首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is concerned with the seismic design of steel‐braced frames in which the braces are configured in a chevron pattern. According to EuroCode 8 (EC8), the behaviour factor q, which allows for the trade‐off between the strength and ductility, is set at 2.5 for chevron‐braced frames, while 6.5 is assigned for most ductile steel moment‐resisting frames. Strength deterioration in post‐buckling regime varies with the brace's slenderness, but EC8 adopts a unique q value irrespective of the brace slenderness. The study focuses on reevaluation of the q value adequate for the seismic design of chevron‐braced frames. The present EC8 method for the calculation of brace strength supplies significantly different elastic stiffnesses and actual strengths for different values of brace slenderness. A new method to estimate the strength of a chevron brace pair is proposed, in which the yield strength (for the brace in tension) and the post‐buckling strength (for the brace in compression) are considered. The new method ensures an identical elastic stiffness and a similar strength regardless of the brace slenderness. The advantage of the proposed method over the conventional EC8 method is demonstrated for the capacity of the proposed method to control the maximum inter‐storey drift. The q values adequate for the chevron‐braced frames are examined in reference to the maximum inter‐storey drifts sustained by most ductile moment‐resisting frames. When the proposed method is employed for strength calculation, the q value of 3.5 is found to be reasonable. It is notable that the proposed method does not require larger cross‐sections for the braces compared to the cross‐sections required for the present EC8 method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Analytical studies on the inelastic behaviour of concentrically braced steel frames for low-rise buildings are described in this paper. The bracing members which provide energy dissipation were used to provide information on the ductility levels that are likely to occur under differing levels of earthquake excitation. An indication of the relative performance of cross bracing is provided in terms of suitable SM values for use in the seismic provisions of New Zealand loadings code NZS 4203.  相似文献   

3.
本文介绍了六榀钢筋混凝土支撑框架模型(两榀为普通支撑框架,另四榀为消能支撑框架)在低周反复荷载作用下的工作性能和试验结果;编制了非线性程序,对试验模型进行了计算分析,计算结果和试验实测值符合较好;另外还计算了两榀足尺消能支撑框架结构,研究不同的消能器滑移荷载对结构抗震能力的影响,结果表明消能支撑框架结构具有良好、稳定的抗震性能。  相似文献   

4.
A new earthquake resistant structural system for multi‐storey frame structures, based on a dual function of its bracing components, is developed. This consists of a hysteretic damper device and a cross‐bracing mechanism with a kinetic closed circuit, working only in tension, so that cable members can be used for this purpose. Solutions are presented regarding the connections' design of three types of structural frame system, that are concerned throughout the study: braced moment free frame, braced moment resisting frame with moment free supports, and with moment resisting supports. The dynamic behaviour of the system is investigated on the basis of an SDOF model, and based on the response spectra method an approximate design approach of the controlled structures is shown. From the time history analysis of the structural systems for the El Centro earthquake the areas of appropriate stiffness relations of the frames to the hysteretic dampers and the cable braces are deduced, so that the energy dissipation of the system may be controlled by the damper‐cable bracing mechanism. Based on the results of these studies, a predesign approach is developed for the implementation of the control system in frame structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A design procedure for seismic retrofitting of concentrically and eccentrically braced frame buildings is proposed and validated in this paper. Rocking walls are added to the existing system to ensure an almost uniform distribution of the interstorey displacement in elevation. To achieve direct and efficient control over the seismic performance, the design procedure is founded on the displacement‐based approach and makes use of overdamped elastic response spectra. The top displacement capacity of the building is evaluated based on a rigid lateral deformed configuration of the structure and on the ductility capacity of the dissipative members of the braced frames. The equivalent viscous damping ratio of the braced structure with rocking walls is calculated based on semi‐empirical relationships specifically calibrated in this paper for concentrically and eccentrically braced frames. If the equivalent viscous damping ratio of the structure is lower than the required equivalent viscous damping ratio, viscous dampers are added and arranged between the rocking walls and adjacent reaction columns. The design internal forces of the rocking walls are evaluated considering the contributions of more than one mode of vibration. The proposed design procedure is applied to a large set of archetype braced frame buildings and its effectiveness verified by nonlinear dynamic analysis.  相似文献   

6.
Y型偏心支撑钢框架是偏心支撑结构中抗震耗能的结构形式之一,为了研究Y型偏心支撑钢框架中耗能梁段腹板高厚比对结构滞回性能的影响,进行了2榀1/3缩尺Y型偏心支撑钢框架的低周反复荷载试验.本文主要介绍了试验过程,分析了Y型偏心支撑钢框架在循环荷载作用下的破坏机理、滞回性能、延性、刚度退化规律以及耗能能力.试验结果表明:Y型偏心支撑钢框架延性好、耗能能力强,耗能梁段腹板高厚比的改变对Y型偏心支撑钢框架强度、刚度以及耗能能力具有较大的影响.耗能梁段腹板高厚比设计得合理,Y型偏心支撑钢框架侧向刚度较大,可以满足在小震或中震作用下的结构变形要求,在大震作用下提供良好的变形能力和耗散地震能量的功能.  相似文献   

7.
Eurocode 8 (EC8) stipulates design methods for frames with diagonal braces and for chevron braced frames, which differ as regards the numerical model adopted, the value of the behavior factor q and the estimation of the lateral strength provided by braces. Instead, in this paper, the use of the same design method is suggested for both types of concentrically braced frames. The design method is a generalization of the one proposed for chevron braced frames in a previous study. A numerical investigation is conducted to assess the reliability of this design method. A set of concentrically braced frames is designed according to the EC8 and proposed design methods. The seismic response of these frames is determined by nonlinear dynamic analysis. Finally, it is demonstrated that the proposed design method is equivalent to those provided by EC8, because it can ensure the same level of structural safety which would be expected when using EC8. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, the torsional response of buildings with peripheral steel‐braced frame lateral systems is evaluated. A three‐dimensional model of a three story braced frame with various levels of eccentricity is created and the effects of torsion on the seismic response is assessed for four hazard levels. The response history analysis results indicate that, unlike frame structures, the torsional amplifications in the inelastic systems exceed those of corresponding elastic systems and tend to increase with an increase in the level of inelasticity. The ability of two simplified procedures, elastic response spectrum analysis and pushover analysis, to capture the torsional amplifications in steel‐braced frames is evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The demand for modular steel buildings (MSBs) has increased because of the improved quality, fast on-site installation, and lower cost of construction. Steel braced frames are usually utilized to form the lateral load resisting system of MSBs. During earthquakes, the seismic energy is dissipated through yielding of the components of the braced frames, which results in residual drifts. Excessive residual drifts complicate the repair of damaged structures or render them irreparable. Researchers have investigated the use of superelastic shape memory alloys (SMAs) in steel structures to reduce the seismic residual deformations. This study explores the potential of using SMA braces to improve the seismic performance of typical modular steel braced frames. The study utilizes incremental dynamic analysis to judge on the benefits of using such a system. It is observed that utilizing superelastic SMA braces at strategic locations can significantly reduce the inter-storey residual drifts.  相似文献   

10.
Hybrid simulation is a testing methodology that combines laboratory and analytical simulation to evaluate seismic response of complex structural framing systems. One or more portions of the structure, which may be difficult to model numerically or have properties that have not been examined before, are tested in one or more laboratories, whereas the remainder of the structure is modeled in software using one or more computers. These separate portions are assembled such that combined dynamic response of the hybrid model to excitation is computed using a time‐stepping procedure. A hybrid simulation conducted to examine the seismic response of a type of steel concentrically braced frame, the suspended‐zipper‐braced frame, is presented. The hybrid simulation testing architecture, hybrid model, test setup, solution algorithm, and the seismic response of the suspended‐zipper‐braced frame hybrid model are discussed. Accuracy of this hybrid simulation is examined by comparing hybrid and computer‐only simulations and the errors are quantified using an energy‐based approach. This comparison indicates that the deployed hybrid simulation method can be used to accurately model the seismic response of a complex structural system such as the zipper‐braced frame. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
消能支撑-方钢管混凝土框架结构抗震性能的试验研究   总被引:4,自引:0,他引:4  
本文设计了一榀消能支撑框架,方钢管混凝土通过不同频率、不同位移幅值下的水平低周反复荷载试验,验证了消能支撑框架优异的消能能力,提出了相关连接构造的设计建议,为中高层钢结构住宅提供了一种新的抗震设计思路。  相似文献   

12.
1 Introduction Braced steel frames are commonly used to resist seismic loads. Their seismic behavior was extensively studied during the past decades (Bertero et al.., 1989; Roeder, 1989; Jain, 1978). Their design is governed by the buckling behavior of the bracing members (ASCE, 1994,2002; CSA, 1994). To prevent or delay the seismic buckling of compressive members in concentrically braced frames in steel structures, a great number of methods have been proposed. These include the use of sp…  相似文献   

13.
研究屈曲约束支撑半刚性连接框架弹塑性位移计算方法,为这种结构抗震设计提供依据.推导了屈曲约束支撑半刚性连接框架结构侧移刚度计算方法,通过计算屈曲约束支撑和半刚性连接在罕遇地震作用下的有效阻尼比,修正弹性设计反应谱,再利用修正后的设计反应谱进行结构弹塑性层间位移简化计算.通过与弹塑性时程分析对提出的计算方法进行验证.基于有效阻尼比的思想给出的弹塑性位移的简化计算方法可进行屈曲约束支撑半刚性连接框架罕遇地震下的抗震设计.  相似文献   

14.
偏心支撑结构是一种高烈度地震区高层建筑钢结构合理的抗侧力体系,本文针对目前偏心支撑结构存在的不足,提出一种新型的框架支撑形式——耗能器偏心支撑;并将该单斜杆(D型)耗能器偏心支撑与支撑斜杆上不加设耗能器的D型偏心支撑结构进行了对比试验。验证了该新型框架支撑形式不仅可以减少耗能梁段吸收的地震能量,而且可以减小耗能梁段的破坏程度,从而减少震后修复工作量;它具有很好的变形能力和足够的抗侧移能力。文中同时给出了设计方法,并提出了改进措施。  相似文献   

15.
In the recent past, suspended zipper‐braced frames were proposed to avoid one‐storey collapse mechanisms and dynamic instability under severe ground motions. In this paper, the design procedure suggested by Yang et al. is first slightly modified to conform to the design approach and capacity design rules stipulated in Eurocode 8 for concentrically braced frames. The procedure is applied to a set of suspended zipper‐braced frames with different number of storeys and founded on either soft or rock soil. The structural response of these frames is analysed to highlight qualities and deficiencies and to assess the critics reported by other researchers with regard to the design procedure by Yang et al. Then, improvements are proposed to this procedure to enhance the energy dissipation of the chevron braces and the response of the structural system as well. The effectiveness of the design proposals is evaluated by incremental dynamic analysis on structures with different geometric properties, gravity loads and soil of foundation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
It is well known that the generation of excess pore water pressure and/or liquefaction in foundation soils during an earthquake often cause structural failures.This paper describes the behavior of a small-scale braced wall embedded in saturated liquefiable sand under dynamic condition.Shake table tests are performed in the laboratory on embedded retaining walls with single bracing.The tests are conducted for different excavation depths and base motions.The influences of the peak magnitude of the ground motions and the excavation depth on the axial forces in the bracing,the lateral displacement and the bending moments in the braced walls are studied.The shake table tests are simulated numerically using FLAC 2D and the results are compared with the corresponding experimental results.The pore water pressures developed in the soil are found to influence the behavior of the braced wall structures during a dynamic event.It is found that the excess pore water pressure development in the soil below the excavation is higher compared to the soil beside the walls.Thus,the soil below the excavation level is more susceptible to the liquefaction compared to the soil beside the walls.  相似文献   

17.
This paper presents a ten-element hybrid (experimental-numerical) simulation platform, referred to as UT10, which was developed for running hybrid simulations of braced frames with up to ten large-capacity physical brace specimens. This paper presents the details of the development of different components of UT10 and an adjustable yielding brace (AYB) specimen, which was designed to perform hybrid simulations with UT10. As the first application of UT10, a five-story buckling-restrained braced frame and a special concentrically braced frame (BRBF and SCBF) were designed and tested with AYB specimens and buckling specimens representing the braces. Cyclic tests of the AYB, one- and three-element hybrid simulations of the BRBF, and four-element hybrid simulations of the SCBF inside the UT10 confirmed the functionality of UT10 for running hybrid simulations on multiple specimens. The tests also indicated that AYB was capable of producing a stable hysteretic response with characteristics similar to BRBs. Comparison of the results of the hybrid simulations of the BRBF and SCBF with their fully numerical models showed that the modeling inaccuracies of the yielding braces could potentially affect the global response of the multi-story braced frames further emphasizing the need for experimental calibration or hybrid simulation for achieving more accurate response predictions. UT10 provides a simple and reconfigurable platform that can be used to achieve a realistic understanding of the seismic response of multi-story frames with yielding braces, distinguish their modeling limitations, and improve different modeling techniques available for their seismic response prediction.  相似文献   

18.
Earthquake Engineering and Engineering Vibration - A controlled rocking concentrically steel braced frame (CR-CSBF) is introduced as an alternative to conventional methods to prevent major...  相似文献   

19.
基于轴向位移的钢支撑疲劳损伤评估方法   总被引:1,自引:0,他引:1  
在罕遇地震下,框架-中心支撑结构中的钢支撑常因局部屈曲位置的低周疲劳开裂而过早退出工作。本文在焊接工字形钢支撑低周疲劳试验研究基础上,提出了一种可用于框架-中心支撑体系非线性动力时程分析中钢支撑疲劳损伤评估的经验方法,并给出了相关步骤的算法流程。研究结果表明:本文方法以钢支撑轴向位移为损伤参量,能实时估算在随机位移荷载下钢支撑的低周疲劳累积损伤发展,并与试验结果吻合较好。  相似文献   

20.
The paper deals with the analysis of the seismic behaviour and design of tied braced frames (TBFs). The behavioural properties of TBFs are described and a comparison drawn with standard eccentrically braced frames. A design procedure is then proposed that aims to achieve optimal collapse seismic behaviour, i.e. a global collapse mechanism characterized by uniform plastic rotations of links. The procedure is based on the displacement‐based approach so as to achieve direct and efficient control of the peak ground acceleration of collapse. Applications are carried out on systems with different numbers of storeys and lengths of links to obtain confirmation of the accuracy of the design hypotheses and methodologies. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号