首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Observations and numerical magnetohydrodynamic (MHD) simulations indicate the existence of outflows and ordered large-scale magnetic fields in the inner region of hot accretion flows. In this paper, we present the self-similar solutions for advection-dominated accretion flows (ADAFs) with outflows and ordered magnetic fields. Stimulated by numerical simulations, we assume that the magnetic field has a strong toroidal component and a vertical component in addition to a stochastic component. We obtain the self-similar solutions to the equations describing the magnetized ADAFs, taking into account the dynamical effects of the outflow. We compare the results with the canonical ADAFs and find that the dynamical properties of ADAFs such as radial velocity, angular velocity and temperature can be significantly changed in the presence of ordered magnetic fields and outflows. The stronger the magnetic field is, the lower the temperature of the accretion flow will be and the faster the flow rotates. The relevance to observations is briefly discussed.  相似文献   

3.
The power of jets from black holes is expected to depend on both the spin of the black hole and the structure of the accretion disc in the region of the last stable orbit. We investigate these dependencies using two different physical models for the jet power: the classical Blandford–Znajek (BZ) model and a hybrid model developed by Meier. In the BZ case, the jets are powered by magnetic fields directly threading the spinning black hole while in the hybrid model, the jet energy is extracted from both the accretion disc as well as the black hole via magnetic fields anchored to the accretion flow inside and outside the hole's ergosphere. The hybrid model takes advantage of the strengths of both the Blandford–Payne and BZ mechanisms, while avoiding the more controversial features of the latter. We develop these models more fully to account for general relativistic effects and to focus on advection-dominated accretion flows (ADAFs) for which the jet power is expected to be a significant fraction of the accreted rest mass energy.
We apply the models to elliptical galaxies, in order to see if these models can explain the observed correlation between the Bondi accretion rates and the total jet powers. For typical values of the disc viscosity parameter  α∼ 0.04 –0.3  and mass accretion rates consistent with ADAF model expectations, we find that the observed correlation requires   j ≳ 0.9  ; that is, it implies that the black holes are rapidly spinning. Our results suggest that the central black holes in the cores of clusters of galaxies must be rapidly rotating in order to drive jets powerful enough to heat the intracluster medium and quench cooling flows.  相似文献   

4.
Using two-dimensional simulations of non-radiative viscous rotating black hole accretion flows, we show that the flows with α ∼0.1–0.3 self-organize to form stationary unipolar or bipolar outflows accompanied by global meridional circulations. The required energy comes, with efficiency ∼0.001–0.01, from the matter directly accreted on to the black hole. Observational implications are discussed.  相似文献   

5.
At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 1012 K near the black hole), the electrons are also hot (∼109−10.5 K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.  相似文献   

6.
7.
The α turbulent viscosity formalism for accretion discs must be interpreted as a mean field theory, modelling a steady state only on spatial or time-scales greater than those of the turbulence. The extent of the scale separation determines the relative precision error (RPE) of the predicted luminosity L ν. Turbulence and the use of α implies that (1) field line stretching gives a magnetic pressure  α2/6 of the total pressure generally, and a one-to-one relation between α and the pressure ratio for thin discs, and (2) large turbulent scales in advection-dominated accretion flows (ADAFs) predict a lower L ν precision than thin discs for a given observation duration and central mass. The allowed variability (or RPE) at frequency ν increases with the size of the contributing region. For X-ray binary ADAFs, the RPE ∼ 5 per cent at R  ≤ 1000 Schwarzchild radii ( R s) for averages over  1000 s. However, current data for galaxies like NGC 4258 and M87 give RPEs in L ν of 50–100 per cent even at R  ≤ 100  R S. More data are required, but systematic deviations from ADAF predictions are more significant than random deviations, and may constrain properties of the turbulence, the accretion mode, the assumption of a steady state or the accretion rate.  相似文献   

8.
We show that for the accretion disk with equipartition between magnetic and radiative pressures, prograde black holes generate outflowing energy in jets more efficiently than retrograde black holes do. Both viscous radiative and irradiative disks provide more efficient outflow jets in the case of a prograde black hole than in the case of a retrograde black hole. Our results confirm the conclusion of Tchekhovskoy & McKinney (2012) that, for the same absolute value of the spin, prograde black holes with geometrically thick accretion disks generate outflows several times more efficiently than retrograde black holes do. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
11.
Accretion disks orbiting black holes power high-energy systems such as X-ray binaries and Active Galactic Nuclei. Observations are providing increasingly detailed quantitative information about such systems. This data has been interpreted using standard toy-models that rely on simplifying assumptions such as regular flow geometry and a parameterized stress. Global numerical simulations offer a way to investigate the basic physical dynamics of accretion flows without these assumptions and, in principle, lead to a genuinely predictive theory. In recent years we have developed a fully three-dimensional general relativistic magnetohydrodynamic simulation code that evolves time-dependent inflows into Kerr black holes. Although the resulting global simulations of black hole accretion are still somewhat simplified, they have brought to light a number of interesting results. These include the formation of electro-magnetically dominated jets powered by the black hole’s rotation, and the presence of strong stresses in the plunging region of the accretion flow. The observational consequences of these features are gradually being examined. Increasing computer power and increasingly sophisticated algorithms promise a bright future for the computational approach to black hole accretion.  相似文献   

12.
This paper presents global solutions of adiabatic accretion flows with isothermal shocks in Kerr black hole geometry. It is known that in the previously studied cases, where the flow including the shock is either entirely adiabatic or entirely isothermal, there can be no more than one stable shock solution, and the solution can only be of α –x type. However, the solution topology in the present case shows remarkable new characteristics: for the same flow parameters there can be two stable shock solutions satisfying physical boundary conditions, and the solution can be of three types, namely α– x , x –α and α–α type. In addition, shocks in the present case occur for a parameter region different from that for Rankine–Hugoniot shocks. These results greatly increase the possibilities of shock formation in astrophysical flows. It is also significant that the effects of frame-dragging of a rapid Kerr black hole on the shock formation are discovered. Finally, a brief comparison is made between shocked inviscid flows and two types of shock-free viscous flows, namely those of Shakura & Sunyaev and Narayan & Yi, and some comments are made about the fact that numerous authors who have studied transonic global solutions of accretion flows have found no shocks.  相似文献   

13.
We present self-similar solutions for advection-dominated accretion flows with thermal conduction in the presence of outflows. Possible effects of outflows on the accretion flow are parametrized and a saturated form of thermal conduction, as is appropriate for the weakly-collisional regime of interest, is included in our model. While the cooling effect of outflows is noticeable, thermal conduction provides an extra heating source. In comparison to accretion flows without winds, we show that the disc rotates faster and becomes cooler because of the angular momentum and energy flux which are taking away by the winds. But thermal conduction opposes the effects of winds and not only decreases the rotational velocity, but increases the temperature. However, reduction of the surface density and the enhanced accretion velocity are amplified by both of the winds and the thermal conduction. We find that for stronger outflows, a higher level of saturated thermal conduction is needed to significantly modify the physical profiles of the accretion flow.  相似文献   

14.
Iron line emission is common in the X‐ray spectra of accreting black holes. When the line emission is broad or variable then it is likely to originate from close to the black hole. X‐ray irradiation of the accretion flow by the power‐law X‐ray continuum produces the X‐ray ‘reflection’ spectrum which includes the iron line. The shape and variability of the iron lines and reflection can be used as a diagnostic of the radius, velocity and nature of the flow. The inner radius of the dense flow corresponds to the innermost stable circular orbit and thus can be used to determine the spin of the black hole. Studies of broad iron lines and reflection spectra offer much promise for understanding how the inner parts of accretion flows (and outflows) around black holes operate. There remains great potential for XMM‐Newton to continue to make significant progress in this work. The need for high quality spectra and thus for long exposure times is paramount. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We find a significant anticorrelation between the hard X-ray photon index Γ and the Eddington ratio   L bol/ L Edd  for a sample of low-ionization nuclear emission-line regions and local Seyfert galaxies, compiled from literature with Chandra or XMM–Newton observations. This result is in contrast with the positive correlation found in luminous active galactic nuclei (AGN), while it is similar to that of X-ray binaries (XRBs) in the low/hard state. Our result is qualitatively consistent with the spectra produced from advection-dominated accretion flows (ADAFs). It implies that the X-ray emission of low-luminosity active galactic nuclei (LLAGN) may originate from the Comptonization process in ADAF, and the accretion process in LLAGN may be similar to that of XRBs in the low/hard state, which is different from that in luminous AGN.  相似文献   

16.
The central engines of active galactic nuclei (AGN) contain cold, dense material as well as hot X-ray-emitting gas. The standard paradigm for the engine geometry is a cold thin disc sandwiched between hot X-ray coronae. Strong support for this geometry in Seyferts comes from the study of fluorescent iron line profiles, although the evidence is not ubiquitously airtight. The thin disc model of line profiles in AGN and in X-ray binaries should still be benchmarked against other plausible possibilities. One proposed alternative is an engine consisting of dense clouds embedded in an optically thin, geometrically thick X-ray-emitting engine. This model is also motivated by studies of geometrically thick engines such as advection-dominated accretion flows (ADAFs). Here we compute the reprocessed iron line profiles from dense clouds embedded in geometrically thick, optically thin X-ray-emitting discs near a Schwarzschild black hole. We consider a range of cloud distributions and disc solutions, including ADAFs, pure radial infall and bipolar outflows. We find that such models can reproduce line profiles similar to those from geometrically thin, optically thick discs and might help alleviate some of the problems encountered from the latter. Thus, independent of thin discs, thick disc engines can also exhibit iron line profiles if embedded dense clouds can survive long enough to reprocess radiation.  相似文献   

17.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

18.
We investigate the launching of outflows from the disc–magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic simulations. We find long-lasting outflows in the following cases. (1) In the case of slowly rotating stars , a new type of outflow, a conical wind , is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disc into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle  θ∼ 30°–40°  . About 10–30 per cent of the disc matter flows from the inner disc into the conical winds. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. There is also a low-density, higher velocity component (a jet) in the region inside the conical wind. (2) In the case of rapidly rotating stars (the 'propeller regime'), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disc matter may be ejected into the winds. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux of about 10 per cent of that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region. Exploratory 3D simulations show that conical winds are axisymmetric about the rotational axis (of the star and the disc), even when the dipole field of the star is significantly misaligned.  相似文献   

19.
Introducing a spherical, steady, self-supported pair-plasma pressure-mediated shock surface around a Schwarzschild black hole as the effective physical atmosphere that may be responsible for the generation of astrophysical mass outflows from relativistic quasi-spherical accretion, we calculate the mass outflow rate R ̇ by simultaneously solving the set of equations governing transonic polytropic accretion and isothermal winds. R ̇ is computed in terms of only three inflow parameters, which, we believe, has been done for the first time in our work. We then study the dependence of R ̇ on various inflow as well as shock parameters, and establish the fact that the outflow rate is essentially controlled by the post-shock proton temperature.  相似文献   

20.
We study the dynamical structure of a cooling dominated rotating accretion flow around a spinning black hole. We show that non-linear phenomena such as shock waves can be studied in terms of only three flow parameters, namely the specific energy     , the specific angular momentum (λ) and the accretion rate     of the flow. We present all possible accretion solutions. We find that a significant region of the parameter space in the     plane allows global accretion shock solutions. The effective area of the parameter space for which the Rankine–Hugoniot shocks are possible is maximum when the flow is dissipation-free. It decreases with the increase of cooling effects and finally disappears when the cooling is high enough. We show that shock forms further away when the black hole is rotating compared to the solution around a Schwarzschild black hole with identical flow parameters at a large distance. However, in a normalized sense, the flow parameters for which the shocks form around the rotating black holes are produced shocks closer to the black hole. The location of the shock is also dictated by the cooling efficiency in that higher the accretion rate     , the closer is the shock location. We believe that some of the high-frequency quasi-periodic oscillations may be due to the flows with higher accretion rate around the rotating black holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号