首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
在海域天然气水合物勘探过程中,全波形反演可以在缺少井资料情况下提供水合物及游离气区域精细速度结构,与AVO分析相比,全波形反演可以有效降低薄层效应影响.概述了全波形反演的研究进展及其在海域天然气水合物参数结构分析中的应用现状;讨论了天然气水合物全波形反演策略,包括基于层状介质假设的全局优化与局部优化相结合反演策略和基于有限差分、有限元正演模拟的多参数结构直接反演策略等;探讨了天然气水合物全波形反演中一些具有代表性的技术特点,包括地震子波估计方式、海底多分量地震数据的应用、多参数同时反演;最后给出天然气水合物全波形反演发展趋势和可能改进建议.随着三维全波形反演算法的不断改进,海域天然气水合物勘探精度将进一步提高,为水合物商业开发提供依据.  相似文献   

2.
多分量地震数据中低频缺失是弹性波全波形反演中的一大难题,低频的缺失导致全波形反演无法有效恢复介质的长波长成分进而使反演陷入局部极值。为此,本文提出了反演介质纵横波速度长波长分量的弹性波包络反演方法。该方法利用包络算子具有的解调多分量数据中隐含的低频信息的能力,构造多分量地震数据的包络目标函数进行反演,用以恢复地下介质纵横波速度的长波长成分。一系列数值试验表明,即使在多分量地震数据中缺失低频信息、并且初始模型缺少先验信息的情况下,这种弹性波包络反演方法能够有效降低波形反演的非线性,可以为后续的常规弹性波全波形反演或者深度偏移提供足够精确的初始模型,且该方法对横波速度长波长分量的重建尤为有效。Mamousi-2模型的高精度纵横波速度的反演结果表明,利用该方法反演的纵横波速度作为常规弹性波全波形反演的初始模型,可以显著提高反演结果的精度。此外,本文对弹性波包络反演方法的适用性也进行了初步的研究与讨论。  相似文献   

3.
海底地震仪(OBS)广泛应用于海底天然气水合物的调查研究中.通过走时反演获得含水合物沉积层的速度结构是利用OBS数据研究水合物的常用方法.受限于射线理论的高频假设,走时反演结果的分辨率较低.全波形反演方法能够提供高分辨的速度结构.理论上,低频、大偏移距的OBS数据非常适合于全波形反演.但OBS观测方式存在接收点较为稀疏以及接收点位置不确定的问题,OBS的稀疏性以及位置误差可能会影响反演的可靠性以及稳定性.利用南海北部陆坡水合物勘探区的信息建立了数值模型,根据实际的OBS观测参数模拟地震数据,利用频率域全波形反演方法对模拟数据进行全波形反演.结果表明:(1)利用稀疏的OBS数据(OBS间距200 m)进行全波形反演,可以获得稳定的反演结果;(2)全波形反演的结果分辨率较高,能够显示出含水合物沉积层的速度异常;(3)OBS的位置误差对全波形反演的结果影响较大,在我们的数值例子中,当位置误差为12.5 m时,反演结果与真实模型接近,而当位置误差达到25 m时,反演结果中出现较多的高频假象.  相似文献   

4.
海域天然气水合物的地震研究进展   总被引:4,自引:4,他引:4       下载免费PDF全文
海域天然气水合物的地震研究是在岩石物性分析成果的指导下,用地震技术进行真假BSR的识别和含水合物沉积层物性预测.海域天然气水合物地震研究的进展主要表现在:物性分析理论模型由简单模型发展到最大程度模拟实际情况的复杂模型;地震勘探方法已由常规的单道、多道地震发展到多频地震、高分辨率二维、三维地震和海底多分量地震;地震资料处理由常规处理发展到突出BSR特征的“三高”和叠前时间偏移处理;从利用速度、振幅结构研究识别天然气水合物发展到AVO、多属性判别、多弹性参数和多物性参数反演识别天然气水合物、预测其物性参数.这些新技术、新方法的应用,加快了海域天然气水合物调查进度,提高了天然气水合物地球物理识别的可靠性.  相似文献   

5.
南海北部无明显BSR地区天然气水合物识别研究   总被引:1,自引:0,他引:1  
似海底反射(BSR)作为海域天然气水合物的重要地震识别标志之一,已得到广泛认同.然而,科学钻探证实,天然气水合物和BSR之间并不具有严格对应关系,即存在水合物的地区却并不一定存在BSR.本文在分析BSR与天然气水合物非充分必要对应关系及其原因的基础上,着重对无明显BSR地区天然气水合物的地震识别方法和应用进行研究.对经钻探证实的存在天然气水合物的神狐海域地震资料进行处理分析后发现,含水合物沉积层具有层速度相对较高、高波阻抗、瞬时高频等特征,且层速度反演、波阻抗反演和瞬时属性分析等方法能有效识别无明显BSR区域的天然气水合物.最后,综合利用这些识别方法,应用于琼东南盆地无明显BSR地区的天然气水合物地震识别,取得了较好的效果.  相似文献   

6.
基于BSR的AVO正演估算水合物含量方法的研究   总被引:13,自引:4,他引:13       下载免费PDF全文
水合物地震属性研究的一个基本目标是水合物/游离气含量的估算. 这项工作的难度体现在地震反演具有多解性. 这项工作涉及到地震数据的精细处理、速度分析和BSR界面AVO分析等多个具体环节. 本文继承前人的有关成果,尝试进行了水合物/游离气含量估算方法的研究. 以区域地质、地震和化探等多元方法信息为基础,以定性推断BSR以及BSR界面AVO性质为导向,通过AVO正演模型方法,半定量(或定量)地估算BSR界面上与下地层中水合物/游离气(或水合物/水合物)的含量. 运用这种方法,结合海上有利于天然气水合物的E研究区某测线地震资料,尝试估算了BSR界面之上和之下介质中水合物/游离气的含量.  相似文献   

7.
对台湾西南海域增生楔部位长排列多道地震数据进行地震成像、速度分析、AVO分析、AVO反演处理,获得了天然气水合物多属性地震特征.在偏移剖面上,BSR与海底近似平行,极性与海底相反,穿越沉积层.AVO分析显示,强BSR振幅部位,BSR振幅随偏移距增大而增大.精细速度分析表明强BSR振幅下方存在纵波低速层.对应于强BSR振幅部位,AVO反演的P波、G波为相对高负值区,位于P、G交会图的第三象限,该部位泊松比变化率为负值,横波反射系数接近于零.以上多属性地震特征均预示着该区域可能存在天然气水合物层,且天然气水合物层下方可能存在游离甲烷气层.  相似文献   

8.
南海东北部973剖面BSR及其热流特征   总被引:2,自引:5,他引:2       下载免费PDF全文
对南海东北部973项目采集的地震测线进行了处理,阐明了恒春海脊处天然气水合物似海底反射(BSR)的特征.不同类型剖面的分析表明,单道地震剖面可以揭示南海东北部地区BSR一定的分布,但地震处理对揭示BSR分布全貌起重要作用.南海东北部的BSR具有世界大陆边缘BSR典型的特征,切穿了沉积层理反射,与海底起伏大体平行,为一强振幅的负极性反射.该BSR特征明显,意味着南海东北部地区存在含天然气水合物沉积.利用甲烷水合物与多组分天然气水合物相平衡曲线,计算了稳定带底界的埋深,并与BSR深度进行了对比分析.无论是甲烷水合物稳定带底界还是多组分天然气水合物稳定带的底界,单一地温梯度计算的结果不可能与BSR深度在整个剖面上对应.可知本区横向上地温梯度变化较大.利用BSR资料估算了地温梯度并求得热流值.计算表明,地温梯度与热流值由西向东,随着离海沟距离的增大、离岛弧距离的减小而减小.BSR计算得到的热流值为28~64 mW/m2,与台湾西南实测热流值的结果基本可以对比.  相似文献   

9.
姚殿义  刘家琦 《中国地震》1994,10(3):230-237
本文针对天然地震波形反演面临的困难及其复杂性,提出了逐步波形反演方法,第一步,运用波形反演中的试错法,求得地震台站下方成层介质的初步结构;第地一步,以第一步结果为初值,令各层厚度不变,反演速度;第三步,以第二步结果为初值,令速度不变,反演厚度。以上各步还可交替进行,直至得到满意结果。  相似文献   

10.
天然气水合物(gas hydrates)作为一种新的潜在能源 是目前世界范围内研究的热点和难点之一。目前 普遍认为拟海底反射(简称BSR)是天然气水合物存 在的重要标志之一,但有关水合物的识别仍有很 多问题需要解决。例如世界各地已发现水合物的 例证表明在没有BSR的情况下仍然存在水合物,在 没有BSR的情况下如何识别水合物仍是没有解决 的研究课题。本文以天然气水合物的识别为研究 目的,以AVO属性交汇图为研究手段,通过双相介 质正演理论模型研究了当地层含有天然气水合物 或游离气时的AVO属性特征,并与由双相介质的 交错网格有限差分法得到的合成地震记录所反演 得出的AVO交汇图进行了对比,得到高度一致的 对比结果,表明利用AVO属性交汇图是识别天然 气水合物和游离气并能估测其含量的有效技术。  相似文献   

11.
Reflection full waveform inversion can update subsurface velocity structure of the deeper part, but tends to get stuck in the local minima associated with the waveform misfit function. These local minima cause cycle skipping if the initial background velocity model is far from the true model. Since conventional reflection full waveform inversion using two‐way wave equation in time domain is computationally expensive and consumes a large amount of memory, we implement a correlation‐based reflection waveform inversion using one‐way wave equations to retrieve the background velocity. In this method, one‐way wave equations are used for the seismic wave forward modelling, migration/de‐migration and the gradient computation of objective function in frequency domain. Compared with the method using two‐way wave equation, the proposed method benefits from the lower computational cost of one‐way wave equations without significant accuracy reduction in the cases without steep dips. It also largely reduces the memory requirement by an order of magnitude than implementation using two‐way wave equation both for two‐ and three‐dimensional situations. Through numerical analysis, we also find that one‐way wave equations can better construct the low wavenumber reflection wavepath without producing high‐amplitude short‐wavelength components near the image points in the reflection full waveform inversion gradient. Synthetic test and real data application show that the proposed method efficiently updates the background velocity model.  相似文献   

12.
In this paper we propose a 3D acoustic full waveform inversion algorithm in the Laplace domain. The partial differential equation for the 3D acoustic wave equation in the Laplace domain is reformulated as a linear system of algebraic equations using the finite element method and the resulting linear system is solved by a preconditioned conjugate gradient method. The numerical solutions obtained by our modelling algorithm are verified through a comparison with the corresponding analytical solutions and the appropriate dispersion analysis. In the Laplace‐domain waveform inversion, the logarithm of the Laplace transformed wavefields mainly contains long‐wavelength information about the underlying velocity model. As a result, the algorithm smoothes a small‐scale structure but roughly identifies large‐scale features within a certain depth determined by the range of offsets and Laplace damping constants employed. Our algorithm thus provides a useful complementary process to time‐ or frequency‐domain waveform inversion, which cannot recover a large‐scale structure when low‐frequency signals are weak or absent. The algorithm is demonstrated on a synthetic example: the SEG/EAGE 3D salt‐dome model. The numerical test is limited to a Laplace‐domain synthetic data set for the inversion. In order to verify the usefulness of the inverted velocity model, we perform the 3D reverse time migration. The migration results show that our inversion results can be used as an initial model for the subsequent high‐resolution waveform inversion. Further studies are needed to perform the inversion using time‐domain synthetic data with noise or real data, thereby investigating robustness to noise.  相似文献   

13.
Full waveform inversion for reflection events is limited by its linearised update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model and, thus, use a gradient given by the oriented time‐domain imaging method. Specifically, we apply the oriented time‐domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to two‐dimensional or three‐dimensional velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearised representations of the reflection response. To eliminate the crosstalk artifacts between different parameters, we utilise what we consider being an optimal parametrisation for this step. To do so, we extend the prestack time‐domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high‐wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.  相似文献   

14.
频率域全波形反演中关于复频率的研究   总被引:3,自引:2,他引:1       下载免费PDF全文
Laplace-Fourier域全波形反演可以利用简单的初始模型,从缺失低频信息的地震数据中得到长波长速度模型.Laplace-Fourier域全波形反演等价于本文的复频率全波形反演,但二者的实现方式不同,因此研究复频率全波形反演,可以为二者的对比研究并发展更有效的方法奠定重要基础.本文首先比较用线性增加模型作为初始模型时几个包含不同高低频成分的频率组的反演效果,再比较结合复频率之后各个频率组的反演效果,从简单模型和复杂模型的测试中都可以看出这种复频率+频率反演的方式对反演效果有明显改善.  相似文献   

15.
Time‐lapse refraction can provide complementary seismic solutions for monitoring subtle subsurface changes that are challenging for conventional P‐wave reflection methods. The utilization of refraction time lapse has lagged behind in the past partly due to the lack of robust techniques that allow extracting easy‐to‐interpret reservoir information. However, with the recent emergence of the full‐waveform inversion technique as a more standard tool, we find it to be a promising platform for incorporating head waves and diving waves into the time‐lapse framework. Here we investigate the sensitivity of 2D acoustic, time‐domain, full‐waveform inversion for monitoring a shallow, weak velocity change (?30 m/s, or ?1.6%). The sensitivity tests are designed to address questions related to the feasibility and accuracy of full‐waveform inversion results for monitoring the field case of an underground gas blowout that occurred in the North Sea. The blowout caused the gas to migrate both vertically and horizontally into several shallow sand layers. Some of the shallow gas anomalies were not clearly detected by conventional 4D reflection methods (i.e., time shifts and amplitude difference) due to low 4D signal‐to‐noise ratio and weak velocity change. On the other hand, full‐waveform inversion sensitivity analysis showed that it is possible to detect the weak velocity change with the non‐optimal seismic input. Detectability was qualitative with variable degrees of accuracy depending on different inversion parameters. We inverted, the real 2D seismic data from the North Sea with a greater emphasis on refracted and diving waves’ energy (i.e., most of the reflected energy was removed for the shallow zone of interest after removing traces with offset less than 300 m). The full‐waveform inversion results provided more superior detectability compared with the conventional 4D stacked reflection difference method for a weak shallow gas anomaly (320 m deep).  相似文献   

16.
Full‐waveform inversion is re‐emerging as a powerful data‐fitting procedure for quantitative seismic imaging of the subsurface from wide‐azimuth seismic data. This method is suitable to build high‐resolution velocity models provided that the targeted area is sampled by both diving waves and reflected waves. However, the conventional formulation of full‐waveform inversion prevents the reconstruction of the small wavenumber components of the velocity model when the subsurface is sampled by reflected waves only. This typically occurs as the depth becomes significant with respect to the length of the receiver array. This study first aims to highlight the limits of the conventional form of full‐waveform inversion when applied to seismic reflection data, through a simple canonical example of seismic imaging and to propose a new inversion workflow that overcomes these limitations. The governing idea is to decompose the subsurface model as a background part, which we seek to update and a singular part that corresponds to some prior knowledge of the reflectivity. Forcing this scale uncoupling in the full‐waveform inversion formalism brings out the transmitted wavepaths that connect the sources and receivers to the reflectors in the sensitivity kernel of the full‐waveform inversion, which is otherwise dominated by the migration impulse responses formed by the correlation of the downgoing direct wavefields coming from the shot and receiver positions. This transmission regime makes full‐waveform inversion amenable to the update of the long‐to‐intermediate wavelengths of the background model from the wide scattering‐angle information. However, we show that this prior knowledge of the reflectivity does not prevent the use of a suitable misfit measurement based on cross‐correlation, to avoid cycle‐skipping issues as well as a suitable inversion domain as the pseudo‐depth domain that allows us to preserve the invariant property of the zero‐offset time. This latter feature is useful to avoid updating the reflectivity information at each non‐linear iteration of the full‐waveform inversion, hence considerably reducing the computational cost of the entire workflow. Prior information of the reflectivity in the full‐waveform inversion formalism, a robust misfit function that prevents cycle‐skipping issues and a suitable inversion domain that preserves the seismic invariant are the three key ingredients that should ensure well‐posedness and computational efficiency of full‐waveform inversion algorithms for seismic reflection data.  相似文献   

17.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.  相似文献   

18.
We develop a two‐dimensional full waveform inversion approach for the simultaneous determination of S‐wave velocity and density models from SH ‐ and Love‐wave data. We illustrate the advantages of the SH/Love full waveform inversion with a simple synthetic example and demonstrate the method's applicability to a near‐surface dataset, recorded in the village ?achtice in Northwestern Slovakia. Goal of the survey was to map remains of historical building foundations in a highly heterogeneous subsurface. The seismic survey comprises two parallel SH‐profiles with maximum offsets of 24 m and covers a frequency range from 5 Hz to 80 Hz with high signal‐to‐noise ratio well suited for full waveform inversion. Using the Wiechert–Herglotz method, we determined a one‐dimensional gradient velocity model as a starting model for full waveform inversion. The two‐dimensional waveform inversion approach uses the global correlation norm as objective function in combination with a sequential inversion of low‐pass filtered field data. This mitigates the non‐linearity of the multi‐parameter inverse problem. Test computations show that the influence of visco‐elastic effects on the waveform inversion result is rather small. Further tests using a mono‐parameter shear modulus inversion reveal that the inversion of the density model has no significant impact on the final data fit. The final full waveform inversion S‐wave velocity and density models show a prominent low‐velocity weathering layer. Below this layer, the subsurface is highly heterogeneous. Minimum anomaly sizes correspond to approximately half of the dominant Love‐wavelength. The results demonstrate the ability of two‐dimensional SH waveform inversion to image shallow small‐scale soil structure. However, they do not show any evidence of foundation walls.  相似文献   

19.
冯德山  王珣 《地球物理学报》2018,61(11):4647-4659
探地雷达(GPR)时间域全波形反演计算量巨大,内存要求高,在微机上计算难度大.本文中作者基于GPU并行加速的维度提升反演策略,采用优化的共轭梯度法,避免了Hessian矩阵的计算,在普通微机上实现了时间域全波形二维GPR双参数(介电常数和电导率)快速反演.论文首先推导了二维TM波的时域有限差分法(FDTD)的交错网格离散差分格式及波场更新策略.然后,基于Lagrange乘数法,将约束问题转化为无约束最小问题,构建了共轭梯度法反演目标函数,采用Fletcher-Reeves公式与非精确线搜索Wolfe准则,确保了梯度方向修正因子及迭代步长选取的合理性.而GPU并行计算及维度提升反演策略的应用,数倍地提升了反演速度.最后,开展了3个模型的合成数据的反演实验,分别从观测方式、梯度优化及天线频率等方面,分析了这些因素对雷达全波形反演的影响,说明双参数的反演较单一的介电常数反演,能提供更丰富的信息约束,有效提高模型重建的精度.  相似文献   

20.
While velocity contrasts are responsible for most of the events recorded in our data, the long wavelength behavior of the velocity model is responsible for the geometrical shape of these events. For isotropic acoustic materials, the wave dependency on the long (wave propagation) and short (scattering) wavelength velocity components is stationary with the propagation angle. On the other hand, in representing a transversely isotropic with a vertical symmetry axis medium with the normal moveout velocity, the anellepticity parameter η, the vertical scaling parameter δ, and the sensitivity of waves vary with the polar angle for both the long and short wavelength features of the anisotropic dimensionless medium parameters (δ and η). For horizontal reflectors at reasonable depths, the long wavelength features of the η model is reasonably constrained by the long offsets, whereas the short wavelength features produce very week reflections at even reasonable offsets. Thus, for surface acquired seismic data, we could mainly invert for smooth η responsible for the geometrical shape of reflections. On the other hand, while the δ long wavelength components mildly affects the recorded data, its short wavelength variations can produce reflections at even zero offset, with a behavior pattern synonymous to density. The lack of the long wavelength δ information will mildly effect focusing but will cause misplacement of events in depth. With low enough frequencies (very low), we may be able to recover the long wavelength δ using full waveform inversion. However, unlike velocity, the frequencies needed for that should be ultra‐low to produce long‐wavelength scattering‐based model information as δ perturbations do not exert scattering at large offsets. For a combination given by the horizontal velocity, η, and ε, the diving wave influence of η is absorbed by the horizontal velocity, severely limiting the η influence on the data and full waveform inversion. As a result, with a good smooth η estimation, for example, from tomography, we can focus the full waveform inversion to invert for only the horizontal velocity and maybe ε as a parameter to fit the amplitude. This is possibly the most practical parametrization for inversion of surface seismic data in transversely isotropic with vertical symmetry axis media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号