首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A Bayesian approach to inverse modelling of stratigraphy, part 1: method   总被引:2,自引:0,他引:2  
The inference of ancient environmental conditions from their preserved response in the sedimentary record still remains an outstanding issue in stratigraphy. Since the 1970s, conceptual stratigraphic models (e.g. sequence stratigraphy) based on the underlying assumption that accommodation space is the critical control on stratigraphic architecture have been widely used. Although these methods considered more recently other possible parameters such as sediment supply and transport efficiency, they still lack in taking into account the full range of possible parameters, processes, and their complex interactions that control stratigraphic architecture. In this contribution, we present a new quantitative method for the inference of key environmental parameters (specifically sediment supply and relative sea level) that control stratigraphy. The approach combines a fully non‐linear inversion scheme with a ‘process–response’ forward model of stratigraphy. We formulate the inverse problem using a Bayesian framework in order to sample the full range of possible solutions and explicitly build in prior geological knowledge. Our methodology combines Reversible Jump Markov chain Monte Carlo and Simulated Tempering algorithms which are able to deal with variable‐dimensional inverse problems and multi‐modal posterior probability distributions, respectively. The inverse scheme has been linked to a forward stratigraphic model, BARSIM (developed by Joep Storms, University of Delft), which simulates shallow‐marine wave/storm‐dominated systems over geological timescales. This link requires the construction of a likelihood function to quantify the agreement between simulated and observed data of different types (e.g. sediment age and thickness, grain size distributions). The technique has been tested and validated with synthetic data, in which all the parameters are specified to produce a ‘perfect’ simulation, although we add noise to these synthetic data for subsequent testing of the inverse modelling approach. These tests addressed convergence and computational‐overhead issues, and highlight the robustness of the inverse scheme, which is able to assess the full range of uncertainties on the inferred environmental parameters and facies distributions.  相似文献   

2.
The late Messinian mixed carbonate‐siliciclastic platforms of the Sorbas Basin, known as the Terminal Carbonate Complex, record significant changes in carbonate production and geometry. Their facies and stratigraphic architecture result from complex interactions between base‐level fluctuations, evaporite deformation/dissolution and detrital inputs. A 3D quantitative approach (with DIONISOS software) is used to explore the basin‐scale platform architecture and to quantify the carbonate production of the Terminal Carbonate Complex. The modelling strategy consists in integrating detailed 2D field‐based transects and modern carbonate system parameters (e.g. carbonate production rates, bathymetric and hydrodynamic ranges of production). This approach limits user impact and so provides more objective output results. Tests are carried out on carbonate production rates, subsidence and evaporite deformation/dissolution. Numerical modelling provides accurate predictions of geometries, facies distributions and depositional sequence thicknesses, validated by field data. Comparative statistical testing of the field transects and of the various model outputs are used to discern the relative contribution of the parameters tested to the evolution of basin filling. The 3D visualization and quantification of the main carbonate producers (ooids and microbialites) are discussed in terms of changes in base‐level and detrital supply. This study demonstrates that base‐level fluctuations have the greatest impact on the carbonate budget. Evaporite deformation/dissolution affects the type and amount of carbonate production, inducing a transition from an ooid‐ to microbialite‐dominated system and also has a major effect on stratigraphic architecture by inducing the migration of depocentres. The numerical modelling results obtained using modern carbonate system parameters could also be applied to subsurface ooid‐microbialite reservoirs, and the Terminal Carbonate Complex is a good analogue for such systems.  相似文献   

3.
《Basin Research》2018,30(Z1):15-35
Nearly all successions of the near‐shore strata exhibit cyclical movements of the shoreline, which have commonly been attributed to cyclical oscillations in relative sea level (combining eustasy and subsidence) or, more rarely, to cyclical variations in sediment supply. It has become accepted that cyclical change in sediment delivery from source catchments may lead to cyclical movement of boundaries such as the gravel front, particularly in the proximal segments of sediment‐routing systems. In order to quantitatively assess how variations in sediment transport as a consequence of change in relative sea‐level and surface run‐off control stratigraphic architecture, we develop a simple numerical model of sediment transport and explore the sensitivity of moving boundaries within the sediment‐routing system to change in upstream (sediment flux, precipitation rate) and downstream (sea level) controls. We find that downstream controls impact the shoreline and sand front, while the upstream controls can impact the whole system depending on the amplitude of change in sediment flux and precipitation rate. The model implies that under certain conditions, the relative movement of the gravel front and shoreline is a diagnostic marker of whether the sediment‐routing system experienced oscillations in sea level or climatic conditions. The model is then used to assess the controls on stratigraphic architecture in a well‐documented palaeo‐sediment‐routing system in the Late Cretaceous Western Interior Seaway of North America. Model results suggest that significant movement of the gravel front is forced by pronounced (±50%) oscillations in precipitation rate. The absence of such movement in gravel front position in the studied strata implies that time‐equivalent movement of the shoreline was driven by relative sea‐level change. We suggest that tracking the relative trajectories of internal boundaries such as the gravel front and shoreline is a powerful tool in constraining the interpretation of stratigraphic sequences.  相似文献   

4.
An iterative solution to the non-linear 3-D electromagnetic inverse problem is obtained by successive linearized model updates using the method of conjugate gradients. Full wave equation modelling for controlled sources is employed to compute model sensitivities and predicted data in the frequency domain with an efficient 3-D finite-difference algorithm. Necessity dictates that the inverse be underdetermined, since realistic reconstructions require the solution for tens of thousands of parameters. In addition, large-scale 3-D forward modelling is required and this can easily involve the solution of over several million electric field unknowns per solve. A massively parallel computing platform has therefore been utilized to obtain reasonable execution times, and results are given for the 1840-node Intel Paragon. The solution is demonstrated with a synthetic example with added Gaussian noise, where the data were produced from an integral equation forward-modelling code, and is different from the finite difference code embedded in the inversion algorithm  相似文献   

5.
Classic sequence stratigraphy suggests depositional sequences can form due to changes in accommodation and due to changes in sediment supply. Accommodation‐dominated sequences are problematic to define rigorously, but are commonly interpreted from outcrop and subsurface data. In contrast, supply‐dominated sequences are much less commonly identified. We employ numerical stratigraphic forward modelling to compare stratal geometries forced by cyclic changes in relative sea level with stratal geometries forced by sediment discharge and water discharge changes. Our quantitative results suggest that both relative sea‐level oscillations and variations in sediment/water discharge ratio are able to form sequence‐bounding unconformities independently, confirming previous qualitative sequences definitions. In some of the experiments, the two types of sequence share several characteristics, such as an absence of coastal‐plain topset deposits and stratal offlap, something typically interpreted as the result of falling relative sea level. However, the stratal geometries differ when variations in amplitude and frequency of relative sea‐level change, sediment/water discharge ratio, transport diffusion coefficient and initial bathymetry are applied. We propose that the supply‐dominated sequences could be recognised in outcrop or in the subsurface if the observations of stratal offlap and the absence of coastal‐plain topset can be made without any strong evidence of relative sea‐level fall (e.g. descending shoreline trajectory). These quantitative results suggest that both supply‐dominated and accommodation‐dominated sequences are likely to occur in the ancient record, as a consequence of multiple, possibly complex, controls.  相似文献   

6.
New techniques for improving both the computational and imaging performance of the three-dimensional (3-D) electromagnetic inverse problem are presented. A non-linear conjugate gradient algorithm is the framework of the inversion scheme. Full wave equation modelling for controlled sources is utilized for data simulation along with an efficient gradient computation approach for the model update. Improving the modelling efficiency of the 3-D finite difference (FD) method involves the separation of the potentially large modelling mesh, defining the set of model parameters, from the computational FD meshes used for field simulation. Grid spacings and thus overall grid sizes can be reduced and optimized according to source frequencies and source–receiver offsets of a given input data set. Further computational efficiency is obtained by combining different levels of parallelization. While the parallel scheme allows for an arbitrarily large number of parallel tasks, the relative amount of message passing is kept constant. Image enhancement is achieved by model parameter transformation functions, which enforce bounded conductivity parameters and thus prevent parameter overshoots. Further, a remedy for treating distorted data within the inversion process is presented. Data distortions simulated here include positioning errors and a highly conductive overburden, hiding the desired target signal. The methods are demonstrated using both synthetic and field data.  相似文献   

7.
Inversion of time domain three-dimensional electromagnetic data   总被引:7,自引:0,他引:7  
We present a general formulation for inverting time domain electromagnetic data to recover a 3-D distribution of electrical conductivity. The forward problem is solved using finite volume methods in the spatial domain and an implicit method (Backward Euler) in the time domain. A modified Gauss–Newton strategy is employed to solve the inverse problem. The modifications include the use of a quasi-Newton method to generate a pre-conditioner for the perturbed system, and implementing an iterative Tikhonov approach in the solution to the inverse problem. In addition, we show how the size of the inverse problem can be reduced through a corrective source procedure. The same procedure can correct for discretization errors that inevidably arise. We also show how the inverse problem can be efficiently carried out even when the decay time for the conductor is significantly larger than the repetition time of the transmitter wave form. This requires a second processor to carry an additional forward modelling. Our inversion algorithm is general and is applicable for any electromagnetic field  ( E , H , d B / dt )  measured in the air, on the ground, or in boreholes, and from an arbitrary grounded or ungrounded source. Three synthetic examples illustrate the basic functionality of the algorithm, and a result from a field example shows applicability in a larger-scale field example.  相似文献   

8.
A data space approach to magnetotelluric (MT) inversion reduces the size of the system of equations that must be solved from M × M , as required for a model space approach, to only N × N , where M is the number of model parameter and N is the number of data. This reduction makes 3-D MT inversion on a personal computer possible for modest values of M and N . However, the need to store the N × M sensitivity matrix J remains a serious limitation. Here, we consider application of conjugate gradient (CG) methods to solve the system of data space Gauss–Newton equations. With this approach J is not explicitly formed and stored, but instead the product of J with an arbitrary vector is computed by solving one forward problem. As a test of this data space conjugate gradient (DCG) algorithm, we consider the 2-D MT inverse problem. Computational efficiency is assessed and compared to the data space Occam's (DASOCC) inversion by counting the number of forward modelling calls. Experiments with synthetic data show that although DCG requires significantly less memory, it generally requires more forward problem solutions than a scheme such as DASOCC, which is based on a full computation of J .  相似文献   

9.
Late Visean (Asbian–Brigantian) platform carbonates in the British Isles show a pronounced cyclicity marked by the alternation of mainly subtidal carbonates and subaerial exposure surfaces. Whereas the cyclicity of shallow‐water limestones of this age has been well‐documented, there has been little attempt to understand the controls on larger‐scale patterns such as those recognized in Pennsylvanian successions in the U.S.A. The principal aim of this study is to test two contrasting theories of cycle stacking via numerical forward modelling. Earlier studies of Pennsylvanian‐early Permian platform carbonates in south‐west U.S.A. suggest that cycle stacking patterns were controlled by the interaction of third‐ and fourth‐order sea‐level oscillations, with relatively uniform fourth‐order oscillations altered mainly by the harmonic effect of lower‐order sea‐level changes. An alternative model is based on an insolation curve for the Carboniferous calculated using Milankovitch parameters. This model predicts a considerable variability in levels of solar insolation that would have affected the amplitude of fourth‐order sea‐level changes and cycle composition. Both of these ideas were examined via numerous model runs using CARBONATE 6.0 and a new program, CARBOSMUT. Model results were evaluated through the use of 3 key criteria derived from well‐documented outcropping stratigraphies in the U.K.: (1) cycle stacking patterns and the stratigraphic position of major transgressions, (2) stratigraphic position of major faunal changes, (3) degree of development of subaerial exposure surfaces. Computer simulations and comparison with outcrop data suggest that a model invoking the interaction of relatively uniform fourth‐ (c.100 Kyr) and third‐order sea‐level oscillations is most appropriate for much of the late Visean, with major lowstands occurring at the mid‐Asbian and Asbian–Brigantian boundary. Late Visean cycles are important exploration targets in the Pri‐Caspian Basin, Kazakhstan and understanding the controls on stratal patterns is important as a potential exploration tool.  相似文献   

10.
ABSTRACT Quantitative evaluation of fluvial response to allogenic controls is crucial for further progress in understanding the stratigraphic record in terms of processes that control landscape evolution. For instance, without quantitative insight into time lags that are known to exist between sea‐level change and fluvial response, there is no way to relate fluvial stratigraphy to the sea‐level curve. It is difficult to put firm constraints on these time‐lag relationships on the basis of empirical studies. Therefore, we have started to quantify time‐averaged erosion and deposition in the fluvial and offshore realms in response to sea‐level change by means of analogue modelling in a 4 × 8‐m flume tank. The rate of sea‐level change was chosen as an independent variable, with other factors such as sediment supply, discharge and initial geometry kept constant over the course of 18 experiments. Our experimental results support the common view that neither fall nor rise in sea level affects the upstream fluvial system instantaneously. An important cause for the delayed fluvial response is that a certain amount of time is required to connect initial incisions on the newly emergent shelf (canyons) with the fluvial valley. Lowering of the fluvial longitudinal profile starts only after the connection of an active shelf canyon with the fluvial valley; until that moment the profile remains steady. We quantified the process of connection and introduced the quantity ‘connection rate’. It controlled, in conjunction with the rate of sea‐level fall: (1) the amount of fluvial degradation during sea‐level fall; (2) the total sediment volume that bypasses the shelf edge; (3) the percentage of fluvial relative to shelf sediment in the lowstand delta; (4) the volume of the transgressive systems tract and (5) the amount of diachroneity along the sequence boundary. Our experiments demonstrate also that the sequence‐stratigraphic concept is difficult to apply to continental successions, even when these successions have been deposited within the influence of sea level.  相似文献   

11.
Sequence‐stratigraphic models for fourth to sixth order, glacio‐eustatic sequences based only on relative sea‐level variations result in simplified and potentially false interpretations. Glacio‐eustatic sea‐level variations form only one aspect of cyclic climate variation; other aspects, such as variations in fluvial water discharge, vegetation cover, weathering and sediment supply can lead to variable sediment yield, thus adding complexity to sequence‐stratigraphic patterns normally attributed to sea‐level variations. Analogue flume models show a significant impact of water discharge on the timing and character of sequence boundaries, and on changes in the relative importance of systems tracts, as expressed in sediment volumes. Four deltas, generated under the influence of an identical sea‐level curve, and affected by different water‐discharge cycles were generated in the Eurotank facility: (1) constant discharge; (2) high‐frequency discharge variations (HFD); (3) discharge leading sea level by a quarter phase; (4) discharge lagging sea level by a quarter phase. HFD shift the parasequence stacking pattern consistently but do not alter large‐scale delta architecture. Water‐discharge changes that lead sea‐level changes result in high sediment yield during sea‐level rise and in the poor development of maximum flooding surfaces. Delta‐front erosion during sea‐level fall is expressed by multiple, small channels related to upstream avulsions, and does not result in an incised valley that efficiently routs sediment to the shelf edge. When water‐discharge changes lag sea‐level changes, sediment yield is high during falling sea level and results in rapid progradation during forced regression. Erosion from incised valleys is strong on the proximal delta top and dissipates towards the delta front. The combination of high discharge and sea‐level fall provides the most efficient mode of valley incision and sediment transport to the shelf edge. During sea‐level rise, low water discharge results in sediment starvation and well‐developed maximum flooding surfaces. Water‐discharge variations thus alter sequence‐stratigraphic patterns and provide an alternative explanation to the amplitude of sea‐level fall for generating either type 1 or 2 erosional unconformities.  相似文献   

12.
2-D full-waveform inversion of double-couple earthquake sources is implemented. Temporally and spatially extended sources are represented by superposition of double-couples. The source parameters solved for are the spatial location, origin time, amplitude and orientation of each double-couple. The velocity and density distribution and source time function are assumed to be known a priori but may be arbitrarily complicated. The non-linear inverse problem is solved by iterative linear approximation. The Jacobian matrix elements for source depth and rupture angle are computed by wavefield extrapolation forward in time, while those for origin time and amplitude are computed analytically. A smoothing technique that results in faster convergence and avoids local minima associated with cycle skipping is applied at each iteration. A spatial sampling interval, between discrete sources, of one-quarter wavelength of the dominant shear wave is optimal for inversion if high uniqueness of the result is desired. The presence of a fault is inferred from the spatial continuity of the rupture solution, rather than being imposed a priori. The method is illustrated by successful application to three synthetic source models: a single double-couple, a single extended rupture and a double extended rupture. The resolutions of the source depth and origin time are higher, and their posterior covariances are lower than those of the amplitude and rupture angle at each source point. Source depth, origin time and amplitude are primarily determined by the data; the rupture angle is more strongly influenced by the a priori information.  相似文献   

13.
We have formulated a 3-D inverse solution for the magnetotelluric (MT) problem using the non-linear conjugate gradient method. Finite difference methods are used to compute predicted data efficiently and objective functional gradients. Only six forward modelling applications per frequency are typically required to produce the model update at each iteration. This efficiency is achieved by incorporating a simple line search procedure that calls for a sufficient reduction in the objective functional, instead of an exact determination of its minimum along a given descent direction. Additional efficiencies in the scheme are sought by incorporating preconditioning to accelerate solution convergence. Even with these efficiencies, the solution's realism and complexity are still limited by the speed and memory of serial processors. To overcome this barrier, the scheme has been implemented on a parallel computing platform where tens to thousands of processors operate on the problem simultaneously. The inversion scheme is tested by inverting data produced with a forward modelling code algorithmically different from that employed in the inversion algorithm. This check provides independent verification of the scheme since the two forward modelling algorithms are prone to different types of numerical error.  相似文献   

14.
Fluvio‐deltaic stratigraphy develops under continuous morphodynamic interactions of allogenic and autogenic processes, but the role and relative contribution of these processes to the stratigraphic record are poorly understood. We analysed synthetic fluvio‐deltaic deposits of several accommodation‐to‐supply cycles (sequences) with the aim to relate stratigraphic variability to autogenic and allogenic controls. The synthetic stratigraphy was produced in a series of long time‐scale (105 years) numerical experiments with an aggregated process‐based model using a typical passive‐margin topography with constant rates of liquid and solid river discharge subjected to sinusoidal sea‐level fluctuation. Post‐processing of synthetic stratigraphy allowed us to quantify stratigraphic variability by means of local and regional net sediment accumulation over equally spaced time intervals (1–10 kyr). The regional signal was subjected to different methods of time‐series analysis. In addition, major avulsion sites (>5 km from the coastline) were extracted from the synthetic stratigraphy to confirm the interpretations of our analyses. Regional stratigraphic variability as defined in this study is modulated by a long‐term allogenic signal, which reflects the rate of sea‐level fluctuation, and it preserves two autogenic frequency bands: the intermediate and high‐frequency components. The intermediate autogenic component corresponds to major avulsions with a median inter‐avulsion period of ca. 3 kyr. This component peaks during time intervals in which aggradation occurs on the delta plain, because super‐elevation of channel belts is a prerequisite for large‐scale avulsions. Major avulsions occur occasionally during early stages of relative sea‐level fall, but they are fully absent once the coast line reaches the shelf edge and incision takes place. These results are consistent with a number of field studies of falling‐stage deposition in fluvial systems. The high‐frequency autogenic component (decadal to centennial time scales) represents mouthbar‐induced bifurcations occurring at the terminal parts of the system, and to a lesser extent, partial or small‐scale avulsions (<5 km from the coastline). Bifurcation intensity correlates strongly with the rate of progradation, and thus reaches its maximum during forced regression. However, its contribution to overall stratigraphic variability is much less than that of the large‐scale avulsions, which affect the entire area downstream of avulsion nodes. The results of this study provide guidelines for predicting fluvio‐deltaic stratigraphy in the context of co‐existing autogenic and allogenic processes and underscore the fact that the relative importance and the type of autogenic processes occurring in fluvio‐deltaic systems are governed by allogenic forcing.  相似文献   

15.
《Basin Research》2018,30(Z1):48-64
The ability of thermochronometric data to shed light on the geologic history of samples and localities through thermal history inverse modelling is enhanced by the degree to which additional geological information can be incorporated into the modelling process. In this contribution, we describe a new set of methods and processes implemented in the HeFTy modelling software for specifying the stratigraphic relationships between samples down a well or borehole, allowing them to be modelled simultaneously, and demonstrate their use in bringing better definition to both predepositional and burial histories. Data from two wells in the Colombian Andes are examined, one in the Middle Magdalena Valley that experienced not only fast Miocene burial but also features a Mio‐Pliocene unconformity, and one in the eastern foothills of the Eastern Cordillera in which burial was accomplished by a combination of sedimentation and overthrusting. Multiple‐sample modelling in both wells considerably refines the results that are obtained from single‐sample modelling. We also demonstrate how to use these methods to pose and evaluate distinct hypotheses concerning the geologic history. As a general rule, it is best practice to set up thermal history inverse models to pose specific geological questions while ruling out geologically impossible or inconsistent solutions.  相似文献   

16.
ABSTRACT There is continued interest in how the rate of relative sea‐level rise [A ( > 0)] and the rate of sediment supply [S] function during the growth and evolution of deltaic shorelines. The theory of shoreline autoretreat, recently corroborated in flume experiments, claims that (1) A( > 0) and S can never be in equilibrium, and (2) shoreline or shelf‐edge progradation inevitably turns to retrogradation, when relative sea level is rising even modestly and even if A/S = const (> 0). Autoretreat arises because the area of the clinoform surface of the delta (or shelf edge) per kilometer of shoreline must increase as the relative sea level rises, and the delta (or shelf edge) progrades into deeper water. A finite sediment supply rate is thus liable to become inadequate to sustain progradation. The problem increases further as a rising sea level also greatly increases the delta‐plain volume that needs to be filled, further limiting the progradation of the system. The fundamental trajectory of shoreline migration is thus one characterized by a concave‐landward shape, even under the steady forcing of the basin. The magnitudes of A (> 0) and S, or A/S do not determine whether the landward turnaround of the shoreline is realized or not, but affect merely the length and height of the fundamental trajectory curve. Thus, any attempt to detect and interpret temporal changes in A and S from the observed stratigraphic record of shoreline trajectory needs first to take full account of the inbuilt autoretreat mechanism. We develop here a simple, semi‐quantitative method of reconstructing the basin conditions (A and S) from the stratigraphic record of prograding deltaic shorelines (or prograding shelf‐margin clinoforms) on the basis of the theory of shoreline autoretreat. The deterministic nature of the autoretreat theory is advantageous in managing this latter issue, because any expected or unexpected change emerges as some discrepancy from a trajectory that was predicted for the initial conditions. The autoretreat theory also provides a convenient graphical method of dealing with the uncertainty of the field data, and with evaluating the accuracy of any reconstruction. Our methodology has been developed to deal with the behaviour of deltaic shorelines, but is basically applicable to any clinoform system, the development of which is affected by relative sea level. The suggested method is applied to an Early Eocene (Ypresian) regressive shoreline succession in the Central Tertiary Basin on Spitsbergen. The studied regressive wedge developed as a delta‐driven, progradational shelf‐margin system under a regime of overall (i.e. long‐term) rise of relative sea level, but also suffered short‐term sea‐level falls associated with valley incisions on the coastal plain and shelf. On the assumption that S was constant or was steadily decreasing, the analysis of field data obtained from three sites within the basin suggests that the initial water depth in the basin was around 0.45 km, and that the overall relative sea‐level rise (c. 0.80 km) happened largely during an early time period and was followed by a longer period of much lower rate of rise. This pattern of relative sea‐level rise is consistent with the Palaeogene tectonic subsidence trend of the basin which was determined independently through a geohistory analysis. The uncertainty of the field data does not negate our reconstruction. The combined effects of autoretreat and A/S changes on a deltaic shoreline trajectory are confirmed through the development of an autoretreat‐based methodology. Conventional sequence stratigraphic models that assume a possible equilibrium condition between A and S are both conceptually misleading and insufficient to analyse basin conditions quantitatively. Sequence stratigraphic analyses of shorelines need to incorporate the autoretreat concept.  相似文献   

17.
There is now strong evidence that stratal geometries on basin margins are most likely a consequence of multiple controls, not just variations in accommodation. Consequently, correct sequence stratigraphic interpretation of stratal geometries requires an understanding of how multiple different controls may generate similar geometries. Using a simple numerical stratigraphic forward model, we explore the impact of time variable sediment supply and different sediment transport rates on stratal geometries. We demonstrate how four common types of stratal geometry can form by more than one set of controlling parameter values and are thus likely to be non‐unique, meaning that there may be several sets of controlling factors that can plausibly explain their formation. For example, a maximum transgressive surface can occur in the model due to an increase in rate of relative sea‐level rise during constant sediment supply, and due to a reduction in rate of sediment supply during a constant rate of relative sea‐level rise. Sequence boundaries, topset aggradation and shoreline trajectories are also examples of non‐unique stratal geometries. If the model simulations in this work are sufficiently realistic, then the modelled stratal geometries are important examples of non‐uniqueness, suggesting the need for a shift towards sequence stratigraphic methods based on constructing and evaluating multiple hypotheses and scenarios.  相似文献   

18.
This paper describes a new 3‐D forward numerical model (CARBONATE 3D) that simulates the stratigraphic and sedimentological development of carbonate platforms and mixed carbonate–siliciclastic shelves by simulating the following sedimentary processes: (1) Carbonate shallow, open‐marine production, dependent on water depth, restriction and sediment input; (2) Carbonate shallow, restricted‐marine production, dependent on water restriction; (3) Pelagic sediment production and deposition; (4) Coarse and fine siliciclastic input; (5) Erosion, transport and redeposition of sediment, dependent on currents, slope, depth and restriction as well as sediment grain‐size and composition; (6) Dissolution of subaerially exposed carbonate. In this paper the model is used to investigate the controlling mechanisms on the sequence stratigraphy of isolated carbonate platforms and atolls and to predict distinctive architectural signatures from different drowning mechanisms. Investigation of the mechanisms controlling atoll strata shows that although relative sea‐level is the major control, antecedent topography, environmental setting and early diagenesis have profound influence on what stratigraphic geometries and facies develop. Hence care must be taken if sea‐level curves are interpreted from real stratigraphies. Atoll drowning by fast sea‐level rise, by lowered production and by repeated exposure and fast subsequent sea‐level rises are investigated and different stratigraphic signatures for the respective mechanisms predicted. A fast relative sea‐level rise results in a bucket‐shaped morphology developed prior to drowning and a sharp transition from the platform margin facies to a pelagic cover. Drowning caused by lowered platform margin production is predicted to result in the development of a dome‐shaped, shallow‐water shoal over the whole platform top prior to drowning. Fourth order amplitudes of several tens of metres, typical of ‘icehouse’ settings, cause atoll drowning at subsidence rates where atolls subject to fourth order amplitude of only a few metres, typical of ‘greenhouse’ settings, can keep up with the rising sea‐level. In the resultant strata, vertical facies belts are less well developed but horizontally extensive facies bands are more prominent. High fourth order amplitudes (up to 80 m) without sufficient third order scale subsidence will not lead to drowning, however, as the platform can recover in each fourth order lowstand. These results suggest that atolls might be easier to drown in ‘icehouse’ rather than in ‘greenhouse’ conditions but only in situations with suitably high rates of longer‐term relative sea‐level rise or sufficient lag times.  相似文献   

19.
Gilbert deltas are now recognised as an important stratigraphic component of many extensional basins. They are remarkable due to their coarse‐grained nature, large size and steep foresets (up to 30–35°) and may exhibit a variety of slope instability features (faulting, slump scars, avalanching, etc.). They are also often closely related to major, basin‐margin normal faults. There has been considerable research interest in Gilbert deltas, partly due to their economic significance as stratigraphic traps for hydrocarbons but also due to their sensitivity to relative base level changes, giving them an important role in basin analysis. In addition to field studies, numerical modelling has also been used to simulate such deltas, with some success. However, until now, such studies have typically employed continuum numerical techniques where the basic data elements created by simulations are stratigraphic volumes or timelines and the sediments themselves have no internal properties per se and merely represent areas/volumes of introduced coarse‐grained, clastic and sedimentary material. Faulting or folding (if present) are imposed externally and do not develop (naturally) within the modelled delta body itself. Here, I present first results from a novel 2D numerical model which simulates coarse‐grained (Gilbert‐type) deltaic sedimentation in an active extensional tectonic setting undergoing a relative base level rise. Sediment is introduced as packages of discrete elements which are deposited beneath sea level, from the shoreline, upon a pre‐existing basin or delta. These elements are placed carefully and then allowed to settle onto the system. The elements representing the coarse‐grained, deltaic sediments can have an intrinsic coefficient of friction, cohesion or other material properties appropriate to the system being considered. The spatial resolution of the modelling is of the order of 15 m and topsets, foresets, bottomsets, faults, slumps and collapse structures all form naturally in the modelled system. Examples of deltas developing as a result of sediment supply from both the footwall and hanging‐wall of a normal fault, and subject to changes in fault slip rate are presented. Implications of the modelling approach, and its application and utility in basin research, are discussed.  相似文献   

20.
This paper documents the importance of three‐dimensional (3D) seismic data for integrated stratigraphic–morphological analysis of slope systems. Furthermore, it contributes to the general understanding of the evolutionary mechanisms of slope‐confined submarine canyons on continental margins and their significance in a sequence stratigraphic framework. Recently acquired 3D seismic data from the Ebro Continental Margin (Western Mediterranean) have been used to study a series of remarkably well‐imaged submarine canyons in the Plio‐Pleistocene succession. Detailed mapping shows that these canyons are restricted to the slope, and thus can be compared with slope‐confined canyons observed on the present day seabed of many continental margins. The slope‐confined canyons are typically 0.5–2 km wide, 10–15 km long, and incise more than 50 m into the slope units. Their most striking characteristic is an upslope branching geometry in the head region involving up to three orders of bifurcation, with downslope development of a single incisional axis. The submarine canyons are characterized by a nested stacking pattern, undergoing alternating phases of cutting and filling. Limited parts of the upper and middle slope remain outside the canyon system, confined in sharp depositional ridges. The canyons are observed on closely spaced surfaces and exhibit a geometry that allowed the construction and discussion of a local sequence stratigraphic model for their evolution. In general, active incision of the canyons is observed at times throughout almost the entire cycle of base‐level change. However, erosional activity is more significant during the later stages of the relative sea level rise and the entire falling stage, with the timing of maximum erosion observed at the end of the cycle. The minimum erosional activity of the canyons is linked instead to the earliest part of the relative sea level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号