首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Thelon Basin, Nunavut, Canada, is host to unconformity-type uranium mineralisation and has the potential to host other economic deposits. The Thelon Formation (ca. 1750 Ma) is composed of thick (meters to tens of meters), poorly sorted, trough cross-bedded conglomerate and coarse-grained lithic arenite beds, and to a lesser extent, well-sorted, medium- to coarse-grained quartz arenite beds. Relatively rare, 1–12 cm thick, clay-rich siltstones to fine-grained sandstone layers punctuate the coarser lithofacies. Based on regional analysis of drill cores and outcrops, multiple unconformity-bounded sequences are defined in this fluvial-dominated sedimentary succession. Stratigraphic correlations are based on detailed lithofacies analysis, distinct changes in fining-upward cycle thickness, and intraformational surfaces (unconformities, transgressive surfaces, and paleosols).Diagenetic and paragenetic relationships vary systematically with sedimentology and stratigraphy of the Thelon and provide a framework for understanding the evolution of fluid-flow systems in the context of basin hydrostratigraphy. Stratigraphic units with well-sorted textures, which lacked clay and unstable framework grains, originally were aquifers (depositional aquifers) during early basin evolution. However, pervasive, early quartz cementation radically reduced the porosity and permeability of these units, occluding pore throats and transforming them into aquitards. Proximal fluvial and alluvial fan lithofacies that contained detrital, mechanically infiltrated, and diagenetic clay minerals and/or unstable detrital grains originally had low permeabilities and only experienced minor quartz cementation. In the deep burial setting (2–7 km), these units retained sufficient permeability to allow diagenetic fluid flow (diagenetic aquifers) as suggested by feldspar dissolution, quartz dissolution, and formation and recrystallization of illite and other diagenetic reactions. Tracing potential diagenetic aquifer and aquitard units across the study area allowed development of a hydrostratigraphic model. In this model, diagenetic aquifers onlap onto, and focused basinal fluids into basement rocks to the east in the Thelon Basin (in the vicinity of the Kiggavik uranium deposit).  相似文献   

2.
The sandstones of the Dhosa Sandstone Member of Late Callovian and Early Oxfordian age exposed at Ler have been analyzed for their petrofacies, provenance, tectonic setting and diagenetic history. These sandstones are fine to medium grained and poorly- to well sorted. The constituent mineral grains are subangular to subrounded. These sandstones were derived from a mixed provenance including granites, granite–gneisses, low- and high-grade metamorphic and some basic rocks of the Aravalli Range and Nagarparkar Massif. The petrofacies analysis reveals that these sandstones belong to the continental block-, recycled orogen- and rifted continental margin tectonic regime.The imprints of early and deep burial diagenesis of these sandstones include different stages of compaction, cementation, change in crystal boundaries, cement–cement boundaries, chertification and neomorphism. The sequence of cementation includes precipitation of calcite and its subsequent replacement by Fe calcite and silica cements. The typical intermediate burial (2–3 km depth) diagenetic signatures of these sandstones are reflected in the formation of suture and straight-line boundaries, and triple junctions with straight-line boundaries. The depositional environment, relatively low-energy environment that was below storm wave base but subjected to gentle currents, of the Dhosa Sandstone Member controlled the early diagenesis, which in turn influenced the burial diagenesis of these sandstones.  相似文献   

3.
Stratabound, uraniferous diagenetic xenotime cements provide a minimum depositional age of 1,632±3 Ma for the sedimentary Birrindudu Group in the Killi Killi Hills, Tanami Region in northern Australia. The age of xenotime formation is broadly coeval with that recently proposed (1,650–1,600 Ma) for uranium mineralisation in the unconformity-associated deposits of the Pine Creek Inlier, northern Australia, and Athabasca Basin, Canada. The geological setting and formation model for the uraniferous xenotime crystals are similar to those widely proposed for unconformity-associated uranium deposits, suggesting a genetic link between the two. However, xenotime formation in the Birrindudu Group occurred during an apparently earlier stage of diagenesis, compared to late diagenetic formation of unconformity-associated uranium deposits. This could be explained by variations in the thickness of sediment cover and diachronous diagenesis across the basin, at the time of the basin-wide uranium mobilisation event, herein dated at ca. 1,630 Ma. In such a scenario, stratabound uraniferous xenotime cements could represent the remote distal zones of a more deeply buried, uranium mineralising system. Alternatively, the xenotime layer represents a precursor to, or a source for, later unconformity-associated ore deposition. In this case, the presence of diagenetic uraniferous xenotime in an area prospective for unconformity-associated uranium mineralisation would be an indication of, and still provide an approximate age for, uranium mobilisation within the cover sequence. Xenotime is a far more robust mineral than uraninite for U–Pb geochronology and can potentially provide a more reliable and precise timeframe for uranium mineralisation and subsequent recrystallisation events if present in the immediate uranium-ore environment.  相似文献   

4.
西雅尔岗地区位于羌塘高原腹地,地理范围为东经88°00′至89°00′,北纬32°40′至33°40′.大地构造位置从属于羌塘地块的玛依岗日一阿木冈基底隆断带.在晚白坚一第三纪时期,受青藏高原整沐抬升的影响,沉积了一套巨厚的红色陆屑建造,其基本特征为沉积厚度大、粗粒沉积所占比例高、沉积类型复杂、横向及纵向上相变快、岩石的颜色多为红色及紫色.沉积相类型主要为冲积扇、扇三角洲及湖泊.化石类型卖要为植物〔柏型枝),孢粉和鸟足印化石.反映了在干操气候条件下,快速堆积的沉积特征. 根据对该区岩石学的研究,发现岩石的矿物组合和结构类型皆因成岩作用的影响而发生了很大的变化.矿物组合的变化是由于沉积后附加的陆源机械渗人粘土,在地表条件下不稳定矿物及岩屑的溶解作用以及在成岩过程中自生矿物的形成作用所造成的.导致结构类型改变的原因是(1)机械渗人的碎屑粘土及自生的粘土矿物形成孔隙间的粘土质“成岩杂基”.而这些孔隙在最初沉积时则没有杂基存在;(2)松散沉积物在成岩过程中,结构颖粒的溶解作用;(3)由于压实及压溶作用而形成粉砂级及其它细小的颗粒;(4)交代作用及重结晶作用.这些成岩过程明显地反映了整个区域岩石的演化历史. 显微镜、扫描电镜的观察以及红外光谱的侧定结果表明该区红层的形成是由于在成岩过程中赤铁矿的沉淀而造成的.在扫描电镜下可清楚地识别出赤铁矿的自生晶形.由此可以断定赤铁矿在其形成过程中显然是起了染色剂的作用.它的形成主要受孔隙水的氧化还原条件所控制,似乎于气候的关系不大,尽管它是产于干旱条件的沉积物中. 基于对该区岩石的成岩作用及成岩历史演化序列的研究,建立了该区沉积后的成岩环境模式,亦即(l)早期的表生成岩浅埋藏环境,该环境明显受到沉积环境、沉积作用控制以及气候因素的影响;(2)晚期的成岩深埋藏环境,该环境则主要受地温梯度、压力、温度和孔隙水的地球化学条件的控制.  相似文献   

5.
The Alligator Rivers Uranium Field (ARUF) includes the mined and unmined Jabiluka, Ranger, Koongarra and Nabarlek unconformity-related uranium deposits and several small prospects including the newly discovered King River prospect. Uranium mineralisation is hosted by a variety of metamorphosed Nimbuwah Domain lithologies that are unconformably overlain by the Kombolgie Subgroup, a basin package of unmetamorphosed arenites and mafic volcanics. All of the uranium deposits and prospects preserve an identical alteration assemblage that is subdivided into a distal and proximal alteration zone. The distal alteration zone comprises an assemblage of sericite and chlorite that replace albite and amphibole. In some cases, this alteration can be traced >1000 m from the proximal alteration zone that is dominated by uraninite, hematite, chlorite and sericite. Uranium precipitated in the basement as uraninite at 1680 Ma at around 200°C from a fluid having δ18Ofluid values of 3.0±2.8‰ and δDfluid values of ?28±13‰ VSMOW reflecting an evolved marine source. These geochemical properties are indistinguishable from those recorded by diagenetic illite and chlorite that were collected from the Kombolgie Subgroup sandstones across the ARUF. The illite and chlorite formed in diagenetic aquifers, and where these aquifers intersected favourable basement rocks, such as those containing graphite or other reductants, U was precipitated as uraninite. Therefore, it is proposed that the Kombolgie Subgroup is the source for fluids that formed the deposits. A post-ore alteration assemblage dominated by chlorite, but also comprising quartz±dolomite±sulfide veins cut the uranium mineralisation at all deposits and has historically been recorded as part of the syn-ore mineralisation event. However, these minerals formed anywhere between 1500 to 630 Ma from fluids that have distinctly lower δ18Ofluid values around 1.5‰ and lower δDfluid values around ?45‰ reflecting a meteoric water origin. Despite unconformity-related uranium deposits having a large alteration halo, they remain difficult to find. The subtle alteration of albite to sericite several hundred metres from mineralisation occurs in isolation of any increase in trace elements such as U and radiogenic Pb and can be difficult or impossible to identify in hand specimen. Whole rock geochemical data indicate that Pearce Element Ratio (PER) analysis and General Element Ratio (GER) analysis may vector into this subtle alteration because it does not rely on an increase in trace elements to identify proximity to ore. PER and GER plots, Al/Ti vs (2Ca + Na + K)/Ti, Na/Al vs (Na + K)/Al, K/Al vs (Na + K)/Al and (Fe + Mg)/Al vs (Na + K)/Al provide a visual guide that readily distinguish unaltered from altered samples. A plot of (Na + K)/Al and (Fe + Mg)/Al on the x-axis against the concentration of trace elements on the y-axis reveals that U, Pb, Mo, Cu, B, Br, Ce, Y, Li, Ni, V and Nd are associated with the most intensely altered samples. The lithogeochemical vectors should aid explorers searching for uranium mineralisation in a prospective basin environment, but exploration must first focus on the characteristics of the basin to assess its mineralisation potential. A holistic model that describes the evolution of the Kombolgie Subgroup from deposition through diagenesis to formation of the uranium deposits in the underlying basement rocks is presented and has application to other basins that are considered prospective for unconformity-related uranium deposits. The model outlines that explorers will need to consider the thickness of the sedimentary pile, its lithological composition relative to depositional setting, the depth to which the sediments were buried during diagenesis and the degree of diagenesis achieved, which may be time dependant, before deciding on the prospectivity of the basin.  相似文献   

6.
Wadi Queih basin hosts a ~2,500-m thick Neoproterozoic volcanoclastic successions that unconformably lie over the oldest Precambrian basement. These successions were deposited in alluvial fan, fluviatile, lacustrine, and aeolian depositional environments. Diagenetic minerals from these volcaniclastic successions were studied by X-ray diffractometry, scanning electron microscopy, and analytical electron microscopy. The diagenetic processes recognized include mechanical compaction, cementation, and dissolution. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-filling clay cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cement and feldspar grains. In addition to calcite, several different clay minerals including kaolinite, illite, and chlorite with minor smectite occur as pore-filling and pore-lining cements. Chlorite coating grains helps to retain primary porosity by retarding the envelopment of quartz overgrowths. Clay minerals and their diagenetic assemblages has been distinguished between primary volcaniclastics directly produced by pyroclastic eruptions and epiclastic volcaniclastics derived from erosion of the pre-existing volcanic rocks. Phyllosilicates of the epiclastic rocks display wider compositional variations owing to wide variations in the mineralogical and chemical compositions of the parent material. Most of the phyllosilicates (kaolinite, illite, chlorite, mica, and smectite) are inherited minerals derived from the erosion of the volcanic basement complex, which had undergone hydrothermal alteration. Smectites of the epiclastic rocks are beidellite–montmorillonite derived from the altered volcanic materials of the sedimentary environment. Conversely, phyllosilicate minerals of the pyroclastic rocks are dominated by kaolinite, illite, and mica, which were formed by pedogenetic processes through the hydrothermal influence.  相似文献   

7.
The Middle Jurassic Khatatba Formation acts as a hydrocarbon reservoir in the subsurface in the Western Desert, Egypt. This study, which is based on core samples from two exploration boreholes, describes the lithological and diagenetic characteristics of the Khatatba Formation sandstones. The sandstones are fine‐ to coarse‐grained, moderately to well‐sorted quartz arenites, deposited in fluvial channels and in a shallow‐marine setting. Diagenetic components include mechanical and chemical compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of calcite cements and feldspar grains. The widespread occurrence of an early calcite cement suggests that the Khatatba sandstones lost a significant amount of primary porosity at an early stage of its diagenetic history. In addition to calcite, several different cements including kaolinite and syntaxial quartz overgrowth occur as pore‐filling and pore‐lining cements. Kaolinite (largely vermicular) fills pore spaces and causes reduction in the permeability of the reservoir. Based on framework grain–cement relationships, precipitation of the early calcite cement was either accompanied by or followed the development of part of the pore‐lining and pore‐filling cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late kaolinite clay cement occurs due to dissolved feldspar and has an impact on the reservoir quality of the Khatatba sandstones. Open hydraulic fractures also generated significant secondary porosity in sandstone reservoirs, where both fractures and dissolution took place in multiple phases during late diagenetic stages. The diagenesis and sedimentary facies help control the reservoir quality of the Khatatba sandstones. Fluvial channel sandstones have the highest porosities and permeabilities, in part because of calcite cementation, which inhibited authigenic clays or was later dissolved, creating intergranular secondary porosity. Fluvial crevasse‐splay and marine sandstones have the lowest reservoir quality because of an abundance of depositional kaolinite matrix and pervasive, shallow‐burial calcite and quartz overgrowth cements, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
祝仲蓉 Marsh.  J 《沉积学报》1992,10(1):133-145
更新世以来,剧烈的构造运动已将巴布亚新几内亚合恩半岛东北海岸的晚第四纪珊瑚礁阶地抬升上千米.阶地中造礁珊瑚的成岩变化和成岩产物的组构特征反映了该礁的成岩历史,充分体现该区快速构造上升的影响.海水潜流带和淡水渗流带为上升礁的主要成岩环境.生物钻孔、生物碎屑填隙、珊瑚文石针粗化、珊瑚骨骼的溶解和新生变形转化,以及其不同矿物成分和组构的种种胶结物的胶结作用是造礁珊瑚经历的主要成岩作用.地球化学资料表明其成岩变化发生于开放的化学体系之中.  相似文献   

9.
贵州紫云县猴场镇扁平村的上石炭统中的叶状藻礁及其周边灰岩中发育强烈的成岩作用和胶结物,这些胶结物在猴场研究区内是显著的和有代表性的。通过观察、分析野外露头、光片、薄片、薄片的阴极发光和染色,来研究礁体岩石的成岩作用,确定了成岩作用序列、成岩环境、成岩阶段。成岩作用类型主要有泥晶化、溶蚀、胶结、新生变形、机械压实、剪切或...  相似文献   

10.
Diagenesis has a significant impact on reservoir quality in deeply buried formations. Sandstone units of the Shahejie Formation (Es1 Member) of Nanpu Sag, Bohai Bay Basin, East China is a typical deeply buried sandstone with large hydrocarbon accumulations. The methodology includes core observations and thin section studies, using fluorescence, scanning electron microscope (SEM), cathodoluminescence (CL), fluid inclusion and isotope and electron probing analysis as well as the numerical determination of reservoir characteristics. The sandstones consist of medium to coarse-grained, slight to moderate sorted lithic arkose and feldspathic litharenite. Porosity and permeability values range from 0.5 to 30% and 0.006 to 7000 mD, respectively. The diagenetic history reveals mixed episodes of diagenesis and deep burial followed by uplift. The main diagenetic events include compaction, cementation alteration, dissolution of unstable minerals and grain fracturing. Compaction resulted in densification and significantly reduced the primary porosity. Quartz, calcite and clay are the dominant pore-occluding cement and occur as euhedral to subhedral crystals. Alteration and dissolution of volcanic lithic fragments and pressure solution of feldspar grains were the key sources of quartz cement whereas carbonate cement is derived from an external source. Clay minerals resulted from the alteration of feldspar and volcanic lithic fragments. Porosity and permeability data predict a good inverse relationship with cementation whereas leaching of metastable grains, dissolution of cement and in some places formation of pore-lining chlorite enhanced the reservoir quality. The best reservoir is thicker sandstone bodies that are medium to coarse-grained, well-sorted sandstone with low primary ductile grains with a minor amount of calcite cement. The present study shows several diagenetic stages in the Es1 Member, but the overall reservoir quality is preserved.  相似文献   

11.
The existing stratigraphic nomenclature applied to the Early and Middle Triassic Sherwood Sandstone Group in NW England has resulted from more than 150 years of geological investigation, but is characterized by a lithostratigraphic system that is insufficiently flexible to allow for variations in lithology and sedimentary facies within a continental depositional system. A revised well correlation based on the detrital mineralogical and chemical composition of the Ormskirk Sandstone Formation in four offshore wells, that is then extended to provide near‐basin‐wide well correlations using a regional shale marker, confirms previously suggested but unproven diachroneity at the top of the Sherwood Sandstone Group. It also reveals the presence of incised valleys filled by stacked amalgamated fluvial channel sandstones and cut into previously deposited aeolian and sandflat sequences as well as older fluvial channel sandstones. The combination of well correlations indicates that the valleys were incised by a fluvial system flowing NW from the Cheshire Basin into the East Irish Sea Basin and then west towards the Peel and Kish Bank basins. The stratal geometry of the upper part of the Sherwood Sandstone Group is suggested to conform to models of climatically mediated alternations of fluvial degradation and aggradation in response to changes in the relationship between sediment flux and stream discharge. This model is supported in the Sherwood Sandstone Group by climatically driven variations in the non‐channelized facies which record upward wetting and drying cycles that can be locally tied to fluvial incision surfaces, and suggest a hierarchy of at least three levels of climatic cyclicity recorded within the sedimentary succession. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The alluvial–fluvial drainage system in the Wadi Araba, southern Jordan, incised into Cambrian clastic sedimentary and felsic igneous rocks giving rise to a disseminated Cu–(Mn) mineralization of diagenetic and epigenetic origin along the southern branch of the Dead Sea Transform Fault (=DSTF). During the Late Pleistocene and Holocene, the primary Cu sulfides were replaced by secondary minerals giving rise to hypogene to supergene encrustations, bearing Cu silicates, Cu carbonates, Cu oxychlorides and cupriferous vanadates. They occur in fissures, coat walls and developed even-rim/meniscus and blocky cements in the arenites near the surface. The first generation cement has been interpreted in terms of freshwater vadose hydraulic conditions, while the second-generation blocky cement of chrysocolla and malachite evolved as late cement. The Cu–Si–C fluid system within the Wadi Araba drainage system is the on-shore or subaerial facies of a regressive lacustrine regime called the “Lake Lisan Stage”, a precursor of the present-day Dead Sea. Radiocarbon dating (younger than 27,740 ± 1,570 years), oxygen-isotope-based temperature determination (hot brine-related mineralization at 60–80 °C, climate-driven mineralization at 25–30 °C) and thermodynamical calculations let to the subdivision of this secondary Cu mineralization into four stages, whose chemical and mineralogical composition was controlled by the variation of the anion complexes of silica and carbonate and the chlorine contents. The acidity of the pore water positively correlates with the degree of oxidation. The highest aridity and most intensive evaporation deduced from the thermodynamical calculations were achieved during stage 3, which is coeval with late Lake Lisan. Geogene processes causing Cu-enriched encrustations overlap with man-made manganiferous slags. The smelter feed has been derived mainly from Cu ore which developed during Late Pleistocene in the region.  相似文献   

13.
The Darlington (Sakmarian) and Berriedale (Artinskian) Limestones are neritic deposits that accumulated in high‐latitude environments along the south‐eastern margin of Pangea in what is now Tasmania. These rocks underwent a series of diagenetic processes that began in the marine palaeoenvironment, continued during rapid burial and were profoundly modified by alteration associated with the intrusion of Mesozoic igneous rocks. Marine diagenesis was important but contradictory; although dissolution took place, there was also coeval precipitation of fibrous calcite cement, phosphate and glauconite, as well as calcitization of aragonite shells. These processes are interpreted as having been promoted by mixing of shelf and upwelling deep ocean waters and enabled by microbial degradation of organic matter. In contrast to warm‐water carbonates where meteoric diagenesis is important, the Darlington and Berriedale Limestones were largely unaffected by meteoric diagenesis. Only minor dissolution and local cementation took place in this diagenetic environment, although mechanical compaction was ubiquitous. Correlation with burial history curves indicates that chemical compaction became important as burial depths exceeded 150 m, promoting precipitation of extensive ferroan calcite. This effect resulted from burial by rapidly deposited, overlying, thick, late Permian and Triassic terrestrial sediments. This diagenetic pathway was, however, complicated by the subsequent intrusion of massive Mesozoic diabases and associated silicifying diagenetic fluids. Finally, fractures most probably connected with Cretaceous uplift were filled with late‐stage non‐ferroan calcite cement. This study suggests that both carbonate dissolution and precipitation occur in high‐latitude marine palaeoenvironments and, therefore, the cold‐water diagenetic realm is not always destructive in terms of diagenesis. Furthermore, it appears that for the early Permian of southern Pangea at least, there was no real difference in the diagenetic pathways taken by cool‐water and cold‐water carbonates.  相似文献   

14.
Carbonate concretions formed in bathyal and deeper settings have been studied less frequently than those formed in shallow‐marine deposits. Similarly, concretions affected by catagenetic conditions have rarely been reported. Calcite concretions in deep‐marine mudstones and greywackes of the Bardo Unit (Sudetes Mountains, Poland) formed during early diagenesis and were buried to significant depths. Petrographic and geochemical (elemental and stable C and O isotopic) analyses document their formation close to the sediment–water interface, prior to mechanical compaction within the sulphate reduction zone and their later burial below the oil window. Although the concretions were fully formed during early diagenesis, the effects of increased temperature and interaction with late‐diagenetic interstitial fluids can be discerned. During maximum burial, the concretions underwent thorough recrystallization that caused alteration of fabric and elemental and O isotope composition. The initial finely crystalline cement was replaced by more coarsely crystalline, sheaf‐like, poikilotopic calcite in the concretions. These large calcite crystals engulf and partially replace unstable detrital constituents. The extremely low δ18O values (down to ?21·2‰ Vienna Pee Dee Belemnite) in the concretions are the result of the increased temperature in combination with alteration of volcanic glass, both causing a significant 18O‐depletion of bicarbonate dissolved in the interstitial fluids. Recrystallization led to uniform O isotope ratios in the concretions, but did not affect the C isotope signature. The δ13C values of the late‐diagenetic cements precipitated in the greywacke and in cracks cutting through concretions imply crystallization in the catagenetic zone and decarboxylation as a source of the bicarbonate. These late‐diagenetic processes took place in a supposedly overpressured setting, as suggested by clastic dykes and hydrofractures that cut through both concretions and host rock. All of these features show how the effects of early and late diagenesis can be distinguished in such rocks.  相似文献   

15.
A bored and encrusted late Pleistocene ooid grainstone was recovered from the seafloor at a depth of approximately 40 m on the outer continental shelf of eastern Florida. Ooid cortices are dominantly bimineralic, generally consisting of inner layers of radial magnesian calcite and outer layers of tangential aragonite. Ooid nuclei are dominantly rounded cryptocrystalline grains, although quartz grains and a variety of skeletal grains also occur as nuclei. Ooids are partially cemented by blocky calcite, and interparticle porosity is partially filled by micrite. Radial cortex layers are composed of brightly cathodoluminescent magnesian calcite having a composition of approximately 12 mol% MgCO3 and 1000 ppm strontium. The iron and manganese concentrations in radial cortex layers are generally in the range of 500–1000 ppm and 100–250 ppm, respectively. Tangential cortex layers are composed of noncathodoluminescent aragonite containing approximately 11 500 ppm strontium and less than 0.5 mol% MgCO3. Iron concentrations in tangential cortex layers are generally in the range of 150–400 ppm, and manganese concentrations are generally below the detection limit of 100 ppm. Echinoderm skeletal fragments, which are present as accessory grains, are composed of brightly cathodoluminescent magnesian calcite. Some ooid nuclei and the thin outer edges of some blocky calcite cement are cathodoluminescent; micrite matrix and the bulk of blocky calcite cement are noncathodoluminescent. Ooids do not exhibit textural evidence of recrystallization. The ooid grainstone underwent an episode of meteoric diagenesis. but ooid cortices were not affected by the event. We propose a previously unrecognized process by which the magnesian calcite cortex layers underwent diagenetic alteration in oxygen-depleted seawater. During this diagenesis, magnesium was lost and manganese was incorporated without apparent textural alteration and without mineralogical stabilization. Thus, we Suggest that cathodoluminescence may result from diagenetic alteration on the sea-floor.  相似文献   

16.
东营凹陷在沙河街组沉积期为北陡南缓的箕状断陷湖盆。通过钻井岩心、测井、薄片及扫描电镜分析,在断陷湖盆的南缓坡带古近系沙河街组中识别出了冲积扇、河流、三角洲和湖?白沉积体系,以及滨浅湖砂坝和缓坡远端浊积扇沉积相。建立了东营凹陷南部缓坡带层序地层格架及层序演化模式。在此基础上,详细研究了层序地层格架内的成岩作用特征。层序地层格架内主要成岩作用类型有压实作用、压溶作用、溶解作用等,成岩阶段为早成岩A、B期,晚成岩A、B期。层序地层格架内发育了碳酸盐胶结、石英次生加大、高岭石胶结和泥岩压实四种成岩相。  相似文献   

17.
Clay mineral assemblages in alluvial mudrocks are important for paleoclimatic interpretation and for understanding burial diagenetic cementation in sandstones, but it is commonly difficult to unravel the relative importance of source weathering, pedogenesis and diagenesis in their origin. The clay mineral assemblages in fluvial overbank mudrocks from the Lower Cretaceous Chaswood Formation in central Nova Scotia, investigated by X-ray diffraction analysis of the < 2 µm fraction of 45 samples, include kaolinite, illite, vermiculite, and mixed layer kaolinite/expandable clay and mica/vermiculite. The assemblages vary with depositional facies. Wetland organic-rich mudrocks have large amounts of amorphous material and kaolinite is the dominant clay mineral. In the eastern part of the basin, where overbank mudrocks were episodically uplifted by syn-sedimentary strike-slip faulting, cumulate ultisol and alfisol paleosols are common. In the ultisols, hematite is enriched and kaolinite increases at the expense of illite in the B horizon. Alfisols contain more illite and vermiculite and the B horizon is enriched in goethite. In the western part of the basin, where thin sandstones with abundant diagenetic kaolinite cement are interbedded with the mudrocks, the distinctive clay mineral assemblage of mica/vermiculite mixed layer, vermiculite with 15.5 Å peak, and kaolinite/expandable mixed layer clay with a 17.7 Å peak is interpreted to result from bacterially-mediated oxidation of organic matter below the paleo-water table during early burial diagenesis. Deeper burial diagenesis may lead to slightly higher kaolinite crystallinity. Volcanic ash appears to alter to kaolinite/expandable mixed layer clay with a 7.9 Å peak. Comparison with the continuously subsiding and rapidly accumulated Wessex Formation of southern England, formed at a similar paleolatitude, shows the strong role of pedogenic processes and early diagenesis by meteoric water in development of clay mineral assemblages in the locally tectonically uplifted Chaswood Formation.  相似文献   

18.
延长油区上三叠统长 2地层河流相-三角洲相砂岩储层的物性明显受埋藏-成岩作用事件的影响。埋藏压实作用是导致砂岩孔隙丧失的主要原因,造成的平均孔隙度丧失为 17.8%。其中黑云母的早期成岩蚀变是造成原生孔隙丧失的一个重要原因。胶结作用造成的平均孔隙度丧失为 7.1%。其中碳酸盐胶结物和次生石英加大是造成砂岩物性降低的主要胶结物。碎屑颗粒周围绿泥石薄膜的存在阻止了一部分石英次生加大及碳酸盐胶结物的沉淀,使一部分原生粒间孔隙得以保存。晚期成岩阶段有机质分解形成的酸性流体及表生成岩作用阶段的大气降水是形成次生孔隙的主要原因,从而使长 2砂岩的物性得到改善  相似文献   

19.
The diagenesis in the organic-rich Cretaceous to Eocene Al Hisa Phosphorite Formation (AHP), Muwaqqar Chalk Marl Formation (MCM) and Umm Rijam Chert-Limestone Formation (URC) formations of Jordan can be linked directly to the fluctuating sedimentary environment of this shelf depositional system in the Middle to Late Eocene, and its influence on the composition of the deposited sediment and the early burial diagenetic environment. Most cementation was early, mostly within the first 10 m of burial, perhaps entirely within the first 100 m of burial. We propose that the siliceous cements are derived from biogenic silica, probably of diatoms, deposited in a shelf of enhanced productivity. Volumetrically, the most important processes were the redistribution of biogenic opal-A (diatoms) and calcite to form pervasive, layered and nodular cements. The formation of the silica and carbonate cements is closely linked through the effects their dissolution and precipitation have on pore fluid chemistry and pH. The chert beds have a biogenic silica origin, formed through replacement of diatoms and radiolaria by opal-CT, and subsequently by quartz. Calcite cement has carbonate derived from microbial diagenesis of organic matter and calcium derived from seawater. The Mg for early dolomite may have been generated by replacement of opal-CT by quartz, ore dissolution of unstable high Mg calcite bioclasts. The silica and carbonate diagenetic processes are both linked to microbial diagenesis of organic matter, and are intimately linked in both time and space, with pH possibly influencing whether a silica or a carbonate mineral precipitates. The paucity of metal cations capable of precipitating as sulphides is crucial to the creation of acidic pore water favourable to silica precipitation, either as opal-CT, chalcedony or quartz. The lack of clay minerals as a sink for the Mg required for opal-CT polymerisation is the principal factor responsible for the remarkably early silica cementation. All the diagenetic processes, with the probable exception of the opal-CT to quartz transition are early, almost certainly within the first 10 m of burial, possibly much less. A paragenetic sequence is presented here based on these two cores that should be tested against a wider core distribution to see whether this diagenetic history can be generalised throughout the basin. Warm bottom water temperatures probably led to silica diagenesis at much shallower burial depths than occurs in many other sedimentary basins. Silicified layers, in turn, commonly host fractures, suggesting that mechanical properties of the strata began to differentiate at a very early stage in the burial cycle. This has wide implications for processes linking diagenesis to deformation.  相似文献   

20.
The Sheepbed mudstone forms the base of the strata examined by the Curiosity rover in Gale Crater on Mars, and is the first bona fide mudstone known on another planet. From images and associated data, this contribution proposes a holistic interpretation of depositional regime, diagenesis and burial history. A lake basin probably received sediment pulses from alluvial fans. Bed cross‐sections show millimetre to centimetre‐scale layering due to distal pulses of fluvial sediment injections (fine‐grained hyperpycnites), fall‐out from river plumes, and some aeolian supply. Diagenetic features include mineralized synaeresis cracks and millimetre‐scale nodules, as well as stratiform cementation. Clay minerals were initially considered due to in situ alteration, but bulk rock chemistry and mineralogy suggests that sediments were derived from variably weathered source rocks that probably contained pre‐existing clay minerals. X‐ray diffraction analyses show contrasting clay mineralogy in closely spaced samples, consistent with at least partial detrital supply of clay minerals. A significant (ca 30 wt%) amorphous component is consistent with little post‐depositional alteration. Theoretical modelling of diagenetic reactions, as well as kinetic considerations, suggest that the bulk of diagenetic clay mineral formation occurred comparatively late in diagenesis. Diagenetic features (synaeresis cracks and nodules) were previously thought to reflect early diagenetic gas formation, but an alternative scenario of synaeresis crack formation via fabric collapse of flocculated clays appears more likely. The observed diagenetic features, such as solid nodules, hollow nodules, matrix cement and ‘raised ridges’ (synaeresis cracks) can be explained with progressive alteration of olivine/glass in conjunction with centrifugal and counter diffusion of reactive species. Anhydrite‐filled fractures in the Sheepbed mudstone occurred late in diagenesis when fluid pressures built up to exceed lithostatic pressure. Generating fluid overpressure by burial to facilitate hydraulic fracturing suggests a burial depth of at least 1000 m for the underlying strata that supplied these fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号