首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The base of an upper Palaeozoic graben‐fill in eastern Canada was affected by mafic dyke intrusions shortly after deposition, resulting in the formation of peperite. Complex magma–sediment interactions occurred as the melts mingled with the wet and poorly consolidated clastic material of this sedimentary basin, which is separated from underlying rocks by the Acadian unconformity (Middle Devonian). As a result of these interactions, the mafic rocks are strongly oxidized, albitized and autobrecciated near and above the unconformity, where blocky juvenile clasts of mafic glass and porphyritic basalt have mingled with molten or fluidized sediments of the upper Palaeozoic Saint‐Jules Formation, forming a peperite zone several metres thick. In contrast to most peperite occurrences, the New‐Carlisle peperites are associated with the tip of dykes rather than with the sides of sills or dykes. We argue that more heat can be concentrated above a dyke than above a sill, as the former provides a more efficient and focused pathway for heated waters to invade the poorly consolidated host sediments. Superheated groundwaters that issued from the sides of the dykes appear to have promoted melting of carbonate components in calcareous sedimentary rock clasts of the Saint‐Jules Formation, locally generating carbonate melts that contributed to the mingling of juvenile and sedimentary clasts in the peperite. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Upper Permian shallow marine siltstone and sandstone units of the Broughton Formation are intercalated with basaltic and basaltic andesite sheets at Kiama, New South Wales. Parts of the two sheets examined in this study display peperite texture. The lower example (Blow Hole Latite Member) can be divided into two units with peperitic contacts suggesting their intrusion into wet unconsolidated sediments of the overlying Kiama Sandstone Member. The Bumbo Latite Member overlies the Kiama Sandstone Member and has been interpreted by previous workers as a lava. Well‐developed columnar joints cut the interior of the sheets. Along contacts with sedimentary facies and peperitic dykes which penetrate the sheets, columnar joints merge into a several metre‐wide zone of blocky jointing, pseudo‐pillows and hyaloclastite. In peperitic facies, sandstone or siltstone fills joints and fractures that define pseudo‐pillows, polyhedral joint blocks and columns (closely packed fabric) or sediment matrix‐rich breccia contains fragments and apophyses of basalt and basaltic andesite (dispersed fabric). Along some contacts, peperite with dispersed fabric passes through a zone of closely packed peperite into coherent facies. Alternatively, closely packed peperite passes directly into coherent facies. Examples of peperite with more than one clast type (globular, blocky, platy), and involving sedimentary matrix of constant grain‐size, are common. In some examples, globular surfaces formed during an early, low‐viscosity phase of magma emplacement into wet sediment. Planar and curviplanar fractures cut some globular surfaces suggesting that these formed slightly later as the magma became more viscous (cooler) and/or vapour films at the magma‐sediment interface broke down. However, the complexities of peperite, in respect to clast types, abundances and distribution, as well as grainsize and structures in the sedimentary component, suggest that a spectrum of fragmentation and mixing processes were involved in fragmenting the sheets. Many peperitic domains include poorly and strongly vesicular parts, resulting in apparent polymictic breccias. Vesiculation of the sheets is interpreted to have occurred in two phases: an early degassing of primary magmatic volatiles and a later, scoria‐forming event, both of which progressed as the magma mixed with unconsolidated sediment. During the later phase, magma incorporated limited amounts of steam from the wet sediment and a vesicular front propagated out into the magmatic component. Confining pressures were insufficient to prevent vesiculation of the magma or to suppress fluidisation of the host sediment along magma‐sediment contacts, but large enough to inhibit large‐scale steam explosivity. Displacement of sediment along contacts may have reduced confining pressures sufficiently to promote vaporisation of pore water, and induce local vesiculation of the magma.  相似文献   

3.
The Duobuza gold‐rich porphyry copper district is located in the Bangongco metallogenetic belt in the Bangongco‐Nujiang suture zone south of the Qiangtang terrane. Two main gold‐rich porphyry copper deposits (Duobuza and Bolong) and an occurrence (135 Line) were discovered in the district. The porphyry‐type mineralization is associated with three Early Cretaceous ore‐bearing granodiorite porphyries at Duobuza, 135 Line and Bolong, and is hosted by volcanic and sedimentary rocks of the Middle Jurassic Yanshiping Formation and intermediate‐acidic volcanic rocks of the Early Cretaceous Meiriqie Group. Simultaneous emplacement and isometric distribution of three ore‐forming porphyries is explained as multi‐centered mineralization generated from the same magma chamber. Intense hydrothermal alteration occurs in the porphyries and at the contact zone with wall rocks. Four main hypogene alteration zones are distinguished at Duobuza. Early‐stage alteration is dominated by potassic alteration with extensive secondary biotite, K‐feldspar and magnetite. The alteration zone includes dense magnetite and quartz‐magnetite veinlets, in which Cu‐Fe‐bearing sulfides are present. Propylitic alteration occurs in the host basic volcanic rocks. Extensive chloritization‐silicification with quartz‐chalcopyrite or quartz‐molybdenite veinlets superimposes on the potassic alteration. Final‐stage argillic alteration overlaps on all the earlier alteration. This alteration stage is characterized by destruction of feldspar to form illite, dickite and kaolinite, with accompanying veinlets of quartz + chalcopyrite + pyrite and quartz + pyrite assemblages. Cu coexists with Au, which indicates their simultaneous precipitation. Mass balance calculations show that ore‐forming elements are strongly enriched during the above‐mentioned three alteration stages.  相似文献   

4.
Abstract: The Mamut deposit of Sabah, East Malaysia, is a porphyry type Cu‐Au deposit genetically related to a quartz monzonite (“adamellite”) porphyry stock associated with upper Miocene Mount Kinabalu plutonism. The genesis of the Mamut deposit is discussed based on petrology of the intrusives in the Mount Kinabalu area combined with ore– and alteration–petrography, fluid inclusion and sulfur isotope studies. Groundmass of the adamellite porphyry at Mamut is rich in K which suggests vapor transport of alkaline elements during the mineralizing magmatic process, while the groundmass of the post‐ore “granodiorite” porphyry at Mamut contains small amounts of normative corundum suggesting depletion in alkaline elements at the root zone of the magma column. Sub‐dendritic tremolitic amphibole rims on hornblende phenocrysts in the Mamut adamellite porphyry suggest interaction between the mineralizing magma and the exsolved fluids. Occurrences of clinopyroxene microphenocrysts and pseudomor‐phic aggregates of shredded biotite and clinopyroxene after hornblende phenocrysts in the barren intrusives imply lower water fugacity and decreasing in water fugacity, respectively. Compositional gap between the core of hornblende phenocrysts and the tremolitic amphibole rims and those in the groundmass of the Mamut adamellite porphyry suggests a decrease in pressure. Higher XMg (=Mg/(Mg+Fe) atomic ratio) in the tremolitic amphibole rims in the Mamut adamellite porphyry compared to those of the barren intrusions suggests high oxygen fugacity. High halogen contents of igneous hydrous minerals such as amphiboles, biotite and apatite in the Mamut adamellite porphyry suggest the existence of highly saline fluids during the intrusion and solidification of the mineralizing magma. Fluid inclusions found in quartz veinlet stockworks are characterized by abundant hypersaline polyphase inclusions associated with subordinate amounts of immiscible gaseous vapor. Both Cu and Au are dispersed in disseminated and quartz stockwork ores. Chalcopyrite and pyrrhotite as well as magnetite are the principal ore minerals in the biotitized disseminated ores. Primary assemblage of intermediate solid solution (iss) and pyrrhotite converted to the present assemblage of chalcopyrite and pyrrhotite during cooling. Subsequent to biotitization, quartz veinlet stockworks formed associated with retrograde chlorite alteration. The Cu‐Fe sul–fides associated with stockwork quartz veinlet are chalcopyrite and pyrite. Overlapping Pb and Zn and subsequent Sb mineralizations were spatially controlled by NNE‐trending fractures accompanying the phyllic and advanced argillic alteration envelope. Sulfur isotopic composition of ore sulfides are homogeneous (about +2%) throughout the mineralization stages. These are identical to those of the magmatic sulfides of Mount Kinabalu adamellitic rocks.  相似文献   

5.
6.
New fieldwork, mineralogical and geochemical data and interpretations are presented for the rare-metal bearing A-type granites of the Aja intrusive complex(AIC) in the northern segment of the Arabian Shield. This complex is characterized by discontinuous ring-shaped outcrops cut by later faulting. The A-type rocks of the AIC are late Neoproterozoic post-collisional granites, including alkali feldspar granite, alkaline granite and peralkaline granite. They represent the outer zones of the AIC, surrounding a core of older rocks including monzogranite, syenogranite and granophyre granite. The sharp contacts between A-type granites of the outer zone and the different granitic rocks of the inner zone suggest that the AIC was emplaced as different phases over a time interval, following complete crystallization of earlier batches. The A-type granites represent the late intrusive phases of the AIC, which were emplaced during tectonic extension, as shown by the emplacement of dykes synchronous with the granite emplacement and the presence of cataclastic features. The A-type granites consist of K-feldspars, quartz, albite, amphiboles and sodic pyroxene with a wide variety of accessory minerals, including Fe-Ti oxides, zircon, allanite, fluorite, monazite, titanite, apatite, columbite, xenotime and epidote. They are highly evolved(71.3–75.8 wt% SiO_2) and display the typical geochemical characteristics of post-collisional, within-plate granites. They are rare-metal granites enriched in total alkalis, Nb, Zr, Y, Ga, Ta, REE with low CaO, MgO, Ba, and Sr. Eu-negative anomalies(Eu/Eu* = 0.17–0.37) of the A-type granites reflect extreme magmatic fractionation and perhaps the effects of late fluid-rock interactions. The chemical characteristics indicate that the A-type granites of the AIC represent products of extreme fractional crystallization involving alkali feldspar, quartz and, to a lesser extent, ferromagnesian minerals. The parent magma was derived from the partial melting of a juvenile crustal protolith with a mantle contribution. Accumulation of residual volatile-rich melt and exsolved fluids in the late stage of the magma evolution produced pegmatite and quartz veins that cut the peripheries of the AIC. Post-magmatic alteration related to the final stages of the evolution of the A-type granitic magma, indicated by alterations of sodic amphibole and sodic pyroxene, hematitization and partial albitization.  相似文献   

7.
The clastic sediments of the Murree Formation of Miocene age are exposed in Jhelum valley areas of Azad Jammu and Kashmir Pakistan. Field observations revealed the cyclic deposition in the Murree Formation. The sandstone, siltstone, and shale constitute a single cycle within the formation. This single unit is divided into five different lithofacies which constitute the Bouma sequence in the Murree Formation. The Murree Formation shows faulted contacts with Panjal Formation and Nagri Formation in the study area. The modal mineralogy data obtained from the petrography of sandstone indicates that sandstone is litharenite and lithic greywacke. The mineralogical and textural data suggests that sandstone is compositionally mature and poorly to moderately sorted. The dominantly angular to sub angular quartz grains show nearness of the source area. Fractured and sutured quartz grain reveals tectonodiagentic changes that occurred in Murree Formation. The sandstone experienced diagenetic changes. The pressure solution and cementation reduced the primary porosity of sandstone. However, alteration of feldspar and fractures in grains have produced secondary porosity. The X-ray diffraction (XRD) of the shale samples indicates that shale of the Murree Formation is argillaceous and dominated by illite clay mineral. The illite crystallinity values indicate very low grade metamorphism of Murree Formation in core of Hazara Kashmir Syntaxis. The petrographic data suggests that the provenance of sandstone is recycled orogen. Quartz is of igneous and metamorphic origin. Feldspar (albite and microcline) composition suggests its derivation from acidic igneous rocks. The rock fragments of volcanics, slate, phyllite, and schist suggest igneous and metamorphic provenance. The petrographic data suggests that at the time of deposition of Murree Formation, igneous and low grade metamorphic rocks were exposed. However, presence of some clasts of carbonates indicates that sedimentary rocks were also exposed in the source region. The quartz content and clay minerals in the shale revealed that source region was igneous and metamorphic rocks. Cyclic deposition, lithofacies, and various sedimentary structures like cross bedding, ripple marks, and calcite concretions suggest that deposition of Murree Formation occurred in fluviatile environment by meandering river system having decreasing turbidity current.  相似文献   

8.
Quartz-feldspar porphyry dikes in and around the White Devil ore deposit are weakly to strongly altered, with weakly altered cores grading outward toward intensely chloritized marginal zones in contact with massive ironstone or chlorite altered sediments. Petrographic studies indicate the following sequence of alteration: sericitization of the groundmass, sericitization and chloritization of feldspar phenocrysts, chloritization of the groundmass, and alteration of igneous biotite to hydrothermal biotite and then to chlorite, intense chloritization of the groundmass as to remove quartz, and, finally, destruction of quartz phenocrysts. Isocon analyses of whole rock geochemical data from altered porphyry indicate the following relative changes during alteration: (1) consistent, near total losses of Na and Pb, (2) increasing gains of Mg, Fe, Mn and Zn, and increasing losses of Si and Sr with increasing alteration intensity, (3) gains of Ti, Cr and U, and losses of K and Rb upon alteration of feldspar phenocrysts, and (4) losses of Zr, Nb, Y and Th upon the loss of quartz in the groundmass. Of the elements studied only Ca, Al and P did not undergo significant relative changes. Immobile elements such as Ti, Zr, Nb, Y and Cr are highly mobile during the most intense alteration of the White Devil porphyry. Based on evidence from field relationships, alteration studies and petrographic observations, the quartz-feldspar porphyry dikes intruded after the formation of ironstones, but prior to Au-Cu-Bi mineralization. This conclusion is consistent with previous interpretations by Nguyen et al. (1989) and Edwards et al. (1990), but inconsistent with the interpretation by McPhie (1993) that quartz-feldspar porphyry sills at the Peko smelter site intruded into wet sediments. Two or more periods of quartz-feldspar porphyry intrusion occurred in the Tennant Creek district.  相似文献   

9.
黑龙江省岔路口超大型斑岩钼矿床位于大兴安岭北部,是目前我国东北地区最大的钼矿床,矿体赋存于中酸性杂岩体及侏罗系火山-沉积岩内,其中花岗斑岩、石英斑岩、细粒花岗岩与钼矿化关系密切.本文采用LA-ICP-MS锆石U-Pb定年方法,获得了矿区内二长花岗岩、花岗斑岩、石英斑岩、细粒花岗岩、流纹斑岩、闪长玢岩及安山斑岩的结晶年龄分别为162±1.6 Ma、149±4.6 Ma、148±1.6 Ma、148±1.2 Ma、137±3.3 Ma、133±1.7Ma和132±1.6 Ma.岔路口矿区内至少存在3期岩浆活动,其顺序为侏罗纪火山-沉积岩、二长花岗岩→晚侏罗世花岗斑岩、石英斑岩、细粒花岗岩→早白垩世流纹斑岩、闪长玢岩、安山斑岩.岔路口矿床成矿时代为晚侏罗世,是东北亚大陆内部构造-岩浆活化的产物,形成于古太平洋板块俯冲作用引起的挤压向伸展构造体制转折背景,与我国东部大规模钼矿化爆发期相对应.  相似文献   

10.
Essentially isochemical thermal metamorphism of soda-rich Stockton, Lockatong and Brunswick formations of the Newark Group by diabase sills produced unusually varied and unique mineral assemblages, most of which are predominantly Na. feldspar and biotite. Within a meter of a sill Stockton arkose was altered to quartzo-feldspathic hornfels with common diopside and sphene. Within 50 m of a sill Lockatong calcitic and dolomitic mudstone formed calc-silicate hornfels with differing combinations of diopside-hedenbergite, andradite and grossular, prehnite, datolite, idocrase and wollastonite. Within a meter of a sill metamorphosed Lockatong calcareous feldspathic argillite contains sanidine-anorthoclase, aegirine, aegirine-augite, riebeckite and scapolite. Lockatong analcime-dolomite argillite was altered to unique feldspathoidal assemblages containing cancrinite, natrolite-thomsonite and rarely sodalite within 134 m, and nepheline within 30 m of the Byram Sill. Reddish-brown Brunswick mudstone produced spotted pelitic hornfels within a few 10's of meters of a sill.Response to thermal metamorphism varied directly with diminishing grain size. In both sandstone and mudstone Na. feldspar increases and K. feldspar decreases toward intrusions; quartz is rare or absent in highest-grade hornfels. Development of biotite was retarded by detrital clay minerals and hematite pigment, as well as by low temperature. Minor differences in composition among carbonate-rich and analcime-rich Lockatong deposits led to a diversity of closely associated assemblages. Aqueous solutions and relatively low temperature, probably in part during retrogressive metamorphism, produced hydrous minerals. Datolite, tourmaline, scapolite and fluorite suggest minor additions of volatiles, but the widespread feldspathoids were made from soda-rich sedimentary rocks without significant additions from an igneous source.  相似文献   

11.
青城子矿集区印支期岩浆作用形成岩基状双顶沟岩体及岩脉状石英二长斑岩等,双顶沟岩体根据其岩相学特征可划分为主体相和中心相两个岩相带,主体相内含有大量暗色微粒包体,并常见矿物不平衡结构,显示岩浆混合的特征。在岩石地球化学方面,包体与寄主岩石的主要氧化物之间具有良好的线性关系,寄主岩石和包体的稀土元素配分曲线和微量元素蛛网图形态相似,指示寄主岩石与包体在岩石形成过程中发生过成分交换及均一化,也显示岩浆混合特征。双顶沟岩体主体相具有高Ba-Sr花岗岩特征,可能为加厚下地壳部分熔融形成的熔体与富集地幔岩浆混合作用的产物,中心相则为主体相经过长石、角闪石、黑云母等的分离结晶作用而形成。石英二长斑岩脉可能为双顶沟岩体演化的浅成相,两者具有相同的源区和成因,矿集区内铅锌、金银矿床的形成可能与岩浆混合作用演化形成的石英二长斑岩相关。  相似文献   

12.
The Sn-rich Qiguling topaz rhyolite dike intrudes the Qitianling biotite granite of the Nanling Range in southern China; the granite hosts the large Furong Sn deposit. The rhyolite dike is typically peraluminous, volatile-enriched, and highly evolved. Whole-rock F and Sn concentrations attain 1.9 wt.% and 2700 ppm, respectively. The rhyolite consists of a fine-grained matrix formed by quartz, feldspar, mica and topaz, enclosing phenocrysts of quartz, feldspar and mica; it is locally crosscut by quartz veinlets. Lithium-bearing micas in both phenocrysts and the groundmass can be classified as primary zinnwaldite, “Mus-Ann” (intermediate member between annite and muscovite), and secondary Fe-rich muscovite. Topaz is present in the groundmass only; common fluorite occurs in the groundmass and also in a specific cassiterite, rutile and fluorite (Sn–Ti–F) assemblage. Cassiterite and rutile are the only Sn and Ti minerals; both cassiterite and Nb-rich rutile are commonly included in the phenocrysts. The Sn–Ti–F assemblage is pervasive, and contains spongy cassiterite in some cases; cassiterite also occurs in quartz veinlets which cut the groundmass. Electron microprobe and LA-ICP-MS compositions were used to study the magmatic and hydrothermal processes and the role of F in Sn mineralization. The presence of zinnwaldite and “Mus-Ann”, which are respectively representative of early and late mica crystallization during magma differentiation, also suggests a significant decrease in f(HF)/f(H2O) of the system. Cassiterite included in the zinnwaldite phenocrysts is suggested to have crystallized from the primary magma at high temperature. Within the Sn–Ti–F aggregates, rutile crystallized as the earliest mineral, followed by fluorite and cassiterite. Spongy cassiterite containing inclusions of the groundmass minerals indicate a low viscosity of the late fluid. The cassiterite in the quartz veinlets crystallized from low-temperature hydrothermal fluids, which possibly mixed with meteoric water. In general, cassiterite precipitated during both magmatic and hydrothermal stages, and over a range of temperatures. The original fluorine and tin enrichments, f(HF)/f(H2O) change in the residual magma, formation of Ca,Sn,F-rich immiscible fluid, decrease of the f(HF) during groundmass crystallization, and mixing of magma-derived fluids with low-saline meteoric water during the late hydrothermal stage, are all factors independently or together responsible for the Sn mineralization in the Qiguling rhyolite.  相似文献   

13.
库车坳陷侏罗系砂岩碎屑组分及物源分析   总被引:11,自引:3,他引:11  
库车坳陷位于塔里木盆地的北部,其侏罗系发育良好,为一套陆相含煤沉积,可分为中、下部的煤系地层和上部的杂色碎屑沉积两部分。侏罗系包括阿合组、阳霞组、克孜勒努尔组、恰克马克组、齐古组和喀拉扎组。该区砂岩碎屑成分以石英为主,其次是长石及各种岩屑,有时含少量云母及绿泥石等碎屑矿物。砂岩结构不一,粗砂、中砂和细砂状结构均有,很少一部分为含砾结构。砂岩分选性以中等为主,少量分选好或分选差。砂粒的磨圆度各层位有所差异。本文对库车坳陷侏罗纪地层的砂岩进行了骨架矿物统计分析,通过碎屑岩矿物成分与结构的变化研究了库车坳陷侏罗系沉积岩石学特征,并应用Dickinson的分析理论及结果,对库车坳陷的碎屑岩进行物源与板块构造关系的分析与探讨,重点对库车河剖面的砂岩作了系统采样和测定,显微镜下观察了砂岩的碎屑组分,并对各组分采用点记法进行整个全视域薄片的砂岩的骨架矿物成分统计工作,根据碎屑组分特征与重矿物组合特征,结合区域构造、沉积古地貌及盆地演化史,对库车坳陷的物源进行了探讨。认为侏罗系下部的碎屑岩物源区以再旋回造山带为主,已经过一段时间的风化开始隆升,遭受强烈剥蚀,反映了前陆盆地形成时的早期旋回阶段的特征,来自三叠纪古前隆的物源较少,母岩以沉积岩为主;侏罗系中上部碎屑物源仍以盆地边缘再旋回造山带为主,但三叠纪古前缘隆起提供物源已比较明显。除此之外,在盆地边缘形成的早期沉积物经水流机械破碎、改造作用的泥砾沉积物增多,受双物源区的控制,母岩为沉积岩。  相似文献   

14.
广西巴马料屯金矿石英斑岩地球化学特征及成矿指示意义   总被引:1,自引:0,他引:1  
料屯金矿是目前桂西北地区仅有的与石英斑岩空间上紧密相关的卡林型金矿,研究石英斑岩对成矿的指示意义,将有助于加深对该区卡林型金矿成因的认识,以期为该区找矿突破提供更多依据。通过对矿床地质特征和石英斑岩地球化学特征分析取得以下认识:石英斑岩属酸性岩类,钙碱性系列,具富钾、过铝质特征,属于重熔型岩浆岩;矿区成矿物质主要来源于三叠系地层,但不排除石英斑岩为金矿提供成矿物质的可能。野外地质特征和地球化学分析数据表明矿区至少存在2个阶段的成矿作用,在石英斑岩成岩前后都有成矿作用发生。石英斑岩在成岩后主要受构造剪切作用形成破碎裂隙带,后期含矿热液沿破碎裂隙带迁移并卸载成矿,使破碎裂隙带周围石英斑岩蚀变矿化,形成了矿化石英斑岩。国内外越来越多研究证据表明卡林型金矿的形成与岩浆活动有着密不可分的关系,矿区内燕山期石英斑岩的侵入可能与矿体形成有关,其为成矿作用提供成矿物质或成矿流体,还是只提供热源,需要进一步研究讨论。  相似文献   

15.
The Sharang porphyry Mo deposit is the first discovered Mo porphyry‐type deposit in the Gangdese Metallogenic Belt. The orebody is hosted by the Eocene multi‐stage composite intrusive complex which is emplaced in the Upper Permian Mengla Formation and cut by the Miocene dykes. Granite porphyry is recognized as the ore‐bearing porphyry in the complex, which consists of quartz diorite, quartz monzonite, granite, prophyritic granite and post‐mineral lamprophyre. Granodiorite porphyry and dacite porphyry intrude the granite porphyry. Geochemical data indicate that Sharang complex has a High‐K calc‐alkalinc to shoshonitic, metaluminous to slightly peraluminous composition. The Sharang complex rocks are enriched in large ion lithophile elements, depleted in high‐field strength elements, Nb, Sr, P and Ti. REE patterns show slight enrichments in light REE relative to heavy REE and weak negative Eu anomalies. All rocks in this complex have a wide range of initial 87Sr/86Sr ratios (0.705605~0.712496) and lower εNd(t) values (?0.61~?7.80). The geochemical data suggest highly oxidized‐evolved magma and old continental materials may have been the magma source for the Sharang intrusive complex that host porphyry Mo mineralization. Eocene pre‐ore and ore‐forming rocks at Sharang may have formed by partial melting of mantle wedge and by mixing with old continental crust at the lower crust level. In contrast the post‐ore rocks may have formed by partial melting of enriched lithospheric mantle.  相似文献   

16.
孙海田 《矿床地质》1984,3(4):34-44
江西德兴铜矿曾引起我国地质学者极大的关注,并进行过广泛的调查研究,其中许多研究成果集中综合于《德兴斑岩铜矿》这一专著中。但对赋矿岩石特征、岩浆活动与成矿作用的关系上,尚需要深入的研究和探讨。  相似文献   

17.
Late Neoproterozoic bimodal dyke suites are abundant in the Arabian–Nubian Shield. In southern Israel this suite includes dominant alkaline quartz porphyry dykes, rare mafic dykes, and numerous composite dykes with felsic interiors and mafic margins. The quartz porphyry chemically corresponds to A-type granite. Composite dykes with either abrupt or gradational contacts between the felsic and mafic rocks bear field, petrographic and chemical evidence for coexistence and mixing of basaltic and rhyolitic magmas. Mixing and formation of hybrid intermediate magmas commenced at depth and continued during emplacement of the dykes. Oxygen isotope ratios of alkali feldspar in quartz porphyry (13 to 15‰) and of plagioclase in trachydolerite (10–11‰) are much higher than their initial magmatic ratios predicted by equilibrium with unaltered quartz (8 to 9‰) and clinopyroxene (5.8‰). The elevation of δ18O in alkali feldspar and plagioclase, and extensive turbidization and sericitization call for post-magmatic low-temperature (≤ 100 °C) water–rock interaction. Hydrous alteration of alkali feldspar, the major carrier of Rb and Sr in the quartz–porphyry, also accounts for the highly variable and unusually high I(Sr) of 0.71253 to 0.73648.

The initial 143Nd/144Nd ratios, expressed by εNd(T) values, are probably unaltered and show small variation in mafic and felsic rocks within a narrow range from + 1.4 to + 3.3. The Nd isotope signature suggests either a common mantle source for the mafic and silicic magmas or a juvenile crustal source for the felsic rocks (metamorphic rocks from the Elat area). However, oxygen isotope ratios of zircon in quartz porphyry [δ18O(Zrn) = 6.5 to 7.2‰] reveal significant crustal contribution to the rhyolite magma, suggesting that mafic and A-type silicic magmas are not co-genetic, although coeval. Comparison of 18O/16O ratios in zircon allows to distinguish two groups of A-type granites in the region: those with mantle-derived source, δ18O(Zrn) ranging from 5.5 to 5.8‰ (Timna and Katharina granitoids) and those with major contribution of the modified juvenile crustal component, δ18O(Zrn) varying from 6.5 to 7.2‰ (Elat quartz porphyry dykes and the Yehoshafat alkaline granite). This suggests that A-type silicic magmas in the northern ANS originated by alternative processes almost coevally.  相似文献   


18.
Porphyry-style mineralization is related to the intrusion and crystallization of small stocks, which can be of different compositions (from intermediate to felsic) and can intrude into different host rocks (from magmatic to sedimentary). We used cathodoluminescence and electron probe microanalysis to study the internal textures of more than 300 quartz eyes from six porphyry deposits, Panguna (Papua New Guinea), Far Southeast porphyry (Philippines), Batu Hijau (Indonesia), Antapaccay (Peru), Rio Blanco (Chile) and Climax (USA). Significant diversity of the internal textures in quartz eyes was revealed, sometimes even within a single sample. Quartz grains with Ti-rich cores surrounded by Ti-poor mantles were found next to the grains showing the opposite Ti distribution or only slight Ti fluctuations.We propose that diversity of the internal patterns in quartz eyes can actually reflect in situ crystallization history, and that prolonged crystallization after magma emplacement under conditions of continuous cooling can account for the observed features of internal textures. Formation of quartz eyes begins at high temperatures with crystallization of high titanium Quartz 1, which as the melt becomes more and more evolved and cooler, is overgrown by low Ti Quartz 2. Subsequent fluid exsolution brings about dramatic change in the melt composition: OH ? , alkalis and other Cl-complexed elements partition into the fluid phase, whereas Ti stays in the melt, contributing to a rapid increase in Ti activity. Separation of the fluid and its further cooling causes disequilibrium in the system, and the Quartz 2 becomes partially resorbed. Exsolution of the fluid gradually builds up the pressure until it exceeds the yield strength of the host rocks and they then fracture. This pressure release most likely triggers crystallization of Quartz 3, which is higher in Ti than Quartz 2 because Ti activity in the melt is higher and pressure of crystallization is lower. As a result of the reaction between the exsolved fluid and quartz a new phase, a so called ‘heavy fluid’ forms. From this phase Quartz 4 crystallizes. This phase has extremely high metal-carrying capacity, and may give a rise to mineralizing fluids. Finally, on the brink of the subsolidus stage, groundmass quartz crystallizes. Prolonged crystallization under conditions of continuous cooling accounts better for the diversity of CL textures than crystallization in different parts of a deep magma chamber. It is also in a better agreement with the existing model for formation of porphyry-style deposits.  相似文献   

19.
通过对大瑶山区古里脑和龙头山金矿床地层、岩浆岩含矿性的分析,并进行断裂构造作用多期性的分析和岩浆期后断裂成矿作用的讨论,认为该区深部地层和岩体中的金元素在次火山—斑岩期后断裂构造热液的作用下逐步向上叠加、富集成矿;矿体与岩浆岩体在空间上具有密切的关系;构造-热液作用导致次火山岩、斑岩体或周围地层产生破碎,并使成矿热液沿裂隙充填和再充填而形成金矿体,区内凡构成工业富集的富矿体和含金石英脉或破碎带都与多期次活动的构造-热液作用有关。因此,多期活动的构造-热液作用在大瑶山区具有非常重要的找矿意义。  相似文献   

20.
东秦岭尚古寺斑岩钼矿地质特征及成矿潜力分析   总被引:3,自引:0,他引:3  
杨宗锋 《地质与勘探》2011,47(6):1077-1090
尚古寺斑岩钼矿位于东秦岭,为东秦岭地区已知钼矿区的最东部端元。出露面积约1.5km^2,围岩主要为元古代片麻岩和碱流岩。辉钼矿化主要发育在花岗斑岩体的东部和南部区域,花岗斑岩顶部细粒花岗斑岩和其上覆花岗质伟晶岩均呈浸染状矿化,南部角岩发育裂隙矿化。花岗斑岩主体岩性主要矿物组合为石英、钾长石和斜长石,显示具有富硅、富碱和...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号