首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Rayleigh distillation by outgassing of SO2 and H2O on the isotopic composition of sulphur remaining in silicate melts is quantitatively modelled. A threshold mole fraction of sulphur in the sulphide component of the melts is reckoned as being critically important in shifting the δ34S value of degassed melts with respect to the original magmas. During the outgassing, melts above the threshold are depleted in 34S, whereas melts below the threshold are enriched in 34S. In particular, the outgassing of SO2 above the sulphide threshold can produce large negative δ34S values in the degassed melts, whereas the outgassing of H2S below the threshold will strongly drive the δ34S value of the melts in the positive direction. The correlation between δ34S value and sulphur content of total sulphur in the solidified rocks is indicative of the Rayleigh-type degassing.  相似文献   

2.
Correlative fractionation relationships of sulphur isotope data for coexisting sulphate and sulphide pairs from hydrothermal ore deposits on δ38S versus Δ34S diagrams are deciphered theoretically. Taking into account dissolved H2S and SO42- in hydrothermal fluids during precipitation of both sulphate and sulphide minerals, a 4-species closed system is suggested for describing the conservation of mass among all sulphur-bearing species on the δ-Δ diagrams. The covariation in the δ34S values of both sulphate and sulphide is ascribed to isotopic exchange between oxidized and reduced sulphur species during mineral precipitation. The isotopic exchange could be a thermodynamic process due to simple cooling of high temperature fluids, which results in an equilibrium fractionation, or a kinetic process due to mixing of two sulphur reservoirs, which leads to a disequilibrium fractionation. The δ34S value of total sulphur in a hydrothermal system could change due to the precipitation of minerals, or due to the escape of H2S and/or SO42-. Sulphur isotope data for anhydrite and pyrite pairs from the Luohe porphyrite iron deposit in the Yangtze River Valley is used to illustrate the mixing responsible for the disequilibrium fractionation.  相似文献   

3.
The acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, plays a part in the pyrite oxidation process and has been widely studied in order to determine the kinetics of the reactions and the isotopic composition of dissolved product sulphates, but the details of the oxidation processes at the surface of pyrite are still poorly known. In this study, oxygen and sulphur isotopic compositions (δ18O and δ34S) were analyzed for dissolved sulphates and water from experimental aerobic acidic (pH < 2) pyrite oxidation by A. ferrooxidans. The oxidation products attached to the pyrite surfaces were studied for their morphology (SEM), their chemistry (Raman spectroscopy) and for their δ18O (ion microprobe). They were compared to abiotically (Fe3+, H2O2, O2) oxidized pyrite surface compounds in order to constrain the oxidation pathways and to look for the existence of potential biosignatures for this system.The pyrite dissolution evolved from non-stoichiometric (during the first days) to stoichiometric (with increasing time) resulting in dissolved sulphates having distinct δ18O (e.g. +11.0‰ and −2.0‰, respectively) and δ34S (+4.5‰ and +2.8‰, respectively) values. The “oxidation layer” at the surface of pyrite is complex and made of iron oxides, sulphate, polysulphide, elemental sulphur and polythionates. Bio- and Fe3+-oxidation favour the development of monophased micrometric bumps made of hematite or sulphate while other abiotic oxidation processes result in more variable oxidation products. The δ18O of these oxidation products at the surface of oxidized pyrites are strongly variable (from ≈−40‰ to ≈+30‰) for all experiments.Isotopic fractionation between sulphates and pyrite, Δ34SSO4-pyrite, is equal to −1.3‰ and +0.4‰ for sulphates formed by stoichiometric and non-stoichiometric processes, respectively. These two values likely reflect either a S-S or a Fe-S bond breaking process. The Δ18OSO4-H2O and Δ18OSO4-O2 are estimated to be ≈+16‰ and ≈−25‰, respectively. These values are higher than previously published data and may reflect biological effects. The large δ18O heterogeneity measured at the surfaces of oxidized pyrites, whatever the oxidant, may be related (i) to the existence of local surface environments isolated from the solution in which the oxidation processes are different and (ii) to the stabilization at the pyrite surface of reaction intermediates that are not in isotopic equilibrium with the solution. Though the oxygen isotopic composition of surface oxidation products cannot be taken as a direct biosignature, the combined morphological, chemical and isotopic characterization of the surfaces of oxidized pyrites may furnish clues about a biological activity on a mineral surface.  相似文献   

4.
《Applied Geochemistry》2001,16(4):475-488
The usefulness of stable isotopes of dissolved SO434S and δ18O) to study recharge processes and to identify areas of significant inter-aquifer mixing was evaluated in a large, semi-arid groundwater basin in south-eastern Australia (the Murray Basin). The distinct isotopic signatures in the oxidizing unconfined Murray Group Aquifer and the deeper reducing Renmark Group confined aquifer may be more sensitive than conventional chemical tracers in establishing aquifer connections. δ34S values in the unconfined Murray Group Aquifer in the south and central part of the study area decrease along the hydraulic gradient from 20.8 to 0.3‰. The concomitant increasing SO4/Cl ratios, as well as relatively low δ18OSO4 values, suggest that vertical input of biogenically derived SO4 via diffuse recharge is the predominant source of dissolved SO4 to the aquifer. Further along the hydraulic gradient towards the discharge area near the River Murray, δ34S values in the unconfined Murray Group Aquifer increase, and SO4/Cl ratios decrease, due to upward leakage of waters from the confined Renmark Group Aquifer which has a distinctly low SO4/Cl and high δ34S (14.9–56.4‰). Relatively positive δ34S and δ18OSO4 values, and low SO4/Cl in the Renmark Group Aquifer is typical of SO4 removal by bacterial reduction. The S isotope fractionation between SO4 and HS of ∼24‰ estimated for the confined aquifer is similar to the experimentally determined chemical fractionation factor for the reduction process but much lower than the equilibrium fractionation (∼70‰) even though the confined groundwater residence time is >300 Ka years. Mapping the spatial distribution of δ34S and SO4/Cl of the unconfined Murray Group Aquifer provides an indicative tool for identifying the approximate extent of mixing, however the poorly defined end-member isotopic signatures precludes quantitative estimates of mixing fractions.  相似文献   

5.
A laser fluorination microprobe system has been constructed for high-accuracy, high-precision multisulfur isotope analysis with improved spatial resolution. The system uses two lasers: (a) a KrF excimer laser for in situ spot analysis by ultraviolet (UV) photoablation with λ = 248 nm and (b) a CO2 laser for whole-grain analysis of powdered samples by infrared heating at λ = 10.6 μm. A CO2 laser is necessary for the analysis of interlaboratory isotope reference materials because they are supplied as powders. The δ34S and δ33S compositions of reference materials measured with a CO2 laser fluorination system agree (±0.2‰, 1σ) with the recommended values by the Sulfur Isotope Working Group of the International Atomic Energy Agency [Ding et al 2001] and [Taylor]. The precision of replicate analyses of powdered sulfide minerals with the CO2 laser is typically ±0.2‰ (1σ) for δ34S.The in situ fluorination of sulfides with a KrF excimer laser (λ = 248 nm) was validated by comparison of measurements of side-by-side laser craters and powders excavated from drill holes. Powders from drill holes were analyzed with the CO2 laser. In situ laser craters and drill hole powders give the same δ34SV-CDT and δ33SV-CDT values within 0.2‰. The δ34SV-CDT and δ33SV-CDT values of both powders and in situ analyses are independent of F2 gas pressure over a range of 15 to 65 torr. No dependence of δ34SV-CDT and δ33SV-CDT values on UV laser energy fluence has been observed. Mineral-specific fractionation of sulfur isotopes in analyzing pyrite, sphalerite, galena, troilite, and chalcopyrite has not been observed with a KrF excimer laser (λ = 248 nm). Test analyses with an ArF excimer laser (λ = 193 nm), however, gave fractionated sulfur isotope ratios.A range of Δ33S anomalies of from - 1.5 to +3.0‰ in Archean samples from the North Pole district, Pilbara Craton, Australia, and from black shale of the Lokamonna Formation, South Africa, were verified by in situ analysis of individual pyrite grains with a KrF excimer laser. These results show that a combination of high-accuracy, high-precision analyses with improved spatial resolution permits locating and analyzing host minerals of non-mass-dependent sulfur isotope anomalies.  相似文献   

6.
Soils overlying two porphyry Cu deposits (Spence, Gaby Sur) and the Pampa del Tamarugal, Atacama Desert, Northern Chile were collected in order to investigate the extent to which saline groundwaters influence “soil” chemistry in regions with thick Miocene and younger sediment cover. Soil carbonate (calcite) was analyzed for C and O isotopes and pedogenic gypsum for S isotopes. Soil calcite is present in all soils at the Spence deposit, but increases volumetrically above two fracture zones that cut the Miocene gravels, including gravels that overlie the deposit. The C isotope composition of carbonate from the soils overlying fracture zones is indistinguishable from pedogenic carbonate elsewhere at the Spence deposit; all δ13CVPDB values fall within a narrow range (1.40–4.23‰), consistent with the carbonate having formed in equilibrium with atmospheric CO2. However, δ18OVPDB for carbonate over both fracture zones is statistically different from carbonate elsewhere (average δ18OVPDB = 0.82‰ vs. −2.23‰, respectively), suggesting involvement of groundwater in their formation. The composition of soils at the Tamarugal anomaly has been most strongly affected by earthquake-related surface flooding and evaporation of groundwater; δ13CVPDB values (−4.28‰ to −2.04‰) are interpreted to be a mixture of dissolved inorganic C (DIC) from groundwater and atmospheric CO2. At the Spence deposit, soils only rarely contain sufficient SO4 for S isotope analysis; the SO4-bearing soils occur only above the fracture zones in the gravel. Results are uniform (3.7–4.9‰ δ34SCDT), which is near the middle of the range for SO4 in groundwater (0.9–7.3‰). Sulfur in soils at the Gaby Sur deposit (3.8–6.1‰ δ34SCDT) is dominated by gypsum, which primarily occurs on the flanks and tops of hills, suggesting deposition from SO4-rich fogs. Sulfate in Gaby Sur deposit gypsum is possibly derived by condensation of airborne SO4 from volcanic SO2 from the nearby Andes. At the Gaby Sur deposit and Tamarugal anomaly, pedogenic stable isotopes cannot distinguish between S from porphyry or redeposited SO4 from interior salars.The three sites studied have had different histories of salt accumulation and display variable influence of groundwater, which is interpreted to have been forced to the surface during earthquakes. The clear accumulation of salts associated with fractures at the Spence deposit, and shifts in the isotopic composition of carbonate and sulfate in the fractures despite clear evidence of relatively recent removal of salts indicates that transfer from groundwater is an ongoing process. The interpretation that groundwaters can influence the isotopic composition of pedogenic calcrete and gypsum has important implications for previous studies that have not considered this mechanism.  相似文献   

7.
硫同位素地质研究工作中,经常遇到的研究对象是硫酸盐矿物。如何把这些硫酸盐矿物转化为适于质谱测定硫同位素组成的SO2气体,是我国硫同位素地质研究中急待建立的实验手段之一。 经典的方法中,可溶于水的硫酸盐,通常是先把它沉淀为BaSO4,然后通过一系列的化学反应转化为SO2。 七十年代初期,B.D.Holt等人提出直接加热分解BaSO4制备SO2的方法。  相似文献   

8.
<正>The Ordos Cretaceous Groundwater Basin,located in an arid-semiarid area in northwestern China,is a large-style groundwater basin.SO_4~(2-) is one of the major harmful components in groundwater.Dissolved SO_4~(2-) concentrations,andδ~(34)S-SO_4~(2-) andδ~(18)O-SO_4~(2-) in groundwater from 14 boreholes and in gypsum from aquifer were analyzed.Results show that SO_4~(2-) in shallow groundwaters originates from precipitation,sulfide oxidation,and dissolution of stratum sulphate,with a big range ofδ~(34)S values,from-10.7‰to 9.2‰,and addition of SO_4~(2-) in deep groundwater results from dissolution of stratum sulphate,with biggerδ~(34)S values,from 7.8‰to 18.5‰,compared with those in shallow groundwater.This research also indicates that three types of sulphate are present in the strata,and characterized by highδ~(34)S values and highδ~(18)O values-style,highδ~(34)S values and middleδ~(18)O valuesstyle, middleδ~(34)S values and lowδ~(18)O values-style,respectively.Theδ~(34)S-SO_4~(2-) andδ~(18)O-SO_4~(2-) in groundwater have a good perspective for application in distinguishing different groundwater systems and determining groundwater circulation and evolution in this area.  相似文献   

9.
The paper presents the results of determinations of stable S and O isotopes of dissolved sulfates and O and H stable isotopes of waters from three ponds, that is, Marczakowe Do?y acid pond, Marczakowe Do?y fish pond and Podwi?niówka acid pit pond, located in the Holy Cross Mountains (south-central Poland). The δ34SV-CDT and δ18OV-SMOW of SO4 2? in waters of three ponds (n = 14) varied from ?16.2 to ?9.5 ‰ (mean of ?13.6 ‰) and from ?8.1 to ?3.2 ‰ (mean of ?4.8 ‰), respectively. The mean δ34S–SO4 2? values were closer to those of pyrite (mean of ?25.4 ‰) and efflorescent sulfate salts (mean of ?25.6 ‰), recorded previously in the Podwi?niówka quarry, than to sulfates derived from other anthropogenic or soil and bedrock sources. The SO4 2? ions formed by bacterially induced pyrite oxidation combined with bacterial (dissimilatory) dissolved sulfate reduction, and presumably with subordinate mineralization of carbon-bonded sulfur compounds, especially in both Marczakowe Do?y ponds. In addition, the comparison of δ18O–SO4 2? and δ18O–H2O values indicated that 75–100 % of sulfate oxygen was derived from water. Due to the largest size, the Podwi?niówka acid pit pond revealed distinct seasonal variations in both δ18O–H2O (?9.2 to ?1.6) and δD–H2O (?29.7 to ?71.3) values. The strong correlation coefficient (r 2 = 0.99) was noted between δ18O–H2O and δD–H2O values, which points to atmospheric precipitation as the only source of water. The sediments of both acid ponds display different mineral inventory: the Marczakowe Do?y acid pond sediment consists of schwertmannite and goethite, whereas Podwi?niówka acid pit pond sediment is composed of quartz, illite, chlorite and kaolinite with some admixture of jarosite reflecting a more acidic environment. Geochemical modeling of two acid ponds indicated that the saturation indices of schwertmannite and nanosized ε-Fe2O3 (Fe3+ oxide polymorph) were closest to thermodynamic equilibrium state with water, varying from ?1.44 to 3.05 and from ?3.42 to 6.04, respectively. This evidence matches well with the obtained mineralogical results.  相似文献   

10.
《Sedimentary Geology》1999,123(3-4):255-273
This study investigates the sulphur source of gypsum sulphate and dissolved groundwater sulphate in the Central Namib Desert, home to one of Africa's most extensive gypsum (CaSO4·2H2O) accumulations. It investigates previously suggested sulphate precursors such as bedrock sulphides and decompositional marine biogenic H2S and studies the importance of other potential sources in order to determine the origin of gypsum and dissolved sulphate in the region. An attempt has been made to sample all possible sulphur sources, pathways and types of gypsum accumulations in the Central Namib Desert. We have subjected those samples to sulphur isotopic analyses and have compiled existing results. In addition, ionic ratios of Cl/SO4 are used to determine the presence of non-sea-salt (NSS) sulphur in groundwater and to investigate processes affecting groundwater sulphate. In contrast to previous work, this study proposes that the sulphur cycle, and the formation of gypsum, in the Namib Desert appears to be dominated by the deposition of atmospheric sulphates of phytoplanktonic origin, part of the primary marine production of the Benguela upwelling cells. The aerosol sulphates are subjected to terrestrial storage within the gypsum deposits on the hyper-arid gravel plain and are traceable in groundwater including coastal sabkhas. The hypothesis of decompositional marine biogenic H2S or bedrock sulphide sources, as considered previously for the Namib Desert, cannot account for the widespread accumulation of gypsum in the region. The study area in the Central Namib Desert, between the Kuiseb and Omaruru rivers, features extensive gypsum accumulations in a ca. 50–70 km wide band, parallel to the shore. They consist of surficial or shallow pedogenic gypsum crusts in the desert pavement, hydromorphic playa or sabkha gypsum, as thin isolated pockets on bedrock ridges and as discrete masses of gypsum selenite along some faults. The sulphur isotopic values (δ34S ‰CDT) of these occurrences are between δ34S +13.0 and +18.8‰, with lower values in proximity to sulphuric ore bodies (δ34S +3.1 and +3.4‰). Damaran bedrock sulphides have a wide range from δ34S −4.1 to +13.8‰ but seem to be significant sources on a local scale at the most. Dissolved sulphate at playas, sabkhas, springs, boreholes and ephemeral rivers have an overall range between δ34S +9.8 and +20.8‰. However, they do not show a systematic geographical trend. The Kalahari waters have lower values, between δ34S +5.9 and +12.3‰. Authigenic gypsum from submarine sediments in the upwelling zone of the Benguela Current between Oranjemund and Walvis Bay ranges between δ34S −34.6 to −4.6‰. A single dry atmospheric deposition sample produced a value of δ34S +15.9‰. These sulphur isotopic results, complemented by meteorological, hydrological and geological information, suggest that sulphate in the Namib Desert is mainly derived from NSS sulphur, in particular oxidation products of marine dimethyl sulphide CH3SCH3 (DMS). The hyper-arid conditions prevailing along the Namibian coast since Miocene times favour the overall preservation of the sulphate minerals. However, sporadic and relatively wetter periods have promoted gypsum formation: the segregation of sulphates from the more soluble halite, and the gradual seaward redistribution of sulphate. This study suggests that the extreme productivity of the Benguela Current contributes towards the sulphur budget in the adjacent Namib Desert.  相似文献   

11.
The sulphur isotopic composition of ocean water sulphate   总被引:3,自引:0,他引:3  
The sulphur isotopic composition of ocean water sulphate was determined, using the SF6 method, for samples from various depths of the Geosecs Stations II and 3 and for a single Pacific Ocean surface sample. The total spread in values obtained is less than that found in previous studies and is consistent with the experimental precision except for one Geosecs II sample which has an unusually low δ34S value. The mean value, + 20.99%., is markedly different from the hitherto accepted value of +20.0%.. The difference is attributed to the greater accuracy obtained when SF6 rather than SO2 is used as the sample gas for sulphur isotope analysis.  相似文献   

12.
Accurate ion microprobe analysis of oxygen isotope ratios in garnet requires appropriate reference materials to correct for instrumental mass fractionation that partly depends on the garnet chemistry (matrix effect). The matrix effect correlated with grossular, spessartine and andradite components was characterised for the Cameca IMS 1280HR at the SwissSIMS laboratory based on sixteen reference garnet samples. The correlations fit a second‐degree polynomial with maximum bias of ca. 4‰, 2‰ and 8‰, respectively. While the grossular composition range 0–25% is adequately covered by available reference materials, there is a paucity of them for intermediate compositions. We characterise three new garnet reference materials GRS2, GRS‐JH2 and CAP02 with a grossular content of 88.3 ± 1.2% (2s), 83.3 ± 0.8% and 32.5 ± 3.0%, respectively. Their micro scale homogeneity in oxygen isotope composition was evaluated by multiple SIMS sessions. The reference δ18O value was determined by CO2 laser fluorination (δ18OLF). GRS2 has δ18OLF = 8.01 ± 0.10‰ (2s) and repeatability within each SIMS session of 0.30–0.60‰ (2s), GRS‐JH2 has δ18OLF = 18.70 ± 0.08‰ and repeatability of 0.24–0.42‰ and CAP02 has δ18OLF = 4.64 ± 0.16‰ and repeatability of 0.40–0.46‰.  相似文献   

13.
Concentration and isotope ratios (δ34SSO4 and δ18OSO4) of dissolved sulfate of groundwater were analyzed in a very large anaerobic aquifer system under the Lower Central Plain (LCP) (25,000 km2) in Thailand. Groundwater samples were collected in two different kinds of aquifers; type 1 with a saline water contribution and type 2 lateritic aquifers with no saline water contribution. Two different isotopic compositional trends were observed: in type 1 aquifers sulfate isotope ratios range from low values (+2.2‰ for δ34SSO4 and +8.0‰ for δ18OSO4) to high values (+49.9‰ for δ34SSO4 and +17.9‰ for δ18OSO4); in type 2 aquifers sulfate isotope ratios range from low values (−0.1‰ for δ34SSO4 and +12.2‰ for δ18OSO4) to high δ18OSO4 ratios (+18.4‰) but with low δ34SSO4 ratios (<+12.9‰). Isotopic comparison with possible source materials and theoretical geochemical models suggests that the sulfate isotope variation for type 1 aquifer groundwater can be explained by two main processes. One is the contribution of remnant seawater, which has experienced dissimilatory sulfate reduction in the marine clay, into recharge water of freshwater origin. This process accounts for the high salinity groundwater. The other process, explaining for the modest salinity groundwater, is the bacterial sulfate reduction of the mixture water between high salinity water and fresh groundwater. Isotopic variation of type 2 aquifer groundwater may also be explained by bacterial sulfate reduction, with slower reduction rate than that of the groundwater with saline water effect. The origin of groundwater sulfate with low δ34SSO4 but high δ18OSO4 is recognized as an important topic to be examined in a future investigation.  相似文献   

14.
《Applied Geochemistry》1997,12(4):483-496
The34S-to-32S ratio in dissolved SO4 has been studied in the Kalix River, Northern Sweden, and its catchment. Weekly sampling over 17 months revealed temporal variations from +5.3‰ up to +7.4‰ in the δ34S values in the river. Snow and rain samples showed lower δ34S values (average +5.6‰ and +5.0‰, respectively). The atmosphere is the major source for S in surface waters in the catchment, and the heavier δ34S values in the river are a result of SO4 reduction within the catchment.Most of the temporal variations in the δ34S value in the river are caused by a mixing of water from the mountain areas (relatively light δ34S) and the woodland. The δ34S value is relatively heavy in the woodland tributaries because of bacterial SO4 reduction in peatland areas influenced by groundwater.The highest δ34S values were measured during the spring flood, in June and in November. These heavy δ34S values are related to different types of water with diverse origins.The heavy δ34S values coinciding with the early spring flood originate from peatland areas in the woodland. Relatively heavy δ34S values (up to +14.4‰) were registered in mire water. Smaller variations of the δ34S value during summer and early autumn most likely were caused by the input of ground-mire water during heavy rains. A correlation between increased TOC concentrations and increased δ34S values was observed.The heavy δ34S values in June and November probably originate from SO4 reduction in bottom water and sediments in lakes within the catchment. Bottom water, enriched in34SSO4, was transported in the river during the spring and autumn overturn.  相似文献   

15.
Previous geochemical and microbiological studies in the Cariaco Basin indicate intense elemental cycling and a dynamic microbial loop near the oxic-anoxic interface. We obtained detailed distributions of sulfur isotopes of total dissolved sulfide and sulfate as part of the on-going CARIACO time series project to explore the critical pathways at the level of individual sulfur species. Isotopic patterns of sulfate (δ34SSO4) and sulfide (δ34SH2S) were similar to trends observed in the Black Sea water column: δ34SH2S and δ34SSO4 were constant in the deep anoxic water (varying within 0.6‰ for sulfide and 0.3‰ for sulfate), with sulfide roughly 54‰ depleted in 34S relative to sulfate. Near the oxic-anoxic interface, however, the δ34SH2S value was ∼3‰ heavier than that in the deep water, which may reflect sulfide oxidation and/or a change in fractionation during in situ sulfide production through sulfate reduction (SR). δ34SH2S and Δ33SH2S data near the oxic-anoxic interface did not provide unequivocal evidence to support the important role of sulfur-intermediate disproportionation suggested by previous studies. Repeated observation of minimum δ34SSO4 values near the interface suggests ‘readdition’ of 34S-depleted sulfate during sulfide oxidation. A slight increase in δ34SSO4 values with depth extended over the water column may indicate a reservoir effect associated with removal of 34S-depleted sulfur during sulfide production through SR. Our δ34SH2S and Δ33SH2S data also do not show a clear role for sulfur-intermediate disproportionation in the deep anoxic water column. We interpret the large difference in δ34S between sulfate and sulfide as reflecting fractionations during SR in the Cariaco deep waters that are larger than those generally observed in culturing studies.  相似文献   

16.
《Applied Geochemistry》2001,16(9-10):1215-1230
Oxidation rates of low sulphide (<0.5 wt.%) gneissic waste rock from the Cluff lake U mine, northern Saskatchewan, Canada were determined using 3 independent methods: O2 consumption rates in kinetic cells, SO4 measurements of kinetic cell effluent and humidity cell SO4 release rates. The O2 consumption measurements demonstrated that the oxidation of pyrite was strongly dependent on grain size and moderately dependent on water content, temperature and microbiology. Oxygen consumption rates were highest at water contents of 5–10 wt.% (12–25% saturation). Measured SO4 release rates (3.1–91 mg SO4 kg−1 wk−1) for the kinetic cells were comparable to rates calculated from the O2 consumption values (6.9–70 mg SO4 kg−1 wk−1). Sulphate release rates determined from humidity cells were generally higher than those obtained from the kinetic cells, ranging from 6 to 64 mg SO4 kg−1 wk−1 for the coarsest and finest fraction, respectively. These differences were attributed to sample heterogeneity.  相似文献   

17.
Analysis of oxygen isotope ratios (δ18O) by ion microprobe resolves a sub-annual climate record for the Eastern Mediterranean from a Soreq Cave stalagmite that grew between 2.2 and 0.9 ka. In contrast to conventional drill-sampling methods that yield a total variation of 1.0‰ in δ18Ocalcite values across our sample, the methods described here reveal up to 2.15‰ variation within single annual growth bands. Values of δ18O measured by ion microprobe vary in a regular saw-tooth pattern that correlates with annual, fluorescent growth banding where calcite grades from light to dark fluorescence. Modern records of precipitation and of cave dripwater indicate that variable δ18Ocalcite values record regular seasonal differences in δ18Orainfall modified by mixing in the vadose zone. Large differences in δ18O values measured across a single band (i.e., between the dark and light fluorescent calcite, or Δ18Odark-light) are interpreted to indicate wetter years, while smaller differences represent drier years. Oxygen isotopes record: 1) month-scale growth increments, 2) changes in Δ18Odark-light that represent seasonality, 3) a systematic, long-term decrease in maximum Δ18Odark-light values, and 4) an overall increase in average δ18Ocalcite values through time. These results suggest a drying of regional climate that coincides with the decline of the Roman and Byzantine Empires in the Levant region.  相似文献   

18.
Fourteen stratiform, stratabound and vein-type sulphide occurrences in the Upper Allochthon of the Central–North Norwegian Caledonides have been studied for their sulphur, oxygen and hydrogen isotope composition. Depositional ages of host rocks to the stratabound and stratiform sulphide occurrences range from 590 to 640?Ma. The sulphides and their host rocks have been affected by polyphase deformation and metamorphism with a peak temperature of 650?°C dated to 432?Ma. A total of 104 sulphide and 2 barite samples were analysed for δ34S, 16 whole-rock and quartz samples for δ18O and 12 samples of muscovite for δD. The overall δ34S values range from ?14 to +31‰ with the majority of sampled sulphides lying within a range of +4 to +15‰. In most cases δ34S within each hand specimen behaves in accordance with the equilibrium fractionation sequence, δ34Sgn34Scp34Ssph34Spy. A systematic increase in δ34S from the vein sulphides (?8‰) through schist/amphibolite-hosted (+6‰) and schist-hosted (+7 to +12‰) to dolomite-hosted (+12 to +31‰) occurrences is documented. The δ34S averages of the stratiform schist-hosted sulphides are 17 to 22‰ lower than in the penecontemporaneous seawater sulphate. The Bjørkåsen (+4 to +6‰) occurrence is a volcanogenic massive sulphide (VMS) transitional to sedimentary massive sulphide (SMS), exhalative, massive, pyritic deposit of Cu–Zn–Pb sulphides formed by fluids which obtained H2S via high-temperature reduction of seawater sulphate by oxidation of Fe2+ during the convective circulation of seawater through underlying rock sequences. The Raudvatn, volcanic-hosted, disseminated Cu sulphides (+6 to +8‰) obtained sulphur via a similar process. The Balsnes, stratiform, ‘black schist’-hosted, pyrite–pyrrhotite occurrence (?6 to ?14‰) is represented by typical diagenetic sulphides precipitated via bacteriogenic reduction of coeval (ca. 600?Ma) seawater sulphate (+25 to +35‰) in a system open to sulphate supply. The δ34S values of the Djupvik–Skårnesdalen (+7 to +12‰), Hammerfjell (+5 to 11‰), Kaldådalen (+10 to +12‰) and Njallavarre (+7 to +8‰) stratiform, schist-hosted, massive and disseminated Zn–Pb (±Cu) sulphide occurrences, as well as the stratabound, quartzite-hosted, Au-bearing arsenopyrite occurrence at Langvatnet (+7 to +11‰), suggest that thermochemically reduced connate seawater sulphate was a principal sulphur source. The Sinklien and Tårstad, stratabound, dolomite- and dolomite collapse breccia-hosted, Zn (±Cu–Pb) sulphides are marked by the highest enrichment in 34S (+20 to +31‰). The occurrences ?are?assigned to the Mississippi-Valley-type deposits.?High δ34S values require reduction/replacement of contemporaneous (ca. 590?Ma) evaporitic sulphate (+23 to +34‰) with Corg-rich fluids in a closed system. The Melkedalen (+12 to +15‰), stratabound, fault-controlled, Cu–Zn sulphide deposit is hosted by the ca. 595?Ma dolomitised Melkedalen marble. The deposit is composed of several generations of ore minerals which formed by replacement of host dolomite. Polyphase hydrothermal fluids were introduced during several reactivation episodes of the fault zone. The positive δ34S values with a very limited fractionation (<3‰) are indicative of the sulphide-sulphur generated through abiological, thermochemical reduction of seawater sulphate by organic material. The vein-type Cu (±Au–W) occurrences at Baugefjell, Bugtedalen and Baugevatn (?8 to ?4‰) are of hydrothermal origin and obtained their sulphur from igneous sources with a possible incorporation of sedimentary/diagenetic sulphides. In a broad sense, all the stratiform/stratabound, sediment-hosted, sulphide occurrences studied formed by epigenetic fluids within two probable scenarios which may be applicable separately or interactively: (1) expulsion of hot metal-bearing connate waters from deeper parts of sedimentary basins prior to nappe translation (late diagenetic/catagenetic/epigenetic fluids) or (2) tectonically driven expulsion in the course of nappe translation (early metamorphic fluids). A combination of (1) and (2) is favoured for the stratabound, fault-controlled, Melkedalen and Langvatnet occurrences, whereas the rest are considered to have formed within option (1). The sulphides and their host rocks were transported from unknown distances and thrust on to the Fennoscandian Shield during the course of the Caledonian orogeny. The displaced/allochthonous nature of the Ofoten Cu–Pb–Zn ‘metallogenetic province’ would explain the enigmatically high concentration of small-scale Cu–Pb–Zn deposits that occur only in this particular area of the Norwegian Caledonides.  相似文献   

19.
20.
Sulphur cycling in organic-rich marine sediments from a Scottish fjord   总被引:1,自引:0,他引:1  
In this study, the biogeochemical transformations of sulphur in organic‐rich marine sediments in a Scottish fjord are investigated by a combination of pore water and sediment geochemistry with sulphide diffusive gradient thin‐film probes and sulphate isotopic data (δ34S and δ18O). Particular attention is paid to sulphur cycling in the upper sediment profile where sulphate reduction occurs but free sulphide is below the detection limits of conventional pore water geochemical analysis but quantifiable by sulphide diffusive gradient thin film. In the uppermost part of the sediment core, δ18O sulphate decreased from near‐sea water values to +7‰, indicating that anoxic sulphide oxidation dominated during this interval. Sulphate δ34S remained unchanged as there was no net sulphate reduction (i.e. reduction was balanced by re‐oxidation). Below 4 cm depth, there was a slight increase in sulphate δ34S from 20‰ to 23‰ associated with minor accumulation of iron sulphide. The δ18O of the sulphate also increased, to around +10‰ at 10 cm depth, as a result of the isotopic exchange of sulphate–oxygen with pore water and/or sulphur disproportionation reactions mediated during sulphur cycling. These processes continued to increase the δ18O of the sulphate to 14‰ at 20 cm depth with no further change in the δ34S of the sulphate. Below 20 cm depth, free sulphide is detectable in pore waters and both the δ34S of the sulphate and sulphide increase with depth with an offset controlled by kinetic fractionation during bacterial sulphate reduction. The δ34S of the sedimentary organic fraction shifted towards lower, more bacteriogenic, values with depth in the profile, without any increase in the size of this sulphur pool. Thus, the organic sulphur fraction was open to interaction with bacteriogenic sulphide without the occurrence of net addition. Therefore, caution should be exercised when using sulphur isotopic compositions to infer simple net addition of bacteriogenic sulphide to the organic sulphur fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号