首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
A novel inverse modelling method is applied to the problem of constraining the environmental parameters (e.g. relative sea level, sediment supply) that control stratigraphic architecture. This technique links forward modelling of shallow-marine wave/storm-dominated stratigraphy to a combination of inverse methods formulated in a Bayesian framework. We present a number of examples in which relative sea-level and sediment-supply curves were inferred from synthetic vertical successions of grain size (e.g. wells) and synthetic thickness curves (e.g. seismically derived isopachs) extracted from a forward model simulation. These examples represent different scenarios that are designed to test the impact of data distribution, quantity and quality on the uncertainty of the inferred parameters. The inverse modelling approach successfully reproduces the gross stratigraphic architectures and relative sea level and sediment-supply histories of the synthetic forward model simulation, within the constraints of the modelled data quality. The relative importance of the forcing parameters can be evaluated by their sensitivity and impact on the inverted data. Of equal importance, the inverse results allow complete characterisation of the uncertainties inherent to the stratigraphic modelling tool and to the data quality, quantity and distribution. The numerical scheme also successfully deals with the problem of non-uniqueness of the solution of the inverse problem. These preliminary results suggest that the inverse method is a powerful tool in constraining stratigraphic architecture for hydrocarbon reservoir characterisation and modelling, and it may ultimately provide a process-based geological complement to standard geostatistical tools.  相似文献   

2.
The role of spatiotemporally varying tectonic forcing in the development of stratigraphic patterns along passive margins and continental rift basins has been recognized for decades, but the exact nature of the stratigraphic response is still debated. This study develops a coupled tectonic‐stratigraphic numerical model with a fixed absolute lake level and constant climate conditions to quantify the signatures of spatiotemporally varying tectonic forcing on the stratigraphic record. This model consists of a three‐dimensional rift basin with a range of geomorphic features and produces a number of well‐recognized stratigraphic patterns, which are commonly interpreted to be caused by lake‐/sea‐level or climate fluctuations. This study demonstrates that the shoreline and grain‐size front are decoupled through the adjustment of the depositional slope and sediment dispersal under spatiotemporally varying tectonic forcing, especially in underfilled basins. Under such a decoupled situation, the pathway of the migrating subsidence centre correlates with the pathway of the grain‐size front, a result of competition between spatiotemporally varying tectonic forcing and autogenic sediment transport. The model results also highlight the significance of three‐dimensional variability in the stratigraphic response to tectonic forcing, which may be overlooked or misinterpreted and suggests a high degree of uncertainty in re‐establishing the base‐level cycles from the stratigraphic record alone. Moreover, spectral analysis of the modelled stratigraphy and tectonic forcing suggests that low‐frequency tectonic signals are more likely to be recorded in the stratigraphy with a lag time, whereas high‐frequency tectonic signals are likely to be shredded, mixed with autogenic signals, or buffered through sediment‐routing systems. Finally, quantitative measurements of the stratigraphic architecture of the Nanpu sag in the Bohai Bay Basin, China are used to tune the numerical model of this study to illustrate how to evaluate the role of tectonic forcing on the development of characteristic stratigraphic sequences.  相似文献   

3.
A three‐dimensional quantitative stratigraphic forward model is employed to investigate the controls leading to the Messinian events in the lacustrine Pannonian Basin of Central Paratethys, and the link between the Messinian salinity crisis in the Mediterranean and the late Miocene‐Pliocene stratigraphy of the Pannonian Basin. Subsurface geological data show that a prominent unconformity surface formed during Messinian time in the Pannonian Basin associated with a sudden forced regression, abrupt basinward shift of facies and a subsequent, prolonged lowstand normal regression. The lowstand prograding series filled up the shallow basin fast, while, at the same time, the marginal areas of the basin were subject to tectonic inversion. The Dionisos program used in this research is built on a nonlinear water‐driven sediment diffusion process, and it employs multiple sediment classes, basin flexure and compaction. Four different scenarios were built in the experiments to test possible basin histories with different rates and timing of tectonic inversion. Each scenario was modelled in two versions: including and not including a lake‐level fall in the Messinian. The results confirm that the Pannonian Basin in the study area has undergone a tectonic inversion since the Messinian, although the exact rates of uplift at different locations remain uncertain. The unconformity and the observed stratigraphic architecture and facies pattern could be modelled adequately only in the versions that applied a Messinian lake‐level fall. Our research concludes that the Messinian unconformity in the Pannonian Basin was caused by an absolute lake‐level drop, likely linked to the desiccation of the Mediterranean, followed by subsidence and normal regression in the basin centre and concomitant tectonic inversion and uplift along the basin margins.  相似文献   

4.
Fluvio‐deltaic stratigraphy develops under continuous morphodynamic interactions of allogenic and autogenic processes, but the role and relative contribution of these processes to the stratigraphic record are poorly understood. We analysed synthetic fluvio‐deltaic deposits of several accommodation‐to‐supply cycles (sequences) with the aim to relate stratigraphic variability to autogenic and allogenic controls. The synthetic stratigraphy was produced in a series of long time‐scale (105 years) numerical experiments with an aggregated process‐based model using a typical passive‐margin topography with constant rates of liquid and solid river discharge subjected to sinusoidal sea‐level fluctuation. Post‐processing of synthetic stratigraphy allowed us to quantify stratigraphic variability by means of local and regional net sediment accumulation over equally spaced time intervals (1–10 kyr). The regional signal was subjected to different methods of time‐series analysis. In addition, major avulsion sites (>5 km from the coastline) were extracted from the synthetic stratigraphy to confirm the interpretations of our analyses. Regional stratigraphic variability as defined in this study is modulated by a long‐term allogenic signal, which reflects the rate of sea‐level fluctuation, and it preserves two autogenic frequency bands: the intermediate and high‐frequency components. The intermediate autogenic component corresponds to major avulsions with a median inter‐avulsion period of ca. 3 kyr. This component peaks during time intervals in which aggradation occurs on the delta plain, because super‐elevation of channel belts is a prerequisite for large‐scale avulsions. Major avulsions occur occasionally during early stages of relative sea‐level fall, but they are fully absent once the coast line reaches the shelf edge and incision takes place. These results are consistent with a number of field studies of falling‐stage deposition in fluvial systems. The high‐frequency autogenic component (decadal to centennial time scales) represents mouthbar‐induced bifurcations occurring at the terminal parts of the system, and to a lesser extent, partial or small‐scale avulsions (<5 km from the coastline). Bifurcation intensity correlates strongly with the rate of progradation, and thus reaches its maximum during forced regression. However, its contribution to overall stratigraphic variability is much less than that of the large‐scale avulsions, which affect the entire area downstream of avulsion nodes. The results of this study provide guidelines for predicting fluvio‐deltaic stratigraphy in the context of co‐existing autogenic and allogenic processes and underscore the fact that the relative importance and the type of autogenic processes occurring in fluvio‐deltaic systems are governed by allogenic forcing.  相似文献   

5.
Grain size trends in basin stratigraphy are thought to preserve a rich record of the climatic and tectonic controls on landscape evolution. Stratigraphic models assume that over geological timescales, the downstream profile of sediment deposition is in dynamic equilibrium with the spatial distribution of tectonic subsidence in the basin, sea level and the flux and calibre of sediment supplied from mountain catchments. Here, we demonstrate that this approach in modelling stratigraphic responses to environmental change is missing a key ingredient: the dynamic geomorphology of the sediment routing system. For three large alluvial fans in the Iglesia basin, Argentine Andes we measured the grain size of modern river sediment from fan apex to toe and characterise the spatial distribution of differential subsidence for each fan by constructing a 3D model of basin stratigraphy from seismic data. We find, using a self‐similar grain size fining model, that the profile of grain size fining on all three fans cannot be reproduced given the subsidence profile measured and for any sediment supply scenario. However, by adapting the self‐similar model, we demonstrate that the grain size trends on each fan can be effectively reproduced when sediment is not only sourced from a single catchment at the apex of the system, but also laterally, from tributary catchments and through fan surface recycling. Without constraint on the dynamic geomorphology of these large alluvial systems, signals of tectonic and climate forcing in grain size data are masked and would be indecipherable in the geological record. This has significant implications for our ability to make sensitive, quantitative reconstructions of external boundary conditions from the sedimentary record.  相似文献   

6.
Forward stratigraphic models usually display sediment types on simulated stratigraphic profiles as ‘facies’ defined only by their depth of deposition. More recently, ‘facies’ have been defined and displayed in terms of the dominant processes of deposition (e.g. in situ growth, pelagic production, turbidite deposition). Standard carbonate facies; that is, the Dunham classification, are defined by rock textures and grain composition that imply that a combination of processes acted together to generate a facies. For example, a bioclastic wackestone is a matrix‐supported rock containing up to 90% matrix and > 10% shelly grains. In terms of modelled processes, the muddy matrix could be generated by: (i) reworking of the shallow platform sediments, (ii) from pelagic deposition, or (iii) in situ production. A traditional depth of deposition process display would not be able to distinguish such a wackestone from any other facies deposited at this water depth and a majority process display would not combine reworked, pelagic muds and in situ contribution in one simulated ‘facies’. This paper introduces a new scheme that enables forward models to output simulated facies defined by a range of values for each of the controlling processes and thereby predicts rock textures within simulated stratigraphies. This approach has been applied to the Jurassic carbonate ramps of the Iberian Basin in northeastern Spain. It is shown to provide more accurate information about the processes that are being simulated, allowing more direct comparisons to be made with the facies observed in the field and providing potential for a more rigorous method for assessing the ‘goodness of fit’ of a simulated stratigraphy.  相似文献   

7.
This paper describes a new 3‐D forward numerical model (CARBONATE 3D) that simulates the stratigraphic and sedimentological development of carbonate platforms and mixed carbonate–siliciclastic shelves by simulating the following sedimentary processes: (1) Carbonate shallow, open‐marine production, dependent on water depth, restriction and sediment input; (2) Carbonate shallow, restricted‐marine production, dependent on water restriction; (3) Pelagic sediment production and deposition; (4) Coarse and fine siliciclastic input; (5) Erosion, transport and redeposition of sediment, dependent on currents, slope, depth and restriction as well as sediment grain‐size and composition; (6) Dissolution of subaerially exposed carbonate. In this paper the model is used to investigate the controlling mechanisms on the sequence stratigraphy of isolated carbonate platforms and atolls and to predict distinctive architectural signatures from different drowning mechanisms. Investigation of the mechanisms controlling atoll strata shows that although relative sea‐level is the major control, antecedent topography, environmental setting and early diagenesis have profound influence on what stratigraphic geometries and facies develop. Hence care must be taken if sea‐level curves are interpreted from real stratigraphies. Atoll drowning by fast sea‐level rise, by lowered production and by repeated exposure and fast subsequent sea‐level rises are investigated and different stratigraphic signatures for the respective mechanisms predicted. A fast relative sea‐level rise results in a bucket‐shaped morphology developed prior to drowning and a sharp transition from the platform margin facies to a pelagic cover. Drowning caused by lowered platform margin production is predicted to result in the development of a dome‐shaped, shallow‐water shoal over the whole platform top prior to drowning. Fourth order amplitudes of several tens of metres, typical of ‘icehouse’ settings, cause atoll drowning at subsidence rates where atolls subject to fourth order amplitude of only a few metres, typical of ‘greenhouse’ settings, can keep up with the rising sea‐level. In the resultant strata, vertical facies belts are less well developed but horizontally extensive facies bands are more prominent. High fourth order amplitudes (up to 80 m) without sufficient third order scale subsidence will not lead to drowning, however, as the platform can recover in each fourth order lowstand. These results suggest that atolls might be easier to drown in ‘icehouse’ rather than in ‘greenhouse’ conditions but only in situations with suitably high rates of longer‐term relative sea‐level rise or sufficient lag times.  相似文献   

8.
Multiscale simulation of fluvio‐deltaic stratigraphy was used to quantify the elements of the geometry and architectural arrangement of sub‐seismic‐scale fluvial‐to‐shelf sedimentary segments. We conducted numerical experiments of fluvio‐deltaic system evolution by simulating the accommodation‐to‐sediment‐supply (A/S) cycles of varying wavelength and amplitude with the objective to produce synthetic 3‐D stratigraphic records. Post‐processing routines were developed in order to investigate delta lobe architecture in relation to channel‐network evolution throughout A/S cycles, estimate net sediment accumulation rates in 3‐D space, and extract chronostratigraphically constrained lithosomes (or chronosomes) to quantify large‐scale connectivity, that is, the spatial distribution of high net‐to‐gross lithologies. Chronosomes formed under the conditions of channel‐belt aggradation are separated by laterally continuous abandonment surfaces associated with major avulsions and delta‐lobe switches. Chronosomes corresponding to periods in which sea level drops below the inherited shelf break, that is, the youngest portions of the late falling stage systems tract (FSST), form in the virtual absence of major avulsions, owing to the incision in their upstream parts, and thus display purely degradational architecture. Detailed investigation of chronosomes within the late FSST showed that their spatial continuity may be disrupted by higher‐frequency A/S cycles to produce “stranded” sand‐rich bodies encased in shales. Chronosomes formed during early and late falling stage (FSST) demonstrate the highest large‐scale connectivity in their proximal and distal areas, respectively. Lower‐amplitude base level changes, representative of greenhouse periods during which the shelf break is not exposed, increase the magnitude of delta‐lobe switching and favour the development of system‐wide abandonment surfaces, whose expression in real‐world stratigraphy is likely to reflect the intertwined effects of high‐frequency allogenic forcing and differential subsidence.  相似文献   

9.
Sequence stratigraphy for clastic continental margins predicts the development of sand-rich turbidite deposits during specific times in relation to base-level cycles. It is now widely understood that deltas can extend to the shelf-edge forced by high sediment flux and/or base level, providing a direct connection to transfer sediment and sand to the slope and basin floor even during high base level periods. Herein, we build a stratigraphic forward model for the last 120 kyr of the fluvio-deltaic to deep-water Brazos system (USA) where sediment partitioning along an Icehouse continental margin can be evaluated. The reduced-complexity stratigraphic forward model employs geologically constrained input parameters and mass balance. The modelled architecture is consistent with the location of depositional units previously mapped in the shelf. Sand bypasses the shelf and upper slope between 35 to 15 kyr before present and only about 20%–30% of all the sediment and sand supplied to the system is transferred to deep water. Several scenarios based on the initial Brazos model investigate the relationships between base level and deep-water sand ratio (DWSR). DWSR is defined as the relative amount of sand transferred to the deep-water portions of the system subdivided by the total sand input to the model. Linear correlations between DWSR and base level change rates or base level are very poor. Short-term variability due to local processes (for example avulsions) is superimposed to the long-term trends and mask the base level signal. DWSR for an entire base-level cycle is mainly controlled by the proportion of time the delta stays docked at the shelf-edge. Stratigraphic forward models are useful to complement field observations and quantify how different processes control stratigraphy, which is important for making predictions in areas with limited information.  相似文献   

10.
Understanding the relationship between sedimentation and tectonics is critical to the analysis of stratigraphic evolution in foreland basins. Previous models of foreland basins have explained stratal development, but were done generally under the assumption that steady allogenic forcing produces a steady stratigraphic response. They did not consider autogenic shoreline behaviour during the development of the subsidence pattern characteristic of foreland basins. We present a mathematical model and flume experiments that explore how subsidence and sediment‐supply rates control the shoreline trajectory and the stratal patterns that fill foreland basins. Through these models, we found differing autogenic responses in the rate and direction of shoreline migration, and these generated three distinct styles of stratal architecture, despite the constant external forcing (i.e. constant sediment discharge and basin substrate tilting). The first response was ‘autoretreat’, where shoreline migration switched from initial progradation to retrogradation. The second response was progradation followed by constant aggradation of the shoreline. The third response was maintained progradation with a markedly accelerating rate. We termed this latter newly observed autogenic behaviour ‘shoreline autoacceleration’. These three modes of shoreline behaviour and their accompanying stratal architecture provide a basic framework for the relationship between sedimentation and tectonic activity in foreland basins under the simplified conditions presented here.  相似文献   

11.
《Basin Research》2018,30(Z1):15-35
Nearly all successions of the near‐shore strata exhibit cyclical movements of the shoreline, which have commonly been attributed to cyclical oscillations in relative sea level (combining eustasy and subsidence) or, more rarely, to cyclical variations in sediment supply. It has become accepted that cyclical change in sediment delivery from source catchments may lead to cyclical movement of boundaries such as the gravel front, particularly in the proximal segments of sediment‐routing systems. In order to quantitatively assess how variations in sediment transport as a consequence of change in relative sea‐level and surface run‐off control stratigraphic architecture, we develop a simple numerical model of sediment transport and explore the sensitivity of moving boundaries within the sediment‐routing system to change in upstream (sediment flux, precipitation rate) and downstream (sea level) controls. We find that downstream controls impact the shoreline and sand front, while the upstream controls can impact the whole system depending on the amplitude of change in sediment flux and precipitation rate. The model implies that under certain conditions, the relative movement of the gravel front and shoreline is a diagnostic marker of whether the sediment‐routing system experienced oscillations in sea level or climatic conditions. The model is then used to assess the controls on stratigraphic architecture in a well‐documented palaeo‐sediment‐routing system in the Late Cretaceous Western Interior Seaway of North America. Model results suggest that significant movement of the gravel front is forced by pronounced (±50%) oscillations in precipitation rate. The absence of such movement in gravel front position in the studied strata implies that time‐equivalent movement of the shoreline was driven by relative sea‐level change. We suggest that tracking the relative trajectories of internal boundaries such as the gravel front and shoreline is a powerful tool in constraining the interpretation of stratigraphic sequences.  相似文献   

12.
The Triassic Moenkopi Formation in the Salt Anticline Region, SE Utah, represents the preserved record of a low‐relief ephemeral fluvial system that accumulated in a series of actively subsiding salt‐walled mini‐basins. Development and evolution of the fluvial system and its resultant preserved architecture was controlled by the following: (1) the inherited state of the basin geometry at the time of commencement of sedimentation; (2) the rate of sediment delivery to the developing basins; (3) the orientation of fluvial pathways relative to the salt walls that bounded the basins; (4) spatially and temporally variable rates and styles of mini‐basin subsidence and associated salt‐wall uplift; and (5) temporal changes in regional climate. Detailed outcrop‐based tectono‐stratigraphic analyses demonstrate how three coevally developing mini‐basins and their intervening salt walls evolved in response to progressive sediment loading of a succession of Pennsylvanian salt (the Paradox Formation) by the younger Moenkopi Formation, deposits of which record a dryland fluvial system in which flow was primarily directed parallel to a series of elongate salt walls. In some mini‐basins, fluvial channel elements are stacked vertically within and along the central basin axes, in response to preferential salt withdrawal and resulting subsidence. In other basins, rim synclines have developed adjacent to bounding salt walls and these served as loci for accumulation of stacked fluvial channel complexes. Neighbouring mini‐basins exhibit different styles of infill at equivalent stratigraphic levels: sand‐poor basins dominated by fine‐grained, sheet‐like sandstone fluvial elements, which are representative of nonchannelised flow processes, apparently developed synchronously with neighbouring sand‐prone basins dominated by major fluvial channel‐belts, demonstrating effective partitioning of sediment route‐ways by surface topography generated by uplifting salt walls. Reworked gypsum clasts present in parts of the stratigraphy demonstrate the subaerial exposure of some salt walls, and their partial erosion and reworking into the fill of adjoining mini‐basins during accumulation of the Moenkopi Formation. Complex spatial changes in preserved stratigraphic thickness of four members in the Moenkopi Formation, both within and between mini‐basins, demonstrates a complex relationship between the location and timing of subsidence and the infill of the generated accommodation by fluvial processes.  相似文献   

13.
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle.  相似文献   

14.
Formation of alluvial stratigraphy is controlled by autogenic processes that mix their imprints with allogenic forcing. In some alluvial successions, sedimentary cycles have been linked to astronomically‐driven, cyclic climate changes. However, it remains challenging to define how such cyclic allogenic forcing leads to sedimentary cycles when it continuously occurs in concert with autogenic forcing. Accordingly, we evaluate the impact of cyclic and non‐cyclic upstream forcing on alluvial stratigraphy through a process‐based alluvial architecture model, the Karssenberg and Bridge (2008) model (KB08). The KB08 model depicts diffusion‐based sediment transport, erosion and deposition within a network of channel belts and associated floodplains, with river avulsion dependent on lateral floodplain gradient, flood magnitude and frequency, and stochastic components. We find cyclic alluvial stratigraphic patterns to occur when there is cyclicity in the ratio of sediment supply over water discharge (Qs/Qw ratio), in the precondition that the allogenic forcing has sufficiently large amplitudes and long, but not very long, wavelengths, depending on inherent properties of the modelled basin (e.g. basin subsidence, size, and slope). Each alluvial stratigraphic cycle consists of two phases: an aggradation phase characterized by rapid sedimentation due to frequent channel shifting and a non‐deposition phase characterized by channel belt stability and, depending on Qs/Qw amplitudes, incision. Larger Qs/Qw ratio amplitudes contribute to weaker downstream signal shredding by stochastic components in the model. Floodplain topographic differences are found to be compensated by autogenic dynamics at certain compensational timescales in fully autogenic runs, while the presence of allogenic forcing clearly impacts the compensational stacking patterns.  相似文献   

15.
The recent paper by Go??dowski et al. (2012) is a contribution to the ongoing debate regarding the possible processes involved in the geological evolution of the North Sea basin and adjacent hinterlands during the Cenozoic. Their major conclusions state (1) that the prominent seismic feature called the ‘mid‐Miocene unconformity’ (MMU) is a diachroneous surface in the North Sea basin and forms a regional hiatus and (2) that sediment flux from western Scandinavia was primarily controlled by climate and vegetation cover from the Late Eocene and onwards. We believe, however, that regarding the eastern North Sea basin, which was the depocentre for sediments sourced from southwestern Scandinavia, these conclusions are not supported by the geological record. The so‐called ‘mid‐Miocene unconformity’ is not a regional hiatus in the Danish and Norwegian sectors of the North Sea basin, but represents a distinct shift from prograding delta/slope systems to deposition of deeper marine hemipelagic mud, and thus provides a distinct seismic marker horizon. However, detailed studies show that there is a continuous sedimentation dominated by glacony‐rich mud where a ca. 3 m thick mudlayer spans several millions years and thus are below seismic resolution. Consequently, seismic stratigraphy is not applicable for this condensed section. (1) Warm climate and dense vegetation cover in southern Scandinavia during the mid‐Miocene Climatic Optimum were not able to hinder the progradation of a major siliciclastic wedge from Scandinavia into the North Sea basin. (2) The distinct temperature decrease in the Serravallian does not correlate with the aforementioned progradation, but on the contrary, correlate with the culmination of a major flooding event and deposition of a condensed succession of marine glaucony‐rich clay.  相似文献   

16.
The main controlling variables for palaeo-landscape evolution are investigated to assess their relative importance using the Gippsland Basin geological history. Palaeo-landscape reconstruction is a complicated process controlled and affected by multiple variables, including tectonic, palaeo-environment, sea-level change, rainfall, sediment erosion, transportation, deposition, etc. The Basin and Landscape Dynamics software (Badlands) software was used with an efficient experimental design (ED) to guide the selected scenarios, process the results, and generate the multi-variate equations that define and identify the important controlling variables. The ED was used to test and identify the main uncertainties and their possible ranges, based on actual field data, while at the same time ensuring that the full multi-dimensional space for those variables was covered to enable the computation of multivariate equations from the minimum number of scenario runs. A full suite of 3D forward palaeo-landscape models of the Gippsland Basin was built to reconstruct the basin history from its formation to the present (Early Cretaceous to Holocene, 137-0 Ma). The models are compared to the corresponding full 3D realistic structural and stratigraphic model of the basin that has been built in Petrel (Schlumberger software). This constrains the sedimentary, stratigraphic, burial and thermal histories to the relative subsidence rates and basin-fill for each geological sequence by using the model isopachs input to the Badlands modelling. The ED required only 22 scenarios to fit 12 identified variables and test for possible interactions with each other. The most significant variables are those that control sediment supply including non-marine erodibility, rainfall, (Rainfall × Area) exponent m, Slope and critical slope while maximum % Marine Deposition and marine dispersal are also required to fill the marine accommodation space. Sea Level and subsidence only become significant when rapid enough to outpace sediment supply. The controlling factors change over time with basin development from rift to post-rift phases and interactions are highly significant.  相似文献   

17.
Deciphering the role slope topography plays in partitioning sediment on siliciclastic continental slope and base‐of‐slope systems helps our understanding of slope depositional processes in significant ways: (1) by validation of large‐scale depositional process models for continental margins, (2) by validation of numerical basin‐scale stratigraphic forward models used to test and deploy source‐to‐sink (S2S) concepts and (3) by creating models for setting reservoir presence and quality expectations in frontier areas poorly constrained by wells and seismic. A global database consisting of >700 km of drilled stratigraphy provide empirical rock data lacking from most S2S studies. Analysis of calibrated seismic stratigraphic units characterised using the contextual framework laid out in this paper show that both gross depositional environments (GDEs) and sand content occur across slope profiles in systematic ways. The challenge in using these observations to quantify reservoir risk and uncertainty lies with relating the observations to depositional processes that can be used to characterise frontier basins that lack calibration. Depositional process‐based understanding encoded in 3D stratigraphic forward models (SFM) can simulate both lithologies and GDEs providing broad predictions for exploration at the scale of an entire basin or slope system. Stratigraphic forward models allow the integration of S2S understanding and provide a framework for testing sediment‐partitioning hypotheses in frontier settings. Valid S2S models must balance sediment yield from the source catchments with sinks, and be consistent with basin specific observations. The proportions of GDEs across the slope provide additional validation criteria to ensure the models are plausible.  相似文献   

18.
The Dead Sea is an extensional basin developing along a transform fault plate boundary. It is also a terminal salt basin. Without knowledge of precise stratigraphy, it is difficult to differentiate between the role of plate and salt tectonics on sedimentary accumulation and deformation patterns. While the environmental conditions responsible for sediment supply are reasonably constrained by previous studies on the lake margins, the current study focuses on deciphering the detailed stratigraphy across the entire northern Dead Sea basin as well as syn and post-depositional processes. The sedimentary architecture of the late Quaternary lacustrine succession was examined by integrating 851 km of seismic reflection data from three surveys with gamma ray and velocity logs and the stratigraphic division from an ICDP borehole cored in 2010. This allowed seismic interpretation to be anchored in time across the entire basin. Key surfaces were mapped based on borehole lithology and a newly constructed synthetic seismogram. Average interval velocities were used to calculate isopach maps and spatial and temporal sedimentation rates. Results show that the Amora Formation was deposited in a pre-existing graben bounded by two N-S trending longitudinal faults. Both faults remained active during deposition of the late Pleistocene Samra and Lisan Formations—the eastern fault continued to bound the basin while the western fault remained blind. On-going plate motion introduced a third longitudinal fault, increasing accommodation space westwards from the onset of deposition of the Samra Formation. During accumulation of these two formations, sedimentation rates were uniform over the lake and similar. High lake levels caused an increase in hydrostatic pressure. This led to salt withdrawal, which flowed to the south and southwest causing increased uplift of the Lisan and En Gedi diapirs and the formation of localized salt rim synclines. This induced local seismicity and slumping, resulting in an increased thickness of the Lisan succession within the lake relative to its margins. Sedimentation rates of the Holocene Ze'elim Fm were 4–5 times higher than before. The analysis presented here resolves central questions of spatial extent and timing of lithology, deposition rates and their variability across the basin, timing of faulting at and below the lake floor, and timing and extent of salt and plate tectonic phases and their effect on syn and post-depositional processes. Plate tectonics dictated the structure of the basin, while salt tectonics and sediment accumulation were primarily responsible for its fill architecture during the timeframe examined here.  相似文献   

19.
《Basin Research》2018,30(3):522-543
We present a source‐to‐sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a ‘closed’ system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source‐to‐sink system, including the role of pre‐existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt (>15 km long) that feeds the fine‐grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall‐sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer‐term (~106 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source‐to‐sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings.  相似文献   

20.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号