首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Permian Park City Formation consists of cyclically bedded subtidal to supratidal carbonates, cherts and siltstones. Early diagenesis of Park City Formation carbonates occurred under the influence of waters ranging from evaporative brines to dilute meteoric solutions and resulted in evaporite emplacement (syndepositional nodules and cements), as well as dolomitization, silicification and leaching of carbonate grains. Major differences are seen, however, in the diagenetic patterns of subsurface and surface sections of Park City Formation rocks. Subsurface samples are characterized by extensively preserved evaporite crystals and nodules, and preserve evidence of significant silicification (chert, chalcedony and megaquartz) and minor calcitization of evaporites. In outcrop sections, the evaporites are more poorly preserved, and have been replaced by silica and calcite and also leached. The resultant mouldic porosity is filled with widespread, very coarse, blocky calcite spar. These replacements appear to be multistage phenomena. Field and petrographic evidence indicates that silicification involved direct replacement of evaporites and occurred during the early stages of burial prior to hydrocarbon migration. Siliceous sponge spicules provided a major source of silica, and the fluids involved in replacement were probably a mixture of marine and meteoric waters. A second period of replacement and minor calcitization is inferred to have occurred during deep burial (under the influence of thermochemical sulphate reduction), although the presence of hydrocarbons probably retarded most other diagenetic reactions during this time interval. The major period of evaporite diagenesis, however, occurred during late stage uplift. The late stage replacement and pore-filling calcites have δ13C values ranging from 0·5 to -25·3%, and δ18O values of -16·1 to -24·30 (PDB), reflecting extensive modification by meteoric water. Vigorous groundwater flow, associated with mid-Tertiary block faulting, led to migration of meteoric fluids through the porous carbonates to depths of several kilometres. These waters reacted with the in situ hydrocarbon-rich pore fluids and evaporite minerals, and precipitated calcite cements. The Tosi Chert appears to have been an even more open system to fluid migration during its burial and has undergone a much more complex diagenetic history, as evidenced by multiple episodes of silicification, calcitization (ferroan and non-ferroan), and hydrocarbon emplacement. The multistage replacement processes described here do not appear to be restricted to the Permian of Wyoming. Similarly complex patterns of alteration have been noted in the Permian of west Texas, New Mexico, Greenland and other areas, as well as in strata of other ages. Thus, multistage evaporite dissolution and replacement may well be the norm rather than the exception in the geological record.  相似文献   

2.
Many fabrics in Corallian (Upper Jurassic) carbonates in England, France and Switzerland are bigenetic, forming by solution/precipitation and recrystallization processes. Early precipitated cements are non‐ferroan, whereas those formed later are decidedly ferroan. Mossbauer spectroscopy has shown that the iron in the carbonates is largely divalent, substituting for calcium in the calcite lattice. The cements may be subdivided into those forming in an oxidizing environment, and those forming in a reducing environment. Fabric evidence indicates that a solution period separates the two cement phases. The diagenetic history is linked with the sedimentation pattern. Thus, under progressive build up of sediments into shallow‐water or supratidal conditions, the first‐phase cement probably precipitated from non‐marine, partially oxygenated vadose water. Subsequent subsidence and sedimentation resulted in the depression of partially cemented sediments into zones within the sedimentary pile conducive first to pyrite precipitation, and then to ferroan calcite precipitation. Fabrics can therefore be used to interpret the diagenetic environment of regressive sedimentary associations.  相似文献   

3.
Halite-impregnated carbonates in the Dawson Bay Formation of Saskatchewan lie between beds of halite and are buried to a depth of 1 km. They exhibit two different diagenetic styles – some resisted compaction and had high pre-salt porosities; others contain compaction-broken fossils and pressure-solution seams. The uncompacted rocks, together with the difficulty of explaining how halite cement could enter the Dawson Bay after overlying bedded halites were deposited, suggest that halite cementation occurred early with only a few tens of metres of overburden. Early diagenetic compaction is suggested by the presence of unbroken, displacive skeletal halite crystals, which cross-cut compaction structures, and by the difficulty of explaining how (1) later compaction could occur in halite-cemented rocks and (2) how pore-fluids could be expelled after surrounding rocks lost their permeability. The organic-rich nature of many carbonates may explain why compaction was both early and extensive, but this explanation fails to explain how similar compaction developed in horizons with lower organic contents. Chemical compaction may also have been enhanced by aragonite dissolution during seawater evaporation or brine dilution. Early chemical compaction in Dawson Bay carbonates indicates that compaction in other carbonates need not signify deep burial diagenesis; neither can compaction be used indiscriminately to identify other diagenetic events as being of deep burial origin. Early halite cementation, as in the Dawson Bay Formation, preserves carbonates at early diagenetic stages and may thus preserve geochemical information unmodified by later diagenesis.  相似文献   

4.
Cementation of bryozoan-echinoid-benthic foraminiferal temperate shelf carbonates of the Oligocene Te Kuiti Group, North Island, New Zealand, occurred mainly during subsurface burial. The calcite cements in the limestones are dominated by equant and syntaxial rim spar which typically becomes ferroan (given an iron supply) and, compared to the skeletal material with normal marine δ18O values from +2 to −1‰, more depleted in 18O with depth of burial, the δ18O composition of bulk cement samples ranging from −1 to −7‰. These trends reflect the establishment in pore waters during sediment burial of reducing conditions and gradually increasing temperatures (20–50°C), respectively. The δ13C values (0 to +3‰) of the cements remain the same as the host marine shells, suggesting the source of carbon in the cements was simply redistributed marine carbonate derived from shell dissolution.

Two gradational burial diagenetic environments influenced by marine-derived porewaters are arbitrarily distinguished: shallow burial phase and moderate burial phase. During the shallow burial phase, down to 500–600 m sub-bottom depth, the carbonates lost at least 25% of their original porosity by mechanical compaction and were selectively cemented by non-ferroan or usually ferroan, variably luminescent, slightly 18O-depleted sparry calcite cement (δ18O −2 to −4‰), mainly as syntaxial rims about echinoid grains. These shallow-burial cements form less than about 10% of total cement in the majority of the limestones and their source was probably mainly mild intergranular dissolution of calcitic skeletal fragments accompanying the onset of chemical compaction. During the moderate burial phase, between about 600 and 1100 m sub-bottom depth, porosity loss continued (typically to about 70% of its original value) as a result of pressure-solution of calcitic bioclasts associated with more advanced stages of chemical compaction. This involved development of a wide variety of non-sutured and microstylolitic solution seams, including both single and composite, wispy or continuous, bedding-parallel types and non-parallel reticulate forms. The released carbonate was precipitated as ferroan (or non-ferroan where iron supply was negligible), dull luminescent, strongly 18O-depleted (δ18O −4 to −7‰), mainly equant calcite spar cement, occluding available pore space in the limestones.  相似文献   


5.
贵州紫云县猴场镇扁平村的上石炭统中的叶状藻礁及其周边灰岩中发育强烈的成岩作用和胶结物,这些胶结物在猴场研究区内是显著的和有代表性的。通过观察、分析野外露头、光片、薄片、薄片的阴极发光和染色,来研究礁体岩石的成岩作用,确定了成岩作用序列、成岩环境、成岩阶段。成岩作用类型主要有泥晶化、溶蚀、胶结、新生变形、机械压实、剪切或...  相似文献   

6.
The diagenesis of carbonate platform sediments is controlled by the original facies and mineralogy, climate, sea-level changes and burial history; these controls are clearly seen in the diagenesis of the Urgonian platform carbonates of SE France. Early diagenesis in the Urgonian platform included the precipitation of marine cements, dissolution of rudist shells and minor karstification. Diagenetic features produced during this phase were controlled by several falls in relative sea-level during the Barremian to mid-Aptian punctuating platform sedimentation, the original mineralogy of the sediment and the prevailing semi-arid/arid climate in the region at this time. Following a relative sea-level rise and further sedimentation, progressive burial of the platform led to minor compaction, followed by precipitation of coarse, equant, zoned to non-luminescent, calcite cement. This cement was cut by later stylolites, suggesting a relatively shallow-burial origin. Stable isotope (mean values - 7.94%δ18O and 0.36%δ13C) and trace element (mean values of Fe 334 ppm, Mn 92 ppm and Sr 213 ppm) data suggest that these cements precipitated from meteoric fluids at temperatures slightly elevated relative to depositional temperatures. A variable thickness of replacive dolomite which occurs preferentially within the shelf-margin facies of the lower part of the Urgonian post-dates mechanical fracturing and chemical compaction, but pre-dates the main phase of stylolitization. It is probable that the dolomitizing fluid was sourced by the early compaction-driven release of connate fluids held within the underlying muddy units. The burial history of these rocks suggests that calcite cementation and dolomitization took place at relatively shallow burial depths (1–1.5 km). The overall diagenetic history of the Urgonian Limestone Formation is a reflection of the pre-conditioning of the platform limestones by climate, sea level, tectonics and the shallow burial depths experienced by the platform during the later Mesozoic.  相似文献   

7.
This paper describes 11 microfacies types in late Bathonian–Early Callovian carbonates of the Kuldhar Member of the Jaisalmer Formation (Rajasthan) and the Keera Golden Oolite Member of the Chari Formation (Kachchh Mainland) western India. The different microfacies associations reported in this study reflect an ideal shallowing upward sequence, representing a system of bioclastic bars developed on the lower ramp, evolving into an oolitic bar-to-bank system separating restricted lagoonal—from lower ramp environment. Four main types of cements, i.e. bladed, fibrous, syntaxial overgrowth and blocky cement (characterized in a few cases by ferroan calcite and anhydrite II) occur in these carbonates. The study also reveals that chemical compaction followed the two phases of early mechanical compaction that largely governed porosity of these limestones. However, micritization and neomorphism also contributed significantly in this respect. Diagenetic signatures in these carbonates suggest that marine phreatic and fresh water phreatic environments dominated, but deep burial diagenesis also played its role in shaping these rocks. The early and late diagenetic changes have been controlled by the depositional facies evolving in a basin riddled with rifting in an extensional tectonic regime forcing regional-scale sea level fluctuations.  相似文献   

8.
Carbonate concretions, lenses and bands in the Pleistocene, Palaeogene and Upper Triassic coalfields of Japan consist of various carbonate minerals with varied chemical compositions. Authigenic carbonates in freshwater sediments are siderite > calcite > ankerite > dolomite >> ferroan magnesite; in brackish water to marine sediments in the coal measures, calcite > dolomite > ankerite > siderite >> ferroan magnesite; and in the overlying marine deposits, calcite > dolomite >> siderite. Most carbonates were formed progressively during burial within a range of depths between the sediment-water interface and approximately 3 km. The mineral species and the chemical composition of the carbonates are controlled primarily by the initial sedimentary facies of the host sediments and secondarily by the diagenetic evolution of pore water during burial. Based on the regular sequence and burial depth of precipitation of authigenic carbonates in a specific sedimentary facies, three diagenetic stages of carbonates are proposed. Carbonates formed during Stage I (< 500 m) strongly reflect the initial sedimentary facies, e.g. low Ca-Mg siderite in freshwater sediments which are initially rich in iron derived from lateritic soil on the nearby landmass, and Mg calcite and dolomite in brackish-marine sediments whose pore waters abound in Ca2+ and Mg2+ originating in seawater and calcareous shells. Carbonates formed during Stage II (500–2000 m) include high Ca-Mg siderite, ankerite, Fe dolomite and Fe–Mg calcite in freshwater sediments. The assemblage of Stage II carbonates in brackish-marine sediments in the coal measures is similar to that in freshwater sediments. This suggests similar diagenetic environments owing to an effective migration and mixing of pore water due to the compaction of host sediments. Carbonates formed during Stage III (> 2000 m) are Fe calcite and extremely high Ca-Mg siderite; the latter is exclusively in marine mudstones. The supply of Ca is partly from the alteration of silicates in the sediments at elevated burial temperatures. After uplift, calcite with low Mg content precipitates from percolating groundwater and fills extensional cracks.  相似文献   

9.
During diagenetic stages, the aragonitic skeletons and the inter/intra-corallite cement of the upper Jurassic corals of Hanifa Formation either dissolved or subjected to diagenetic alterations including cementation, micritization, recrystallization, silicification, dolomitization and dedolomitization. The proposed sequence of diagenetic stages is as follows: early marine diagenesis, early meteoric and mixing zone diagenesis, late meteoric diagenesis, and shallow burial diagenesis. Each stage is characterized by certain diagenetic processes. The source of sulfate solutions for dedolomitization in the studied corals is the dissolved anhydrite deposits of the Arab–Hith Formations, sometime before their erosion. A possible source of silica, needed for the formation of chert and chalcedony, is the sponge spicules dispersed in many carbonates of the Hanifa Formation.  相似文献   

10.
Two oolites in the Dinantian (Mississippian/Lower Carboniferous) of Glamorgan, SW Britain, were deposited in similar depositional environments but have contrasting diagenetic histories. The Brofiscin and Gully Oolites occur in the upper parts of shallowing-upward sequences, formed through strandplain progradation and sand shoal and barrier growth upon a southward-dipping carbonate ramp. The Brofiscin Oolite is characterized by a first-generation cement of equant calcite spar, preferentially located at grain-contacts and forming non-isopachous fringes around grains, interpreted as meteoric vadose and phreatic in origin. Isopachous fibrous calcite fringes of marine origin are rather rare and occur only at a few horizons. Burial compaction was not important and porosity was occluded by poikilotopic calcite spar. Fitted grain-grain contacts locally occur and could be the result of near-surface vadose dissolution-compaction. Syntaxial overgrowths on echinoderm debris are common. Pre-compaction overgrowths are cloudy (inclusion-rich) and probably of meteoric origin, and post-compaction overgrowths are inclusion-free. By contrast, the Gully Oolite has little first-generation cement. However, marine fibrous calcite is common in oolitic intraclasts, as isopachous fringes of acicular calcite crystals closely associated with peloidal internal sediment; and early equant, drusy calcite spar occurs in the uppermost part of the Gully, beneath a prominent palaeokarst where pedogenic cements also occur. The major feature of Gully diagenesis is burial compaction, resulting in extensive grain-grain dissolution and microstylolitic grain contacts, and post-compaction poikilotopic spar occluded remaining porosity. The Brofiscin Oolite is pervasively dolomitized up-dip but the Gully Oolite for the most part only contains scattered pre-compaction dolomite rhombs and late veins of baroque dolomite, with less pervasive dolomitization. The difference in diagenetic style of the two Dinantian oolites is attributed to prevailing climate. The paucity of early meteoric cements in the Gully is a result of an arid climate, and this is supported by the nature of the capping palaeokarst. The abundant meteoric cements in the Brofiscin reflect a more humid climate, and effective meteoric recharge also resulted in up-dip pervasive mixing-zone dolomitization. The style of early diagenesis in these two oolites exerted a major control on the later burial diagenesis: in the Brofiscin, the early cements inhibited grain-grain dissolution and pressure solution, while these processes operated extensively in the Gully Oolite. Thus, prevailing climate can influence a limestone's diagenetic history from near-surface through into deep burial.  相似文献   

11.
An integrated approach consisting of fracture analysis, petrography, carbon, oxygen and strontium‐isotope analyses, as well as fluid‐inclusion micro‐thermometry, led to a better understanding of the evolution of fluid–rock interactions and diagenesis of the Upper Permian to Upper Triassic carbonates of the United Arab Emirates. The deposited carbonates were first marked by extensive early dolomitization. During progressive burial, the carbonates were affected by dolomite recrystallization as well as precipitation of vug and fracture‐filling dolomite, quartz and calcite cements. After considerable burial during the Middle Cretaceous, sub‐vertical north–south oriented fractures (F1) were cemented by dolomite derived from mesosaline to hypersaline fluids. Upon the Late Cretaceous maximum burial and ophiolite obduction, sub‐vertical east–west fractures (F2) were cemented by dolomite (Dc2) and saddle dolomite (Ds) derived from hot, highly saline fluids. Then, minor quartz cement has precipitated in fractures from hydrothermal brines. Fluid‐inclusion analyses of the various diagenetic phases imply the involvement of increasingly hot (200°C) saline brines (20 to 23% NaCl eq.). Through one‐dimensional burial history numerical modelling, the maximum temperatures reached by the studied rocks are estimated to be in the range of 160 to 200°C. Tectonically‐driven flux of hot fluids and associated diagenetic products are interpreted to have initiated during the Late Cretaceous maximum burial and lasted until the Oligocene–Miocene compressional tectonics and related uplift. The circulation of such hydrothermal brines led to partial dissolution of dolomites (Dc2 and Ds) and to precipitation of hydrothermal calcite C1 in new (mainly oriented north–south; F3) and pre‐existing, reactivated fractures. The integration of the obtained data confirms that the diagenetic evolution was controlled primarily by the interplay of the burial thermal evolution of the basin and the regional tectonic history. Hence, this contribution highlights the impacts of regional tectonics and basin history on diagenetic processes, which may subsequently affect reservoir properties.  相似文献   

12.
为分析陆相页岩中方解石的成因及其对储层的影响,以四川盆地下侏罗统大安寨段的介壳泥岩与灰岩夹层为主要研究对象,利用X-射线衍射、普通薄片、岩芯观察、阴极发光及电子探针测试手段,识别出文石转化方解石、胶结物方解石和重结晶作用形成的方解石。在同生期和成岩早期,生物介壳中的文石转化为泥晶无铁方解石,阴极发光为橙黄色。成岩早期,生物介壳边缘可形成纤维状第一世代无铁方解石胶结物。在成岩晚期,岩石孔隙中形成颗粒状铁方解石胶结物,阴极发光为暗色。同时,部分介壳中的泥晶方解石新生变形为斑块状细晶方解石或柱状方解石。根据方解石的存在形式可知,方解石在成岩演化过程中,经历了转化、压实、溶解、胶结和重结晶作用。其中,溶解作用改善储层的物性。压实、胶结和重结晶作用破坏储集空间。统计裂缝密度发现,元坝地区大安寨段层理缝最为发育,涪陵地区大安寨段以层理缝和溶蚀缝为主。结果表明,方解石介壳有利于大安寨段内岩石层理缝和溶蚀缝的产生。  相似文献   

13.
祝仲蓉 Marsh.  J 《沉积学报》1992,10(1):133-145
更新世以来,剧烈的构造运动已将巴布亚新几内亚合恩半岛东北海岸的晚第四纪珊瑚礁阶地抬升上千米.阶地中造礁珊瑚的成岩变化和成岩产物的组构特征反映了该礁的成岩历史,充分体现该区快速构造上升的影响.海水潜流带和淡水渗流带为上升礁的主要成岩环境.生物钻孔、生物碎屑填隙、珊瑚文石针粗化、珊瑚骨骼的溶解和新生变形转化,以及其不同矿物成分和组构的种种胶结物的胶结作用是造礁珊瑚经历的主要成岩作用.地球化学资料表明其成岩变化发生于开放的化学体系之中.  相似文献   

14.
The fluid flow history during diagenesis of sandstones in the Upper Permian Black Jack Formation of the Gunnedah Basin has been investigated through integrated petrographic observations, fluid inclusion investigations and stable isotope analyses. The early precipitation of mixed-layer illite/smectite, siderite, calcite, ankerite and kaolin proceeded at the presence of Late Permian connate meteoric waters at temperatures of up to 60℃. These evolved connate pore waters were also parental to quartz, which formed at temperatures of up to 87℃. The phase of maximum burial was characterized by development of filamentous illite and late calcite at temperatures of up to -90℃. Subsequent uplifting and cooling led to deep meteoric influx from surface, which in turn resulted in dissolution of labile grains and carbonate cements, and formation of second generation of kaolin. Dawsonite was the last diagenetic mineral precipitated and its formation is genetically related to deep-seated mamagtic sourced CO2.  相似文献   

15.
Middle to Late Ordovician subtidal carbonates in the Manitoulin Island area of Ontario are predominantly limestone in composition, but non-ferroan and ferroan dolomite is a common cement as well as a selective or locally pervasive replacement phase. Integration of field, petrographic, geochemical (δ13C, δ18O) and fluid inclusion data indicates that lithification of these carbonates occurred during burial diagenesis, with much of the alteration controlled by regional fracturing and hydrothermal influences. Aqueous (type 1) fluid inclusions in early calcite (pre-dolomite) and dolomite are saline (> 29 wt% NaCl eq.) solutions with Ca and/or Mg in excess of Na and display homogenization temperatures with modes of 95 and 101°C, respectively. These temperatures can be explained by significantly more burial than can be accounted for either by the available stratigraphic information or by an unusually high palaeogeothermal gradient, which also is not well supported. The fluid inclusion temperatures are interpreted to have resulted from hydrothermal fluids which circulated during the burial diagenesis of these strata. Type 1 inclusions in late (post-dolomite) calcite are less saline (<19 wt% NaCl eq.) and have a bimodal distribution of homogenization temperatures with a relatively well defined low temperature peak similar to those in early calcite and dolomite and a broad higher temperature grouping with a mode at 183°C. A small proportion of methane and light hydrocarbon-bearing fluid inclusions (type 2) are present in all stages of carbonate. Dolomitizing fluids were derived from burial compaction of argillaceous sediments in the more central parts of the Michigan Basin and the updip migration of these brines along fractures to the basin margin where the carbonates of the Manitoulin Island area were dolomitized. Alternatively, migration of dolomitizing brines downward from the overlying pervasively dolomitized Silurian sequence into fractures in the Ordovician carbonates may have occurred. Integration of the aqueous fluid inclusion data into the diagenetic history of these carbonates remains equivocal because most of the inclusions are secondary or indeterminate in origin. Nevertheless, high salinities resulting from interaction with evaporitic strata and hydrothermal effects are clearly implicated although the origin of the latter remains unclear. The alteration styles of the Ordovician carbonates in the Manitoulin area are similar to those of Ordovician hydrocarbon reservoirs described from other parts of the Michigan Basin. They indicate that fracture-related diagenesis occurred on a basin-wide scale and that hydrothermal effects were important.  相似文献   

16.
Lower Cretaceous sandstones of the Qishn Formation have been studied by integrating sedimentological, petrological and petrophysical analyses from wells in the Masila oilfields of eastern Yemen. These analyses were used to define the origin, type of diagenesis and its relation to reservoir quality. The sandstones of the Qishn Formation are predominately quartz arenite to subarkose arenite with sublitharenite and quartz wackes displaying a range of porosities, averaging 22.33%. Permeability is likewise variable with an average of 2844.2 mD. Cementation coupled with compaction had an important effect on porosity destruction after sedimentation and burial. The widespread occurrence of early calcite cement suggests that the sandstones of the Qishn Formation lost significant primary porosity at an early stage of its diagenetic history. In addition to poikilotopic calcite, several different cements including kaolinite, illite, chlorite and minor illite–smectite occur as pore‐filling and pore‐lining cements, which were either accompanied by or followed the development of the early calcite cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar grains. The new data presented in this paper suggest the reservoir quality of Qishn sandstones is strongly linked to their diagenetic history; hence, the reservoir quality is reduced by clay minerals, calcite and silica cements but is enhanced by the dissolution of the unstable grains, in addition to partial or complete dissolution of calcite cements and unstable grains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A peculiar facies of the Norian–Rhaetian Dachstein‐type platform carbonates, which contains large amounts of blackened bioclasts and dissolutional cavities filled by cements and internal sediments, occurs in the Zlatibor Mountains, Serbia. Microfacies investigations revealed that the blackened bioclasts are predominantly Solenoporaceae, with a finely crystalline, originally aragonite skeleton of fine cellular structure. Blackening of other bioclasts also occurs subordinately. Solenoporacean‐dominated reefs, developed behind the platform margin patch‐reef tract, were the main source of sand‐sized detritus. The blackened and other non‐blackened bioclasts are incorporated in automicrite cement. Radiaxial fibrous calcite cements in the dissolutional cavities are also black, dark grey or white. Reworked black pebbles were reported from many occurrences of peritidal deposits; in those cases, the blackening took place under pedogenic, meteoric diagenetic conditions. In contrast, in the inner platform deposits of the Ilid?a Limestone, the blackening of bioclasts occurred in a marine–meteoric mixing‐zone, as indicated by petrographic features and geochemical data of the skeleton‐replacing calcite crystals. Attributes of mixing‐zone pore waters were controlled by mixing corrosion, different solubility of carbonate minerals and microbial decomposition of organic matter. In the moderate‐energy inner platform environment, large amounts of microbial organic tissue were accumulated and subsequently decomposed, triggering selective blackening in the course of early, shallow burial diagenesis. The δ18O and δ13C values of the mixing‐zone precipitates and replacive calcite do not produce a linear mixing trend. Variation mainly resulted from microbial decomposition of organic matter that occurred under mixing‐zone conditions. The paragenetic sequence implies cyclic diagenetic conditions that were determined by marine, meteoric and mixing‐zone pore fluids. The diagenetic cycles were controlled by sea‐level fluctuations of moderate amplitude under a semi‐arid to semi‐humid climate.  相似文献   

18.
In Permian times the Baoshan Block of western Yunnan, southwest China formed the eastern part of the Cimmerian Continent. Most biogeographical and sedimentological data indicate that the Early Permian Dingjiazhai Formation formed on the block under conditions strongly influenced by the Permo-Carboniferous glaciation. After Early Permian rifting, with post-glaciation climatic amelioration, and as the Baoshan Block drifted northwards to approach South China and Indochina, faunal elements characteristic of Gondwana affinity decreased, while those of Cathaysian affinity increased. Finally, Late Permian faunas are characterized by exclusively Cathaysian elements. This shift of marine provinciality becomes an important indicator in understanding the Permian paleoclimatic evolution of the region. This research investigated the composition of carbonate grain associations and the early diagenetic features of limestones from the upper part of the Dingjiazhai Formation, and from the overlying Yongde and Shazipo formations. A sharp distinction in petrological and diagenetic features is recognized between the Dingjiazhai Formation and the two overlying formations. The Dingjiazhai carbonates are characterized by the bryonoderm (bryozoan-echinoderm)-extended facies of the heterozoan association, with no non-skeletal grains. Because early diagenetic cement was rarely formed, the Dingjiazhai carbonates experienced strong diagenetic compaction. In contrast, the Yongde and Shazipo carbonates show a chloroforam facies of photozoan association, with the common occurrence of non-skeletal grains. These carbonates were well cemented during early diagenetic processes. From comparison with Permian cool-water carbonates from northern Pangea and Tasmania, Australia, the Dingjiazhai carbonates are interpreted as deposits of warm-temperate conditions, while the overlying carbonates are considered to be deposits of subtropical or tropical conditions. This climatic interpretation, based on the petrographic features of the Permian carbonates, agrees well with existing biogeographical data from the region.  相似文献   

19.
Partially dolomitized carbonate successions provide a good opportunity to understand the commonly multistage process of dolomitization. Petrographic methods, fluid inclusion microthermometry and stable isotope measurements were applied to reconstruct the diagenetic evolution and dolomitization of a partially dolomitized Carnian reef limestone from the Transdanubian Range, Hungary. The diagenetic history began with reef diagenesis and formation of dolomite micro‐aggregates in microbial fabric elements; this was followed by the development of euhedral porphyrotopic dolomite crystals through overgrowths around the previously formed dolomite micro‐aggregates during the earliest burial stage. Increasing burial resulted in the extension of the dolomite patches via formation of finely crystalline replacement dolomite. From the Late Norian, when the Carnian reef carbonates reached the depth of 1·0 to 1·8 km, the diagenetic evolution continued in an intermediate to deep‐burial setting. Contemporaneously, an extensional regime was established, leading to fracturing. The progressive burial resulted in the recrystallization of the pre‐existing dolomite with increasing temperature, while saddle dolomite cement was precipitated in fractures. In connection with the Alpine Orogeny, intense denudation took place during the Late Cretaceous, accompanied by fracturing. Similar tectonically controlled denudation and fracturing occurred in several stages during the Cenozoic. As a result of these processes, the studied Carnian carbonates were raised to a near‐surface position or became subaerially exposed, leading to dedolomitization of the last dolomite phase and precipitation of calcite cement in cavities and fractures. This study revealed that by investigating partially and selectively dolomitized rock types, it is possible to document and understand those stages of the multiple dolomitization process which can barely be detected in the completely dolomitized rock bodies. Recognition of the dolomitization phases could provide the basis for the analysis of their relations with the depositional, diagenetic and tectonic processes, and stages of basin evolution.  相似文献   

20.
The sandstones of the Dhosa Sandstone Member of Late Callovian and Early Oxfordian age exposed at Ler have been analyzed for their petrofacies, provenance, tectonic setting and diagenetic history. These sandstones are fine to medium grained and poorly- to well sorted. The constituent mineral grains are subangular to subrounded. These sandstones were derived from a mixed provenance including granites, granite–gneisses, low- and high-grade metamorphic and some basic rocks of the Aravalli Range and Nagarparkar Massif. The petrofacies analysis reveals that these sandstones belong to the continental block-, recycled orogen- and rifted continental margin tectonic regime.The imprints of early and deep burial diagenesis of these sandstones include different stages of compaction, cementation, change in crystal boundaries, cement–cement boundaries, chertification and neomorphism. The sequence of cementation includes precipitation of calcite and its subsequent replacement by Fe calcite and silica cements. The typical intermediate burial (2–3 km depth) diagenetic signatures of these sandstones are reflected in the formation of suture and straight-line boundaries, and triple junctions with straight-line boundaries. The depositional environment, relatively low-energy environment that was below storm wave base but subjected to gentle currents, of the Dhosa Sandstone Member controlled the early diagenesis, which in turn influenced the burial diagenesis of these sandstones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号