁铁矿具明显的Eu正异常,浸染状和脉状磁铁矿具Eu负异常,均无明显Ce异常特征,表明富Eu成矿流体在矽卡岩期的高温氧化环境下形成了矽卡岩型块状磁铁矿体,在热液期则逐渐转变为低温还原环境,形成浸染状和脉状磁铁矿及多种金属硫化物,且铁的物质来源主要与矿区花岗闪长岩和花岗斑岩紧密相关。  相似文献   

10.
Using transmission electron microscopy (TEM), we have analyzed magnetite (Fe3O4) crystals acid-extracted from carbonate globules in Martian meteorite ALH84001. We studied 594 magnetites from ALH84001 and grouped them into three populations on the basis of morphology: 389 were irregularly shaped, 164 were elongated prisms, and 41 were whisker-like. As a possible terrestrial analog for the ALH84001 elongated prisms, we compared these magnetites with those produced by the terrestrial magnetotactic bacteria strain MV-1. By TEM again, we examined 206 magnetites recovered from strain MV-1 cells. Natural (Darwinian) selection in terrestrial magnetotactic bacteria appears to have resulted in the formation of intracellular magnetite crystals having the physical and chemical properties that optimize their magnetic moment. In this study, we describe six properties of magnetite produced by biologically controlled mechanisms (e.g., magnetotactic bacteria), properties that, collectively, are not observed in any known population of inorganic magnetites. These criteria can be used to distinguish one of the modes of origin for magnetites from samples with complex or unknown histories. Of the ALH84001 magnetites that we have examined, the elongated prismatic magnetite particles (similar to 27% of the total) are indistinguishable from the MV-1 magnetites in five of these six characteristics observed for biogenically controlled mineralization of magnetite crystals.  相似文献   

11.
The Novogodnee–Monto oxidized Au–(Cu) skarn and porphyry deposit is situated in the large metallogenic belt of magnetite skarn and Cu–Au porphyry deposits formed along the Devonian–Carboniferous Urals orogen. The deposit area incorporates nearly contemporaneous Middle–Late Devonian to Late Devonian–Early Carboniferous calc-alkaline (gabbro to diorite) and potassic (monzogabbro, monzodiorite- to monzonite-porphyry, also lamprophyres) intrusive suites. The deposit is represented by magnetite skarn overprinted by amphibole–chlorite–epidote–quartz–albite and then sericite–quartz–carbonate assemblages bearing Au-sulfide mineralization. This mineralization includes early high-fineness (900–990?‰) native Au associated mostly with cobaltite as well as with chalcopyrite and Co-pyrite, intermediate-stage native Au (fineness 830–860?‰) associated mostly with galena, and late native Au (760–830?‰) associated with Te minerals. Fluid inclusion and stable isotope data indicate an involvement of magmatic–hydrothermal high-salinity (>20 wt.% NaCl-equiv.) chloride fluids. The potassic igneous suite may have directly sourced fluids, metals, and/or sulfur. The abundance of Au mineralization is consistent with the oxidized character of the system, and its association with Co-sulfides suggests elevated sulfur fugacity.  相似文献   

12.
Calc-alkaline plutonic rocks, intruded at 3450Ma, comprise a major component of the Shaw Batholith in the Archaean east Pilbara Block, Western Australia. New whole-rock Pb isotopic geochronology confirms the extent of these rocks, but a minor plutonic phase is dated at 3338±52 Ma and represents a second plutonic event of the same age as much of the nearby Mt Edgar Batholith. The Sm----Nd isotopic systematics of the 3450Ma rocks imply their derivation from a heterogeneous source, which probably included a slightly older crustal component as well as a depleted mantle component. The 3338±52 Ma pluton includes components derived from crustal sources older than 3600 Ma. The geochemistry and Sm---Nd isotopic systematics of these rocks are consistent with crustal growth in the early Archaean from upper mantle sources as depleted as the modern upper mantle. The Shaw Batholith calc-alkaline suites exhibit very similar chemical trends on variation diagrams to modern calc-alkaline plutonic rocks which can be modelled by a combination of mixing and fractionation. A suite collected from outcrops displaying prominent igneous layering shows distinct geochemical trends which can be modelled by differentiation into a component enriched in ferromagnesian minerals, principally hornblende, and possibly sphene, magnetite and epidote, and into a leucocratic component containing quartz, plagioclase and K-feld-par. These Archaean calc-alkaline plutonic rocks, in common with rocks from many other Archaean calc-alkaline provinces, exhibit very fractionated REE patterns with depleted HREE contents, a feature considered to result from equilibrium with garnet at depth in lower crustal regions. The geochemistry of the Pilbara Archaean calc-alkaline rocks is identical to the subset of modern continental-margin calc-alkaline plutonic rocks with fractionated REE patterns, such as those from the central and eastern Peninsular Ranges Batholith, western USA. The tectonic setting in which the Archaean calc-alkaline rocks formed is still not known. This reflects both uncertainty associated with the petrogenesis and environments of modern calc-alkaline rocks, as well as the limited knowledge of the precise timing and relationships of plutonic, depositional and tectonic events in the Pilbara Archaean.  相似文献   

13.
Abstract: The Mamut deposit of Sabah, East Malaysia, is a porphyry type Cu‐Au deposit genetically related to a quartz monzonite (“adamellite”) porphyry stock associated with upper Miocene Mount Kinabalu plutonism. The genesis of the Mamut deposit is discussed based on petrology of the intrusives in the Mount Kinabalu area combined with ore– and alteration–petrography, fluid inclusion and sulfur isotope studies. Groundmass of the adamellite porphyry at Mamut is rich in K which suggests vapor transport of alkaline elements during the mineralizing magmatic process, while the groundmass of the post‐ore “granodiorite” porphyry at Mamut contains small amounts of normative corundum suggesting depletion in alkaline elements at the root zone of the magma column. Sub‐dendritic tremolitic amphibole rims on hornblende phenocrysts in the Mamut adamellite porphyry suggest interaction between the mineralizing magma and the exsolved fluids. Occurrences of clinopyroxene microphenocrysts and pseudomor‐phic aggregates of shredded biotite and clinopyroxene after hornblende phenocrysts in the barren intrusives imply lower water fugacity and decreasing in water fugacity, respectively. Compositional gap between the core of hornblende phenocrysts and the tremolitic amphibole rims and those in the groundmass of the Mamut adamellite porphyry suggests a decrease in pressure. Higher XMg (=Mg/(Mg+Fe) atomic ratio) in the tremolitic amphibole rims in the Mamut adamellite porphyry compared to those of the barren intrusions suggests high oxygen fugacity. High halogen contents of igneous hydrous minerals such as amphiboles, biotite and apatite in the Mamut adamellite porphyry suggest the existence of highly saline fluids during the intrusion and solidification of the mineralizing magma. Fluid inclusions found in quartz veinlet stockworks are characterized by abundant hypersaline polyphase inclusions associated with subordinate amounts of immiscible gaseous vapor. Both Cu and Au are dispersed in disseminated and quartz stockwork ores. Chalcopyrite and pyrrhotite as well as magnetite are the principal ore minerals in the biotitized disseminated ores. Primary assemblage of intermediate solid solution (iss) and pyrrhotite converted to the present assemblage of chalcopyrite and pyrrhotite during cooling. Subsequent to biotitization, quartz veinlet stockworks formed associated with retrograde chlorite alteration. The Cu‐Fe sul–fides associated with stockwork quartz veinlet are chalcopyrite and pyrite. Overlapping Pb and Zn and subsequent Sb mineralizations were spatially controlled by NNE‐trending fractures accompanying the phyllic and advanced argillic alteration envelope. Sulfur isotopic composition of ore sulfides are homogeneous (about +2%) throughout the mineralization stages. These are identical to those of the magmatic sulfides of Mount Kinabalu adamellitic rocks.  相似文献   

14.
Variably foliated, predominantly granodioritic plutonic rocks from the northern part of the Shaw Batholith in the east Pilbara Archaean craton are dated at 3,499±22 Ma (2σ errors) by a whole-rock Pb-Pb isochron. These rocks intrude the surrounding greenstone sequence, and their age is indistinguishable from that sequence. High strain grey gneisses which occupy much of the western and southern Shaw Batholith are chemically and isotopically similar to the North Shaw suite and are inferred to have been derived from this suite by tectonic processes. Felsic volcanics within the greenstones together with a major portion of the granitic batholiths apparently formed in a calc-alkaline volcanic and plutonic province at ~3,500 Ma. This volcanic and plutonic suite is similar to modern calc-alkaline suites on the basis of major element, rare earh element and most other trace element contents. The Archaean suite contrasts with modern equivalents only in having lower concentrations of HREE and higher concentrations of Ni and Cr. The average composition of the North Shaw suite is similar to that of Archaean gneiss belts for most elements and is consistent with the previously formulated hypothesis that the Shaw Batholith is transitional to the upper crustal level of a high-grade gneiss belt. Enrichment of the gneissic crust in the Shaw Batholith in alkali and heat-producing elements is inferred to have taken place by both igneous and hydrothermal processes over a protracted time interval. Late- and post-tectonic adamellite and granite melts intrude the gneissic rocks and there is isotopic evidence consistent with the gneisses being substantially enriched in Rb by pegmatite injection at ~3,000 Ma.  相似文献   

15.
The Daraloo field is located in the southeast of Iran (Kerman province). It is associated with Oligomiocene diorite/granodiorite to quartz monzonite stocks. Copper mineralization is basically relevant to potassic and phyllic alteration zones. Petrographic and geologic studies imply that mineralization is restricted to two major parts locating in the center and east of district. The larger central mineralization has a northwest–southeast trend perpendicular to the smaller one. Hydrothermal ore fluid formation occurred in relatively deep levels thereafter faulting and fracturing provided appropriate conduits to ascend fluids through shallower depths. Early hydrothermal alteration produced a confined potassic assemblage in the central and eastern parts of the stock. Two main fluid inclusion groups in relationship with alteration ore fluids have been identified. They are liquid-rich inclusions containing solid phases, with high temperatures (257°C to 554°C) and high salinities (31 to 67 wt.% NaCl equiv.), and vapor-rich inclusions with high temperatures and low salinities without any solid phases. These magmatic source fluids are responsible for boiling and also potassic and phyllic alteration zone. They also resulted in the formation of quartz groups I and II veins and chalcopyrite deposition. Propylitic alteration is attributed to a Ca-rich meteoric fluid. Inclusions originated from this fluid are liquid-rich having low temperatures (161°C to 269°C) and low salinities (1 to 13 wt.% NaCl). Mixing descending meteoric water with magmatic fluids reduces considerably the salinity of magmatic fluid. Mixing is also the impetus of leaching copper from potassic to the phyllic zone. It is possible to conclude that all these procedures are controlled by the main faults of district having NW–SE trend. Two fundamental events affecting the mineralization are cooling ore-bearing fluids and magnetite (±pyrite) emplacement. The latter one is formed in potassic and phyllic alteration zone in which copper-bearing fluids have interaction with magnetite minerals and so chalcopyrite minerals have been formed nearby magnetites. Temperature and pressure of hydrothermal fluid differentiation could be applied as a predictive tool to discriminate between barren and productive copper porphyry deposits. A simple comparison of temperature and pressure variations between Daraloo deposit and other copper porphyry deposits located in the same belt of Iran (Sahand-Bazman belt) illuminates that Daraloo system has high range of pressure implying deeper exsolution of hydrothermal fluid. On the other hand, economic mineralization has direct relationship with temperature range of orthomagmatic fluids so that if a deposit has a wide range of high temperature fluids, it could be inferred as a barren deposit. In conclusion, it could be inferred that Daraloo district can be categorized as a sub-economic porphyry deposit. On the other hand, restricted formation of chalcopyrite and the other copper-bearing minerals besides large amounts of magnetite and pyrite can approve obviously the low grade of mineralization in Daraloo district.  相似文献   

16.
The Taihe, Baima, Hongge, Panzhihua and Anyi intrusions of the Emeishan Large Igneous Province (ELIP), SW China, contain large magmatic Fe–Ti–(V) oxide ore deposits. Magnetites from these intrusions have extensive trellis or sandwich exsolution lamellae of ilmenite and spinel. Regular electron microprobe analyses are insufficient to obtain the primary compositions of such magnetites. Instead, laser ablation ICP-MS uses large spot sizes (~ 40 μm) and can produce reliable data for magnetites with exsolution lamellae. Although magnetites from these deposits have variable trace element contents, they have similar multi-element variation patterns. Primary controls of trace element variations of magnetite in these deposits include crystallography in terms of the affinity of the ionic radius and the overall charge balance, oxygen fugacity, magma composition and coexisting minerals. Early deposition of chromite or Cr-magnetite can greatly deplete magmas in Cr and thus Cr-poor magnetite crystallized from such magmas. Co-crystallizing minerals, olivine, pyroxenes, plagioclase and apatite, have little influence on trace element contents of magnetite because elements compatible in magnetite are incompatible in these silicate and phosphate minerals. Low contents and bi-modal distribution of the highly compatible trace elements such as V and Cr in magnetite from Fe–Ti oxide ores of the ELIP suggest that magnetite may not form from fractional crystallization, but from relatively homogeneous Fe-rich melts. QUILF equilibrium modeling further indicates that the parental magmas of the Panzhihua and Baima intrusions had high oxygen fugacities and thus crystallized massive and/or net-textured Fe–Ti oxide ores at the bottom of the intrusive bodies. Magnetite of the Taihe, Hongge and Anyi intrusions, on the other hand, crystallized under relatively low oxygen fugacities and, therefore, formed net-textured and/or disseminated Fe–Ti oxides after a lengthy period of silicate fractionation. Plots of Ge vs. Ga + Co can be used as a discrimination diagram to differentiate magnetite of Fe–Ti–(V) oxide-bearing layered intrusions in the ELIP from that of massif anorthosites and magmatic Cu–Ni sulfide deposits. Variable amounts of trace elements of magmatic magnetites from Fe–Ti–(P) oxide ores of the Damiao anorthosite massif (North China) and from Cu–Ni sulfide deposits of Sudbury (Canada) and Huangshandong (northwest China) demonstrate the primary control of magma compositions on major and trace element contents of magnetite.  相似文献   

17.
D.F. Strong  D.G. Minatidis   《Lithos》1975,8(4):283-295
Major and trace element chemistry suggest that the Holyrood plutonic series is a co-magnetic calc-alkaline suite, formed at about 5 kb PH2O by fractionation of plagioclase, amphibole and clinopyroxene from a gabbroic magma which was derived from the upper mantle. It appears unlikely that the series is genetically related to the Harbour Main volcanic rocks, either magmatically or by hybridization. Chemical comparison of the Holyrood series with suites from known tectonic environments suggest that this region approximated a ‘basin and range’ type of tectonic setting during formation of the Holyrood plutonic series.  相似文献   

18.
斑岩型铜矿床中铂族元素的研究现状与存在问题   总被引:1,自引:0,他引:1  
铂族元素的研究在过去几十年取得了重要的进展.铂族元素可以赋存于不同的岩石类型中,形成于不同的时代.由于铂族元素具有特殊的化学性质,比较稳定且难熔于普通的酸、碱等,故铂族元素成矿具有特殊性.作为一种非常规铂族元素矿化类型,富铂族元素的斑岩型铜矿床的研究对研究铂族元素从地幔岩石圈转移进入花岗质岩石及随后从熔体进入流体并在硫化物中富集的机理,具有重要的研究意义.本文从斑岩型铜矿床中铂族元素的分布特征、矿化特征、铂族矿物特征、流体包裹体特征和富集成矿机理方面论述了斑岩型铜矿床中铂族元素的研究现状,并指出目前斑岩型铜矿床中铂族元素研究存在的主要问题,如影响斑岩型铜矿中铂族元素含量高低的影响因素不明确,富PGE斑岩型铜矿中流体包裹体研究不够系统,PGE的富集机理研究还欠深入,并指出今后我国斑岩型铜矿中PGE研究的重点,指出长江中下游地区一系列斑岩型铜矿床是我国斑岩铜矿中铂族元素研究的有利地区.  相似文献   

19.
莱芜张家洼铁矿位于华北克拉通东缘的鲁西地区,矿石成因类型为夕卡岩型铁矿。矿体赋存在早白垩世高镁闪长岩与奥陶系马家沟组灰岩及白云岩接触带附近。本文通过对莱芜岩浆和热液磁铁矿电子探针(EPMA)以及激光剥蚀电感耦合等离子体质谱(LA ICP MS)分析,探讨磁铁矿微量元素组成及变化规律对成岩和成矿作用的指示,为揭示张家洼铁矿的矿床成因及其成矿流体演化过程提供重要制约。分析结果表明,莱芜岩浆磁铁矿与热液磁铁矿相比明显富集Ti、V、Cr等亲铁元素,相对富集Nb、Ta、Zr、Hf等高场强元素以及Sn、Ga、Ge、Sc等中等相容元素,Mg、Al、Mn、Zn、Co显著富集于热液磁铁矿中。Ti、V、Cr以及Mg、Al、Mn、Zn在岩浆和热液中具有不同的地球化学行为,Ti、V、Cr从熔体中进入磁铁矿主要受温度、分配系数以及fO2控制。Mg、Al、Mn、Zn主要受控于水岩反应和后期绿泥石+碳酸盐脉的交代,这些元素通过类质同象替换富集于热液磁铁矿中。Co在热液磁铁矿中除了受水岩相互作用和后期流体交代的影响外,硫化物的出现会导致Co含量急剧降低。Si、Ca、Na及Sr、Ba在岩浆和热液磁铁矿中的地球化学行为非常一致。Ti Ni/Cr图能够用于区分岩浆和热液磁铁矿,莱芜岩浆磁铁矿中Ti含量较高且Ni/Cr比值≤1,热液磁铁矿Ti含量较低且绝大多数Ni/Cr比值≥1。张家洼热液磁铁矿可分为早、晚两个阶段:早期阶段包括(1)早期原生粒状磁铁矿和(2)早期次生磁铁矿;晚期阶段包括(3)晚期原生磁铁矿和(4)晚期次生磁铁矿。原生磁铁矿具有典型的三联点结构特征;次生磁铁矿受后期热液交代影响表现为多空隙,通常呈不规则状、树枝状、骸晶以及交代残余结构。磁铁矿微量元素生动记录了成矿流体演化过程,从早期到晚期、从原生到次生都显示Mg、Al、Mn、Zn包括Co含量持续升高,表明成矿流体可能朝着富集这些微量元素的方向演化。后期流体的交代导致绿泥石蚀变为磁铁矿,连续水岩相互作用和后期流体的交代以及绿泥石直接蚀变是导致热液磁铁矿富集Mg、Al、Mn、Zn等元素的主要原因。热液磁铁矿晚期孔隙较为发育,孔隙度的增加促使更多的流体和磁铁矿发生反应。热液磁铁矿的微量元素不仅能够反映矿床形成的物理化学条件,而且可以反映围岩性质以及水岩相互作用过程。  相似文献   

20.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号